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Abstract: Maize breeding is greatly affected by hybrid vigor, a phenomenon that hybrids exhibit
superior performance than parental lines. The immortalized F2 population (IMF2) is ideal for the
genetic dissection and prediction of hybrid performance. Here, in this study, we conducted the QTL
mapping and genomic prediction of six traits related to plant architecture using an IMF2 population.
Broad-sense heritability of these traits ranged from 0.85 to 0.94. Analysis of genetic effects showed that
additive variance was the main contributor to phenotypic variations. The mapping of quantitative
trait loci (QTLs) revealed 10 to 16 QTLs (including pleiotropic loci and epistatic QTLs) for the six traits.
Additionally, we identified 15 fine-tuning QTLs for plant height (PH). For genomic prediction (GP),
the model of additive and dominance (AD) exhibited higher prediction accuracy than those fitting
general combining ability (GCA) and its combination with special combining ability (SCA) effects for
all tested traits. And adding the epistasis (E) effect into the AD model did not significantly increase
its prediction accuracy. Moreover, the identified 15 fine-tuning QTLs of PH, which exerted large
genomic prediction effects, were verified by the marker effect of GP. Our results not only provide
an approach for the fine-mapping of fine-tuning QTLs but also serve as references for GP breeding
in crops.

Keywords: maize; plant height; immortalized F2 population; genomic prediction

1. Introduction

In the face of the exploding global population, maize occupies an important position
in grain yield and food security [1,2]. Optimizing plant architecture is a promising strategy
for increasing planting density and the yield of maize [3,4]. The dissection of the QTLs and
genes controlling plant architecture would provide valuable insights into the underlying
molecular mechanisms and further benefit crop breeding [5,6].

Up till now, enhancing the plant architecture has been regarded as one of the major
approaches to breed varieties for higher planting density [7]. Plant height, a trait closely
linked to plant architecture, was strongly associated with grain yield, biomass and changes
in plant density. It serves as one of the main traits that requires urgent improvement in crop
breeding. The control of the quantitative variation in plant height by cloning genes is the
foundation for hybrid breeding designs [8,9]. Several genes associated with plant height
have been identified in crops, such as Ghd7 and Hd1 in rice [10,11] and Rht1 in wheat [8,12].
And, in maize, genes controlling the quantitative variation in plant height have also
been discovered, including Vegetative to generative transition 1 (Vgt1) [13], ZmGA3ox2 [14],
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Brachytic2 [15,16], ZmTE1 [17], and ZmAMP1 [4,18]. These studies indicated that maize
plant height is a complex quantitative trait controlled by intricate regulatory mechanisms.

The high yield of maize is due to heterosis, which is a complex phenomenon pertain-
ing to the superior performance of hybrids than that of the parental inbred lines [19,20].
Various hybrid populations derived from multiple mating designs (such as the triple test
cross design, the diallel design, and the North Carolina design) have been utilized to
study heterosis [21]. The immortalized F2 (IMF2) population serves as an ideal model
for genetic dissection and prediction of hybrid performance, due to its diverse and re-
peatable genetic variances [22]. A previous study using an IMF2 population containing
441 lines identified 10 QTLs on seven chromosomes for plant height (PH), most of which
showed over-dominant effects [23]. By crossing 339 recombinant inbred lines (RILs) with
two elite lines (Chang7-2 and Mo17), 33 epistatic heterosis loci for PH were identified,
and two dominance heterosis loci and 31 epistatic heterosis loci for ear height were also
discovered [24].

Genomic selection (GS) was first introduced in animal research in 2001 [25] and was
later applied in maize in 2007 [26], which has become a cutting-edge technology in the
molecular breeding era [27,28]. In GS, genetic parameters are estimated from the training
population that has both genotypic and phenotypic data. The genomic estimated breeding
values of the test population can then be predicted using GS models, such as the genomic
best linear unbiased prediction (GBLUP) or the ridge regression best linear unbiased
prediction (rrBLUP) models [29]. In quantitative genetics, hybrid performance can be
expressed as the linear combinations of general combining ability (GCA) of female and
male pools and special combining ability (SCA) [30], or the combinations of additive (A),
dominance (D), and epistatic (E) effects [29]. It is meaningful to compare the prediction
accuracy of these two methods to take full advantage of genetic information.

In this study, an IMF2 population derived from 194 RILs of Zheng58 and PH6WC
was developed. A total of six traits related to plant architecture were investigated in
three environments. The main objectives of this study were as follows: (1) to figure
out the contribution of different genetic effects to hybrid performance, namely, additive,
dominance, additive-by-additive, additive-by-dominance, and dominance-by-dominance
effects; (2) to identify additive, dominance, and epistatic QTLs in IMF2, and compare them
with the reported genes to search for fine-tuning QTLs; and (3) to calculate the prediction
accuracies of genomic prediction (GP) models fitting various genetic factors, and verify
whether the identified fine-tuning QTLs are essential for the GP of hybrid performance, so
as to guide the analysis framework of GP breeding.

2. Materials and Methods
2.1. Plant Materials

A total of 194 recombinant inbred lines (RILs) derived from Zheng58 and PH6WC were
used in this study. The elite inbred lines, Zheng58 and PH6WC, serve as the female parents
of two widely cultivated maize hybrids in China, namely, Zhengdan958 and Xinyu335,
respectively. In the summer of 2015, Zheng58 was crossed with PH6WC (female parent) to
produce the F1 combination in Xinxiang (Henan province, China, 35.5◦ N, 113.8◦ E). In the
winter of 2015, the F2 population was obtained in Sanya (Hainan province, China, 18.4◦ N,
109.2◦ E). Using the method of single seed descent, a set of RILs at F7 generation consisting
of 194 lines were finally constructed. Then, the whole RIL panel was split into two groups
randomly, and paired crossings were conducted randomly without replacement, resulting
in 97 hybrids (Figure S1). This procedure was repeated three times, yielding an IMF2
population consisting of 291 lines. The development procedure of the IMF2 population is
shown in detail in Figure S1.

2.2. Field Design and Trait Evaluation

In the summer of 2021, three replicates of the IMF2 population were planted in Xinxi-
ang (Henan province, China, 35.5◦ N, 113.8◦ E), Luoyang (Henan province, China, 34.7◦ N,
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112.7◦ E), and Xingtai (Hebei province, China, 37.5◦ N, 114.8◦ E). The year and location
were combined and described as environment, which were abbreviated as 21XX, 21LY, and
21XT in the further study. An augmented design was performed in each environment.
Each genotype was arranged in a single plot, with row length of 4 m, row space of 0.6 m,
and individual interval of 0.2 m. The management in the field followed the local practices.
Five individuals in each row were recorded for plant height (PH), ear height (EH), plant
height above-ear (PHAE), tassel length (TL), above-ear node number (AENN), and average
internode length above-ear (AILAE).

2.3. Phenotypic Data Analyses

Firstly, the following model was established to calculate the best linear unbiased
estimator value (BLUE) in each environment:

yim = µ + Gi + Rm + Bn(Rm) + εim (1)

where yim is the phenotype of the ith genotype in the mth replicate in the target environment,
µ is the mean, Gi is the genetic effect of the ith genotype treated as fixed effect, Rm is the
effect of the mth replicate treated as random effect, Bn (Rm) is the effect of the nth block
nested in the mth replicate, and εim is the error following a normal distribution.

Secondly, the following model was established to calculate BLUE and heritability
across environments [31]:

yijm = µ + Gi + Ej + G ∗ Eij + Rm
(
Ej
)
+ Bn

(
EjRm

)
+ εijm (2)

where yim is the effect of the ith genotype in mth replicate nested in the jth environment,
µ is the overall mean, Gi is the genetic effect of the ith genotype, Ej is the effect of the jth

environment, G ∗ Eij is the interaction between the ith genotype and jth environment,
Rm

(
Ej
)

is the effect of the mth replicate in the jth environment, Bn
(
EjRm

)
is the effect of

the nth block in the mth replicate and the jth environment, and εijm is the error following
a distribution εijm ∼ N

(
0, σ2) across environments. When calculating BLUE, only the

genotype effect was treated as fixed, and all effects were treated as random when calculating
heritability.

The Studentized Residual Razor method was used to remove outliers in the linear
model with a threshold of 2.8 [32]. Broad-sense heritability was calculated using Cullis’s
formula [33]. The linear mode was solved with the R package ASReml-R (version 4.1) [34].

2.4. Genotyping and QTL Mapping

For each genotype, more than ten leaves at the five-leaf stage were collected. DNA
extraction was performed using the cetyltrimethylammonium bromide method [35]. The
RIL samples were genotyped at China Golden Marker Biotech Co., Ltd. (Beijing, China),
using the 10 K single-nucleotide polymorphisms (SNP) chips [36]. The parents, Zheng58
and PH6WC, were coded as −1 and 1, respectively. For the original dataset in RILs, SNP
with missing rate over 10%, and P value of segregation distortion below 0.05 were dis-
carded. Individuals with heterozygous rate over 20% were excluded. Then, the remaining
heterozygous genotypes were treated as missing genotypes. The potential error genotypes
were corrected according to the flanking alleles with a max haplotype length equal to three
in the R package ABHgenotypeR [37], before being imputed with Beagle in the synbreed
package. The genotypes in IMF2 were inferred based on their parents using the build.
HMM function in the R package sommer [30].

The linkage map of the IMF2 population was constructed through the MAP function
in software QTL IciMapping (Version 4.2.53) [38], with the default parameters. This linkage
map was shared with the RIL population. QTL mapping for performance in single envi-
ronment and BLUE across environments were performed, using the method of inclusive
composite interval mapping (ICIM) through the BIP function, with the default parameters.
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Epistatic QTL mapping for the traits of the BLUE values was performed using the method
of ICIM for epistatic mapping (ICIM-EPI) through the BIP function, with the default pa-
rameters. The identified QTLs of PH were compared with the reported PH genes in maize.
QTLs with confidence intervals that did not overlap with the reported PH genes were
defined as fine-tuning QTLs. A summary of the reported PH genes in maize can be found
in Table S1.

2.5. Genomic Prediction

To evaluate the prediction accuracy in hybrid population, two GP models were applied
by partitioning the performance into different components (GCA and SCA, as well as the
linear combinations of A, D, and E effects). The two GBLUP models were implemented in
the R package BGLR [39] by setting nIter equal to 10,000 and burnIn equal to 2000. The
80% training set and 20% test set partitioning was repeated 200 times to obtain the mean
predictive ability.

3. Results
3.1. Phenotype Analysis under Multi-Environments

The coefficient of variance (CV) of the traits in the IMF2 population ranged from 6.28%
for AENN to 10.89% for TL (Table 1). The genetic variance and genotype-by-environment
variance were both significant (P value < 0.01) for all tested traits (Table 1). The broad-sense
heritability (h2) of the traits was larger than 0.85 in the IMF2 population, among which
PH showed the highest value of 0.94 (Table 1). The genetic network showed positive
correlations among all tested traits, and PH was highly correlated with PHAE, AILAE, and
EH (Figure 1A). Furthermore, the six traits were all in accordance with normal distribution
in general (Figure 1B–G).
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Figure 1. Genetic network and phenotype distributions of the traits in the IMF2 population. (A) Ge-
netic network for the six traits. (B–G) Phenotype distributions for the six traits. (B) PH, plant height;



Agriculture 2024, 14, 340 5 of 14

(C) EH, ear height; (D) PHAE, plant height above-ear; (E) TL, tassel length; (F) AENN, above-ear
node number; and (G) AILAE, average internode length above-ear. The vertical dashed lines in
(B–G) indicate the mean values.

Table 1. Summary statistics for the traits in the IMF2 population.

Traits Mean Min Max SD CV (%) σ2
G σ2

G×E NE h2

PH 220.0 173.0 267.9 17.06 7.75 271.76 ** 28.13 ** 3 0.94
EH 78.6 58.8 104.1 8.36 10.64 63.13 ** 8.37 ** 3 0.91

PHAE 141.6 97.2 174.8 12.70 8.97 148.54 ** 17.17 ** 3 0.93
TL 30.7 18.7 40.3 3.34 10.89 9.41 ** 2.23 ** 3 0.85

AENN 6.7 5.7 8.9 0.42 6.28 0.15 ** 0.01 ** 3 0.86
AILAE 17.3 13.2 21.1 1.45 8.41 1.85 ** 0.22 ** 3 0.89

Notes: SD, standard deviation; CV, coeffificient of variance; σ2
G, genotypic variance; σ2

G×E, genotype-by-
environment interaction variance; NE, the number of environments; h2, broad-sense heritability; **, significance at
0.01 level; PH, plant height; EH, ear height; PHAE, plant height above-ear; TL, tassel length; AENN, above-ear
node number; and AILAE, average internode length above-ear.

3.2. Additive Is the Main Contributor to All Tested Traits for the IMF2 Population

In order to dissect the genetic variance of the six traits of plant architecture for hybrid
performance, the additive and dominance models with the additive (a), dominance (D),
additive-by-additive (AA), additive-by-dominance (AD), and dominance-by-dominance
(DD) effects were examined based on 3069 SNP markers in the hybrid population (Figure 2;
Table S2). The proportions of variances by additive effect over the phenotypic variance in
the hybrid population ranged from 52.1% for AILAE to 69.3% for EH. The proportions of
variances by dominance effect over the phenotypic variance ranged from 5.1% for EH to
8.5% for AILAE. In terms of the interactive effect, the proportions of variances due to the
AA effect over the phenotypic variance ranged from 6.0% for EH to 12.3% for AILAE, the
proportions of variances due to the AD effect over the phenotypic variance ranged from
5.4% for EH to 7.2% for AILAE, and the proportions of variances due to the DD effect over
the phenotypic variance ranged from 4.3% for EH to 6.7% for AILAE (Figure 2; Table S2).
In general, the proportion of phenotypic variance explained by the additive effects was
larger than other genetic effects for all the six traits in the hybrid population (Figure 2).

3.3. QTL Mapping Identified Pleiotropic Loci and Epistatic QTLs

To identify the genetic loci controlling the six traits, we first constructed a linkage map
with the total genetic distance of 1892.83 cM (Figure S2; Table S3). The average distance
between flanking markers was 0.86 cM, corresponding to the physical distance of ~1.12 Mb.
The BLUE values across environments and phenotype values in each environment were
used for QTL mapping in the IMF2 population (Table S4). In total, 16 QTLs were identified
for PH and 10 for EH, 11 for PHAE, 12 for both TL and AENN, as well as 15 for AILAE
(Figure 3), and the PVE ranged from 0.6% to 20.9% (Table 2). Interestingly, we identified
several QTLs that controlled multiple traits simultaneously. For example, in terms of
chromosome 1, the QTL located at ~141 cM controls three traits (PH, PHAE, and AILAE),
and the one located at ~289 cM affected four traits at the same time (PH, PHAE, TL, and
AILAE). For chromosome 2, the QTL located at ~186 cM was related to traits including PH,
EH, and AILAE, whereas the QTL located at ~277 cM controlled EH, PHAE, TL, and AENN
simultaneously. The verification of these QTLs was performed in a single environment
(Table 2), substantiating the existence of pleiotropic loci controlling plant architecture in the
IMF2 population.
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Figure 2. Proportion of the phenotypic variance contributed by each variance component in the
hybrid population. (A) PH, plant height; (B) EH, ear height; (C) PHAE, plant height above-ear; (D) TL,
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effect; and DD, dominance-by-dominance effect.

Table 2. The pleiotropic loci identified for the tested traits under various environments.

Env. Trait Chr. Pos. Left Marker Right Marker LOD PVE (%) Add. Dom.

BLUE PH 1 141 S1_110002889 S1_143444026 7.9 2.4 −4.04 0.84
BLUE PHAE 1 141 S1_110002889 S1_143444026 9.9 6.4 −4.15 0.48
BLUE AILAE 1 141 S1_110002889 S1_143444026 14.5 6.6 −0.50 0.13
21XT PH 1 141 S1_110002889 S1_143444026 72.4 24.3 −21.76 0.65
21XT PHAE 1 141 S1_110002889 S1_143444026 13.2 6.7 −6.69 0.53
21XT AILAE 1 141 S1_110002889 S1_143444026 4.2 3.2 −0.35 0.12
BLUE PH 1 289 S1_269329879 S1_270329585 26.2 9.3 −8.23 0.91
BLUE PHAE 1 289 S1_269329879 S1_270329585 20.2 13.7 −6.08 1.53
21XT PH 1 289 S1_269329879 S1_270329585 16.9 3.3 −8.20 1.13
21XT PHAE 1 289 S1_269329879 S1_270329585 38.5 23.8 −12.84 1.78
BLUE TL 1 290 S1_273002635 S1_273836450 26.5 15.8 −1.99 0.28
21XT TL 1 290 S1_273002635 S1_273836450 12.5 8.0 −1.55 0.21
BLUE AILAE 1 292 S1_273608504 S1_275164590 10.9 4.7 −0.43 0.11
21LY PH 1 292 S1_273608504 S1_275164590 9.7 8.4 −6.71 2.30
21LY PHAE 1 292 S1_273608504 S1_275164590 5.4 5.3 −4.04 0.75
21LY TL 1 295 S1_279919454 S1_279982555 6.0 3.0 −1.24 0.50
21LY PH 2 184 S2_190810969 S2_191462633 9.0 7.9 −6.68 2.63
21LY PHAE 2 184 S2_190810969 S2_191462633 6.1 6.3 −4.46 1.26
BLUE AILAE 2 185 S2_190810969 S2_191462633 8.5 3.7 −0.41 −0.03
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Table 2. Cont.

Env. Trait Chr. Pos. Left Marker Right Marker LOD PVE (%) Add. Dom.

21XT AILAE 2 188 S2_193721872 S2_193814824 6.6 5.0 −0.46 0.19
BLUE EH 2 189 S2_194070269 S2_194953435 9.5 7.3 −2.94 1.29
21XT PH 2 190 S2_194070269 S2_194953435 20.9 4.2 −9.24 3.24
21XX EH 2 190 S2_194070269 S2_194953435 6.5 4.9 −2.25 0.63
BLUE PH 2 191 S2_194953435 S2_195895088 11.2 3.4 −4.89 2.16
21XX TL 2 271 S2_241126960 S2_241790578 4.7 3.8 −1.14 −0.12
BLUE TL 2 272 S2_241126960 S2_241790578 7.5 4.0 −0.97 −0.37
BLUE PHAE 2 273 S2_241126960 S2_241790578 10.3 6.8 −4.45 −0.45
21XT TL 2 274 S2_241126960 S2_241790578 8.9 5.5 −1.31 −0.32
21XX PHAE 2 274 S2_241126960 S2_241790578 8.4 6.5 −4.53 1.31
BLUE EH 2 277 S2_242359991 S2_243177289 11.2 8.9 3.24 1.31
21XT EH 2 277 S2_242359991 S2_243177289 7.8 3.4 3.42 1.42
BLUE AENN 2 278 S2_243537180 S2_244109746 12.6 2.0 −0.17 −0.03
21LY AENN 2 278 S2_243537180 S2_244109746 5.6 1.2 −0.14 −0.01
21XT AENN 2 278 S2_243537180 S2_244109746 13.9 3.0 −0.18 −0.04

Notes: PH, plant height; EH, ear height; PHAE, plant height above-ear; TL, tassel length; AENN, above-ear node
number; and AILAE, average internode length above-ear. Pop., population; Env., environment; Chr., chromosome;
Pos., position; PVE, phenotypic variance explained the QTL; Add., additive effect; Dom., dominance effect.
Negative and positive values in add. and dom. Indicate that the effects are from the parents Zheng58 and
PH6WC, respectively.
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Figure 3. QTL mapping for BLUE values of the six traits in the IMF2 population. PH, plant height;
EH, ear height; PHAE, plant height above-ear; TL, tassel length; AENN, above-ear node number; and
AILAE, average internode length above-ear.



Agriculture 2024, 14, 340 8 of 14

Epistatic QTL mapping in the IMF2 population identified epistatic QTLs for the six
traits (10 for PH, 5 for EH, 19 for PHAE, 16 for TL, 12 for AENN, and 9 for AILAE) (Table
S5). The PVE of the six traits ranged from 3.4% to 14.7% (Table S5). Multi-environment QTL
analysis yielded 10 pairs of epistasis interactions, involving 20 genetic loci for PH in the
whole genome, with LOD values ranging from 5.0 to 6.5 (Figure 4, Table S5). Chromosome
3 harbored the most epistatic loci (5) for PH, whereas no epistatic loci were detected on
chromosomes 4 and 8 (Figure 4).
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3.4. Comparison of Different Genomic Prediction Models

To evaluate the prediction accuracy in hybrid population, two genomic prediction
(GP) methods were applied by partitioning the performance into different components
(additive, dominance, and epistasis effects or GCA and SCA effects). The prediction
accuracy ranged from 0.756 for TL to 0.816 for AILAE when considering the additive,
dominance, and epistasis (ADE) effects simultaneously, whereas the prediction accuracy
ranged from 0.753 for AENN to 0.802 for AILAE when only considering the AD effect
(Figure 5). Furthermore, no significant difference was observed between the ADE and AD
models for all the traits, indicating that the addition of epistatic interactions into the AD
model could not significantly improve the prediction accuracy.
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above-ear.

From the perspective of the model based on the GCA and SCA effects, the prediction
accuracy ranged from 0.607 for AENN to 0.723 for AILAE when considering the GCA
and SCA effects simultaneously. The prediction accuracy ranged from 0.620 for PHAE
to 0.707 for AILAE when only considering the genetic effect of GCA. Specifically, the
prediction accuracy of AENN was significantly decreased when adding SCA into the GCA
model, while in contrast, the prediction accuracy of AILAE was significantly increased
(Figure 5). Except for these two traits, the prediction accuracies of the other four traits were
not significantly changed with the addition of SCA into the GCA model (Figure 5).

In addition, our results also demonstrated that the prediction accuracy of the ADE
and AD models was significantly higher than that of the GCA/SCA and GCA models for
all six traits (Figure 5). This indicates that the genotypic information of hybrid per se is
more powerful in the GP of hybrid performance.

3.5. The Identified Fine-Tuning QTLs Are Essential for GP of Hybrid Performance

To further study the role of QTLs identified in the GP of traits, we took PH as an
example by analyzing the overlap of the confidence intervals with previously reported
PH genes (Table S1). Only 1 of the 16 identified QTLs for BLUE values of PH in IMF2
overlapped with a reported PH gene-CNR13, leaving the other 15 ones as fine-tuning QTLs
(Figure 6). To further evaluate whether these fine-tuning QTLs are essential for the GP of
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hybrid performance, the LOD value, additive effect, and dominance effect of the fine-tuning
QTLs for PH were compared with the marker effect of GS in the IMF2 population (Figure 6).
In general, the additive effect showed the same trend with the LOD values of fine-tuning
QTLs, whereas the marker effect of GS also exhibited obvious changes when reaching
the regions containing these fine-tuning QTLs. The results suggested that the identified
fine-tuning QTLs are essential for the GP of PH hybrid performance.
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4. Discussion
4.1. Strong Additive Effects Contribute to Hybrid Performance

The great differences between inbred lines and hybrids lie in their genetic constitutions.
Hybrids contain more genetic information provided by heterozygous genomes, leading
to their superior hybrid performance. Genetically, the performance of inbred lines was
determined by additive and additive-by-additive effects. The situation is much more
complex for hybrids, including additive, dominance, and epistasis effects [40]. Although
there are studies of IMF2 populations in maize stating that epistasis is the main contributor
to hybrid performance and heterosis [23,41], we found that additive effects were the main
genetic basis in our population. This result is supported by a previous finding in rice
that additive variance plays a major role in grain number and 1000 grain weight [29].
This might be due to the different population structures or distinct parental lines used in
these studies. We also discovered that most QTLs are additive QTLs or partial dominance
QTLs, indicating the strong additive effects in determining the hybrid performance of the
IMF2 population.
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4.2. Fine-Tuning QTLs Could Improve the Prediction Accuracy

We took PH as an example to identify QTLs that affect agronomic traits and further
assessed their roles in GP. So far, 40 genes controlling PH in maize have been reported
using mutant cloning or QTL cloning (Table S1). However, among the 16 identified QTLs of
PH in the IMF2 population, only 1 QTL overlapped with a reported PH-related gene at the
specified confidence interval (Figure 6). It has been suggested that alleles with large effects
tend to be fixed during the adaptation of landraces [42]. Since the IMF2 population was
constructed based on two elite lines (Zheng58 and PH6WC), the majority of the favorable
alleles with large-effect size for most agronomic traits have been fixed during the long
history of breeding processes. The remaining 15 QTLs were defined as fine-tuning QTLs,
which allow minor adjustment of traits. Intriguingly, GP using the AD model found that
these fine-tuning QTLs had large genetic effects in enhancing the prediction accuracy
(Figure 6), serving as major loci for determining the hybrid performance.

Although the concept of fine-tuning QTLs has not been introduced before, a number of
studies have proved that the soft manipulation of gene expression or protein activity could
influence plant traits. For example, in rice, the slightly accumulated gibberellin level in
anthers regulated by WRKY53 could increase cold tolerance without a yield penalty [43]; the
receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid
signaling and regulate cell elongation [44]; and the fine-tuning of OsCPK18/OsCPK4
activity improves rice yield and immunity [45]. In maize, signaling networks among
multiple phytohormones fine-tune plant defense responses to insect herbivore attack [46].
And fine-tuning the expression of genes controlling drought adaptive traits has become a
prospect in wheat breeding [47]. Therefore, we hypothesized that the fine-tuning QTLs with
small-effect size have the potential for future plant improvement, and it is also important to
modulate these fine-tuning QTLs for the GP of hybrid performance in breeding populations.

4.3. Models Fitting Different Genetic Factors Influence the Prediction Accuracy

Hybrid performance not only displays a linear relationship with GCA and SCA but
is also related to genetic effects (additive, dominance, and epistasis effects) [48,49]. A
comparison of the two models is advisable for GP-assisted plant breeding. In this study, we
used the GBLUP model fitting the two types of effects to compare their performances. We
found that the AD model and the ADE model have similar performances in GP, which is
consistent with previous studies [29,50]. However, the prediction accuracies of both models
were higher than those of both the GCA model or the GCA/SCA model (Figure 5). We
speculated that the differences between the independent variables of the two models might
account for the differences in the prediction accuracy. For both the AD model and the ADE
model, the independent variables are the genetic basis, i.e., real QTLs. In contrast, for either
the GCA model or the GCA/SCA model, the independent variables are the phenotypic
data controlled by QTLs [51]. Therefore, it is reasonable that prediction using real QTLs is
more accurate and meaningful than using phenotypic data alone.

Moreover, we noticed that the addition of SCA into the GCA model led to a significant
increase in the prediction accuracy of AILAE but a decrease in AENN (Figure 5), suggesting
the necessity of model selection referring to different traits. We also detected similar
prediction abilities for PH using the GCA model and the GCA/SCA model. But a previous
study using the same method reported an enhanced prediction accuracy for the same trait,
when dominance effects (SCA) were added to a pure additive model (GCA) [30]. This
might be explained by the differences in genetic variations of the founders and population
structures of the tested populations. These results addressed the importance of the choice of
models when considering specific traits and population structures in GP. Nevertheless, our
study did not incorporate other effects such as the genotype-by-environment interaction
into the prediction model, which might further improve the prediction accuracy.
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5. Conclusions

In this study, QTL mapping and GS of six traits related to plant architecture were
conducted using an IMF2 population, and the main contribution effect of additive variance
to phenotypic variation (ranging from 52.1% for AILAE to 69.3% for EH) was revealed. The
prediction accuracies of GP models fitting genetic effects (AD and ADE) were shown to be
higher than those fitting GCA and GCA/SCA effects for all six traits. We further identified
15 fine-tuning QTLs for PH and demonstrated their essential genetic effect in GP. Our study
provides new insights into the identification of fine-tuning QTLs and their crucial roles in
the GP of hybrid performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriculture14030340/s1, Figure S1: The flow chart of population
development of RILs and IMF2; Figure S2: The marker distribution of genetic map and physical
map in the IMF2 population; Table S1: Reported genes related with PH in maize; Table S2: The
distribution of markers on the linkage map of the IMF2 population; Table S3: Variance components
and proportion of the phenotypic variance contributed by each variance component in the hybrid
population; Table S4: QTL mapping results of the six traits in the IMF2 population; Table S5: Epistatic
QTL identified for the traits of BLUE values in the IMF2 population.
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