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Abstract: The interplay of machine learning (ML) and deep learning (DL) within the agroclimatic
domain is pivotal for addressing the multifaceted challenges posed by climate change on agriculture.
This paper embarks on a systematic review to dissect the current utilization of ML and DL in
agricultural research, with a pronounced emphasis on agroclimatic impacts and adaptation strategies.
Our investigation reveals a dominant reliance on conventional ML models and uncovers a critical gap
in the documentation of methodologies. This constrains the replicability, scalability, and adaptability
of these technologies in agroclimatic research. In response to these challenges, we advocate for a
strategic pivot toward Automated Machine Learning (AutoML) frameworks. AutoML not only
simplifies and standardizes the model development process but also democratizes ML expertise,
thereby catalyzing the advancement in agroclimatic research. The incorporation of AutoML stands to
significantly enhance research scalability, adaptability, and overall performance, ushering in a new
era of innovation in agricultural practices tailored to mitigate and adapt to climate change. This paper
underscores the untapped potential of AutoML in revolutionizing agroclimatic research, propelling
forward the development of sustainable and efficient agricultural solutions that are responsive to the
evolving climate dynamics.

Keywords: machine learning; agricultural research; deep learning; agricultural data; data processing;
AutoML; crop management; pet diseases; smart farming; soil assessment

1. Introduction

Climate change presents a global challenge with diverse regional manifestations, im-
pacting various facets of human life and the environment. Its effects are particularly acute
in agriculture, necessitating in-depth studies to understand and mitigate these impacts [1].
In the realm of agriculture, climate change poses a significant threat to food security, due to
the susceptibility of production systems to fluctuating environmental conditions. The ef-
fects of climate change on agriculture are both direct and indirect, ranging from altered
precipitation patterns and increased temperatures to more frequent extreme weather events
and shifts in pest and disease distributions [2,3]. These changes threaten agricultural
productivity and call for innovative solutions to adapt and mitigate their impacts. More-
over, they have profound implications for nations worldwide, underscoring the need for
innovative and adaptive solutions [4].

Numerous studies have demonstrated that machine learning (ML) and deep learning
(DL) hold significant applications in agriculture [5–7]. ML and DL can enhance agricul-
tural practices through precision farming, disease detection, yield prediction, and climate
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impact modeling, thereby improving resilience to climate variability [7,8]. For instance,
ML-enabled precision agriculture allows for the optimization of inputs, such as water and
fertilizers, which is critical under the constraints of changing climatic conditions [9].

Although ML and DL have shown remarkable potential in revolutionizing agricultural
practices, their application across the field exhibits notable inconsistency [10]. The com-
plexities inherent in designing and implementing these models require deep technical
knowledge, and the absence of a unified approach across studies highlights a signifi-
cant barrier in environmental science research [10]. This diversity leads to challenges in
data-processing standardization, model selection, hyperparameter tuning, and evaluation
metrics, thereby questioning the replicability and scalability of such innovations. These
challenges underscore the necessity for a more streamlined approach in employing ML and
DL in agriculture.

Automated Machine Learning (AutoML) has emerged as a pivotal solution to these
challenges. By automating critical aspects of model development, including selection
and optimization, AutoML democratizes access to sophisticated data-analysis techniques.
Automation is crucial for researchers and practitioners who lack extensive ML expertise,
enabling them to leverage advanced computational tools more effectively [11,12]. Despite
its transformative potential, the adoption of AutoML in agricultural climate science has
remained limited [13]. This underutilization represents a significant missed opportunity to
advance adaptive strategies that could mitigate the impacts of climate change on agriculture.
Addressing this gap can unlock new avenues for enhancing the resilience and sustainability
of agricultural practices through more accessible and efficient technological solutions.

This study aims to delve into the application of ML, DL, and AutoML within the
agricultural sector, focusing on their role in addressing the impacts of climate change. We
pose several research questions:

• What are the fundamental ML and AutoML methods used in assessing climate change
impacts in agriculture?

• What performance metrics and evaluation methods are utilized to gauge the effective-
ness of ML models in climate adaptation and mitigation within agriculture?

• What are the limitations and challenges in applying ML to climate change studies
in agriculture?

• How prevalent are ML techniques compared to AutoML approaches in current climate
science research?

The subsequent sections detail our methodology and explore these questions, aiming
to shed light on the role of AutoML in transforming agricultural practices in the face of
climate change.

2. Advancing Agriculture through Machine Learning

Climate change presents formidable challenges to agriculture, necessitating innovative
approaches to sustainable and efficient farming practices. Machine learning has emerged as
a pivotal technology in this domain, offering advanced solutions for planning, forecasting,
and optimizing resource use to mitigate environmental impacts.

2.1. ML’s Techniques in Agricultural Practices

Machine learning techniques are revolutionizing agricultural practices by enabling
crop yield forecasts, optimizing farming conditions based on historical data and future
projections, and facilitating precise predictions and planning [14]. These methodologies
not only enhance the sustainability of agricultural outputs but also optimize resource use,
such as water and fertilizers, contributing to environmental stewardship [15]. For instance,
ML algorithms have been utilized to optimize fertilizer application rates, striking a balance
between maximizing crop productivity and minimizing environmental impacts [16]. Addi-
tionally, ML is crucial in soil health assessment, evaluating critical soil properties to inform
crop rotation and soil management strategies, thus preserving soil fertility and promoting
robust crop yields [17].
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The successful application of these techniques has marked the advent of a new era in
precision farming, significantly improving crop management and yield. Studies such as [18,19]
highlight the accuracy of ML models in forecasting crop yields, facilitating informed
decision making among farmers and stakeholders. The integration of ML in disease
management, demonstrated by [20,21], showcases the potential of convolutional neural
networks (CNNs) in early plant disease identification, thus mitigating losses and reducing
chemical pesticide dependency. Furthermore, advancements in soil analyses through ML,
as discussed in [22–24], have enabled more precise soil health assessments, leading to
optimized nutrient management and soil conservation practices. The development of smart
agriculture applications, from plant classification to soil erosion modeling, illustrates the
transformative role of these technologies [23,25].

These examples underscore the diverse applications of these technologies in agri-
culture, from disease detection and yield prediction to the automation of harvesting and
navigation in orchards. By employing advanced algorithms, the agricultural sector can
significantly improve productivity, sustainability, and resilience against climate change
challenges. Table 1 illustrates the range of techniques currently applied across various
agricultural practices, summarizing key methods alongside their targeted applications.
From traditional models like Decision Trees (DT) and Random Forests (RF) to complex ar-
chitectures such as CNNs and Long Short-Term Memory (LSTM) networks, the table below
highlights how each method addresses specific agricultural challenges. This overview not
only reaffirms the transformative potential of these technologies in enhancing agricultural
outcomes but also emphasizes the importance of ongoing research and development to
fully exploit their capabilities in addressing climate change and food security issues.

Table 1. Summary of Machine Learning and Deep Learning Techniques in Agricultural Applications.

Reference ML Technique Agricultural Application

[18,26] Decision Tree Crop Yield Prediction, Disease Detection, Soil Assessment
[18–20] Random Forest Crop Yield Prediction, Disease Detection, Soil Assessment
[18,27] Extreme Gradient Boosting Crop Yield Prediction, Soil Assessment
[18,20] Naive Bayes Crop Yield Prediction, Disease Detection
[18,21] K-Nearest Neighbors Crop Yield Prediction, Disease Detection
[28] Ensemble Traditional ML Models Crop Yield Prediction
[26] Multi-Linear Regressor Crop Yield Prediction
[29] RNN Crop Yield Prediction
[29] LSTM Crop Yield Prediction
[29] Support Vector Regression Crop Yield Prediction
[23,24,30,31] CNN Crop Yield Prediction, Disease Detection
[30] GNN Crop Yield Prediction
[30] U-Net Crop Yield Prediction
[23,25,32] ANN Crop Yield Prediction, Disease Detection
[25] DBSCAN Crop Yield Prediction
[23,25] Support Vector Machine Crop Yield Prediction, Disease Detection, Smart Farming
[33] Vision Transformers Disease Detection
[22] VGG-RNN Hybrid Soil Assessment
[23,24] MLP Soil Assessment

2.2. Distinguishing between ML and DL in Agricultural Applications

Machine learning encompasses a broad spectrum of algorithms that range from tra-
ditional methods to deep learning. Traditional methods, like Support Vector Machines
(SVMs) and Random Forests, find extensive application in agriculture for tasks such as
crop type classification and pest detection. These approaches are particularly effective for
scenarios where the relationships between input variables and the target predictions are
less complex and can be modeled with fewer data points [18,34].

DL, utilizing neural networks with multiple layers, excels at discerning complex
patterns and predictions from large, unstructured datasets. It proves to be especially
potent in processing vast image data, such as satellite imagery, for tasks including land-use
classification and crop monitoring. DL has been pivotal in creating computer vision systems
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for automated weed detection, fostering precision agriculture techniques that markedly
reduce herbicide usage [31,35,36].

Agricultural ML tasks typically categorize into supervised or unsupervised learn-
ing [19,32,37]. Supervised learning, employing methods like Gradient Boosting (GB) and
neural networks (NNs), suits predictive modeling tasks, such as estimating crop yields.
Conversely, unsupervised learning, through methods such as K-Means clustering and a
Principal Component Analysis (PCA), is instrumental in revealing hidden patterns within
agricultural data [38]. Figure 1 delineates the key distinctions between supervised and
unsupervised learning in analyzing agricultural data.

Figure 1. Comparison of supervised and unsupervised learning in agriculture.

Moreover, semi-supervised learning, which uses both labeled and unlabeled data, has
become an effective approach in situations where data labeling is too costly or impractical.
This learning paradigm is notably beneficial for agricultural monitoring, especially in
classifying crop types. By combining a small amount of labeled satellite imagery with
larger volumes of unlabeled data, semi-supervised learning algorithms significantly im-
prove classification accuracy and efficiency. Recent advancements have furthered these
applications, showcasing semi-supervised learning’s efficacy in analyzing complex agri-
cultural structures via remote sensing images. Techniques such as the semi-supervised
Extreme Learning Machine (SS-ELM) have been employed for enhanced precision and
computational efficiency in classifying crop types and land uses [39,40]. These develop-
ments highlight the essential role of semi-supervised learning in leveraging remote sensing
data for agricultural and environmental applications, providing innovative solutions to the
enduring issues of data scarcity and labeling constraints.

2.3. Enhancing ML Accessibility in Agriculture with AutoML

The transformative potential of ML in agriculture is vividly illustrated through appli-
cations like crop yield forecasting, where ML models analyze historical yield data, weather
patterns, and satellite imagery to predict future yields. This application not only aids in
planning and resource allocation for farmers but also helps mitigate risks associated with
climate variability. However, applying ML in agriculture faces hurdles due to the sector’s
complexity, characterized by nonlinear interactions among various factors. Advanced ML
algorithms, capable of parsing through extensive datasets, are vital for modeling these
complex dynamics. Yet, the need for consistent methodologies and variable selection
remains challenging, highlighting the importance of systematic approaches in agricultural
ML modeling [10].

AutoML simplifies ML applications by automating the selection, tuning algorithms
within ML pipelines, and covering all steps from data preparation to model training [12]. It
addresses the complexity of choosing and configuring the best algorithms for specific tasks,
including supervised, unsupervised, and reinforcement learning, streamlining the model
development process. This innovation democratizes ML, enabling practitioners across
fields to employ cutting-edge solutions without requiring deep expertise. The necessity of
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AutoML is highlighted by theoretical foundations like the no-free-lunch theorem, which
argues that no single algorithm excels at every problem, advocating for a tailored approach
to algorithm selection and configuration [41].

AutoML bridges the gap between complex models and practical agricultural applica-
tions, offering scalable solutions to food security and sustainability challenges. By automat-
ing the ML workflow, including algorithm selection and hyperparameter tuning, AutoML
simplifies ML deployment in agriculture [11,42]. This extends from data preprocessing to
model evaluation, highlighting its potential to democratize ML applications in the sector.
Figure 2 showcases the AutoML framework construction process, demonstrating its role in
making ML applications more accessible in agriculture.

Figure 2. Overview of the AutoML workflow.

Many agricultural applications of ML and DL have focused on model development
and improvement. For example, an advanced spatiotemporal convolutional neural net-
work (STCNN) model was developed for detecting pineapples in complex field conditions,
achieving high detection accuracy by leveraging the shifted window transformer architec-
ture to outperform traditional methods under occlusion and varying light conditions [43].
Despite this success, AutoML could further enhance model efficiency and accuracy, poten-
tially reducing inference time while maintaining high detection rates. AutoML-driven data
augmentation techniques could improve model robustness against diverse environmental
conditions. Automatic feature selection and engineering through AutoML could uncover
new insights and enhance model performance, particularly in managing occlusion and
fruit overlap scenarios. Moreover, AutoML can enhances the evaluation of diverse CNN
architectures, facilitating the identification of optimal strategies for pineapple detection
across varied scenarios. Additionally, leveraging Neural Architecture Search (NAS) within
AutoML frameworks can further refine the selection process, tailoring architecture choices
to specific environmental contexts.

The rise of ML and DL applications in agriculture brings an influx of novel metaheuris-
tic approaches [44], signaling advanced model innovations. However, the challenge lies in
effectively leveraging these methodologies due to the manual selection process from myr-
iad potential combinations, hindering the full exploitation of these advanced techniques in
agriculture. AutoML streamlines the optimization process, identifying novel approaches
or configurations that elevate model performance in agricultural settings. It allows re-
searchers and practitioners to focus on addressing agricultural challenges rather than on
the intricacies of model building. This is particularly significant in climate change research,
where AutoML can deepen insights into its impacts on agriculture and inform mitigation
strategies. The shift from traditional techniques to AutoML marks a transformative ad-
vancement in agricultural research and practices, enabling the sector to better navigate the
complexities of climate change and foster more resilient and productive farming systems.

3. Applications of ML and DL in Agriculture

Agriculture’s pivotal role in global economic growth, contributing to approximately
4% of global GDP and over a quarter in the least-developed countries, underscores its
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importance in poverty alleviation and food security, especially in the face of climate change
challenges [45,46]. ML and DL technologies have emerged as key players in addressing
these challenges, offering innovative solutions across various agricultural domains.

Crop Modeling and Yield Prediction: The quest to accurately predict crop yields has
led to adopting ML and DL techniques, which analyze the intricate interplay between
climate conditions and soil characteristics. While traditional ML methods such as Linear Re-
gression (LR) and Random Forest (RF) lay the groundwork [34], DL approaches, including
neural networks and convolutional neural networks (CNNs), are increasingly favored for
their ability to process large datasets, thereby improving predictive accuracy [47]. The inte-
gration of ML and DL with remote sensing technologies has further revolutionized crop
yield predictions. By harnessing the detailed, large-scale observational data provided by
satellite and aerial imagery, these technologies enhance the analysis of climate conditions
and soil characteristics. DL approaches, particularly CNNs, are adept at processing the
complex, high-dimensional data from remote sensing, offering unprecedented accuracy in
predictive analytics. This synergy enables more precise and informed agricultural planning,
leveraging the global coverage and temporal frequency of remote sensing to monitor crop
health and predict yields with greater accuracy [48].

Pest and Disease Management: The redistribution of pests and diseases due to climate
change is a formidable challenge in agriculture, where ML demonstrates remarkable
capabilities in early disease detection and efficient disease classification using advanced
algorithms. The integration of technologies such as drones for data acquisition has been
complemented by the adoption of hyperspectral imaging and Internet of Things (IoT)
based sensors, enhancing the precision of ML algorithms and facilitating proactive pest
management strategies. These technologies enable the detailed monitoring of crop health
in real-time, significantly improving the management of pests and diseases [20,36,49].

Soil Health Assessment: Recognizing soil health as a critical component of agricultural
productivity, ML has been pivotal in predicting soil properties, integrating high-resolution
spatial data with climate dynamics to anticipate soil and crop yield outcomes. This con-
vergence with crop modeling underscores the holistic approach essential in agricultural
research, applying predictive models to soil fertility and crop yields through algorithms like
RF, SVM, and GB. The inclusion of satellite imagery and IoT-based soil sensors enhances
this process, offering deeper insights into soil conditions, thereby refining predictions and
fostering sustainable farming practices [50,51].

Toward Smart Farming: The union of ML and DL methodologies in agriculture signi-
fies a shift toward smart farming. This approach leverages data and ML to make farming
more efficient and sustainable. Smart farming employs a comprehensive perspective by
integrating soil, crop, and remotely sensed data, ensuring informed decision making. This
paradigm enhances soil health assessment and pest management and extends to preci-
sion agriculture, where technology-driven solutions optimize farming practices to the
specific conditions of each plot, thereby maximizing yields and minimizing environmental
impact [52].

The integration of ML, DL, and other advanced technologies into agriculture signifies
a pivotal shift toward precision farming. These technologies enhance crop yield predic-
tions, pest management, and soil health assessments through sophisticated data analyses.
Utilizing ML/DL in conjunction with remote sensing and IoT-based sensors provides deep
insights, facilitates improved decision making, and enables real-time monitoring, promot-
ing sustainable and efficient agricultural practices. This innovative approach not only
confronts the challenges posed by climate change but also establishes a new benchmark for
smart farming innovation, underscoring the vital role of technology in agriculture’s future.

Tackling agricultural research complexities begins with defining the problem and
assessing ML methods’ potential over traditional models [10]. From data collection to
preprocessing and feature engineering, the process requires substantial datasets for pattern
recognition, given the diversity and noise in agricultural data [17,53,54]. Transforming raw
data into actionable insights demands meticulous hyperparameter tuning and model opti-
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mization, a process fraught with challenges requiring significant expertise [55,56]. Model
explanation, often overlooked, is crucial for evaluating a model’s practical applicability [57].

Innovations such as Auto-sklearn [58], Tree-based Pipeline Optimization Tool (TPOT) [59],
and H2O AutoML [60,61] represent groundbreaking advancements in automating this pro-
cess, particularly through hyperparameter optimization and NAS. These tools can be
specialized in refining ML and DL applications in agriculture by streamlining the selection
and tuning of models to enhance performance. Auto-sklearn leverages ensemble methods
and Bayesian optimization, tailoring model selection and preprocessing steps to specific
agricultural tasks, demonstrating the power of automated, data-driven approaches [58].
TPOT advances this automation using genetic programming, iteratively evolving machine
learning pipelines for optimal performance, thereby simplifying the development of robust
models for complex challenges [59,62]. H2O AutoML further democratizes ML application,
offering an accessible interface for exploring diverse models and employing model stacking
for superior predictive accuracy, invaluable in rapid model deployment scenarios [60,61].
In addition, these approaches significantly reduce the barrier to entry for applying sophisti-
cated ML models, enabling more accurate and informed decisions without requiring users
to have in-depth algorithmic understanding [63]. By abstracting the complexity of model
selection and hyperparameter optimization, these technologies empower practitioners
across disciplines to harness advanced ML models, facilitating informed decision making
and innovation.

The forthcoming sections will examine the applications of ML, DL, and AutoML in
existing literature, highlighting both the limitations and potential opportunities within
the field.

4. Search, Screening, and Review Process

This study adopts a systematic literature review approach to comprehensively syn-
thesize existing research on the application of ML, DL, and AutoML in the context of
agriculture, particularly focusing on climate change impacts and adaptation strategies.
Our methodology is designed to ensure rigor and transparency, following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

To begin, we crafted a search strategy employing a set of keywords that encapsulate
the core themes of our research. These keywords include “climate change impacts”, “ma-
chine learning”, “AutoML”, “deep learning”, “smart farming”, “soil assessment”, “crop
modeling”, “crop yield”, “disease detection”, “feature selection”, “model selection”, and
“climate change adaptation and mitigation”. Utilizing these terms, our initial query across
multiple databases yielded a total of 1006 papers, setting the stage for our multi-layered
screening process.

Our screening and selection process unfolds in three distinct stages, each designed to
progressively refine the pool of relevant literature based on specific criteria aligned with
our study’s objectives.

Stage 1: Abstract Screening—The first layer of our screening process involved evalu-
ating the abstracts of all retrieved papers. The goal at this stage was to filter out studies
based on their direct relevance to the intersection of ML/AutoML and agricultural practices
under the lens of climate change. This preliminary screening resulted in the retention of
564 papers, deemed potentially relevant for an in-depth analysis.

Stage 2: Full-Text Review—Subsequently, the narrowed selection underwent a rigor-
ous full-text review, wherein each paper was assessed for its specific contributions to the
domains of ML, DL, and their applications within agriculture. This stage was critical in
identifying studies that offered substantial insights into modeling approaches, challenges,
and solutions pertinent to agricultural climate research. The outcome of this review further
reduced our pool to 232 papers.

Stage 3: In the final stage, we proceed with a detailed evaluation focusing on the speci-
ficity of modeling problems addressed, the robustness of parameter selection, the validity of
model validation techniques, and the appropriateness of metrics, including considerations
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for transfer learning. Adherence to these criteria led to the exclusion of papers that lacked
comprehensive methodological details, culminating in a final selection of 66 papers that
form the basis of our review.

The subsequent section, Section 5, delves into the critical advancements, challenges,
and opportunities uncovered in our review.

5. Results and Discussion
5.1. Algorithms and Metrics Used in Agriculture Applications

The most commonly used algorithms in agriculture-related ML and DL studies are Ar-
tificial Neural Networks (ANNs), Random Forest, and Support Vector Machine (SVM) [16].
These techniques are applied in various agro-meteorological applications like maximiz-
ing crop yield and minimizing water use [64]. Deep learning approaches like AlexNet
and GoogleNet have shown superior performance in plant classification over traditional
methods like SVM. Multi-layer perceptron (MLP) neural networks and Random Forest
Regression models are commonly used in agriculture for tasks like yield prediction, disease
detection, and environmental monitoring. Ensemble methods and weight optimization tech-
niques like ensemble modeling, where multiple models are combined, and weight optimiza-
tion in classifiers like Support Vector Machine (SVM) are also employed. These methods
aim to enhance the accuracy and reliability of predictions in agricultural applications [65].

Figure 3 provides a visual representation of the prevalence of various machine learning
and deep learning algorithms across different agricultural applications. The data for this
graph were derived from a comprehensive literature review of recent scientific papers that
focus on the use of ML and DL in agriculture. Key algorithms such as Artificial Neural
Networks, Random Forest, Support Vector Machines, AlexNet, GoogleNet, Convolutional
Neural Networks, Long Short-Term Memory networks (LSTM), eXtreme Gradient Boosting
(XGBoost), and Generative Adversarial Networks (GANs) are included. Each bar in the
graph represents a specific algorithm, and the height of the bar indicates the frequency
with which a particular algorithm is mentioned or utilized in that context. The applications
include crop yield and water use, plant classification, disease detection, pest detection,
and soil and water management.

Figure 3. The graph represents the prevalence of machine learning and deep learning algorithms
across various agricultural applications.

The performance of these models is typically evaluated using metrics like Mean Ab-
solute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE) [19].
These metrics are crucial for evaluating models in agriculture, particularly for regression
tasks. They measure the average magnitude of the errors in a set of predictions without
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considering their direction. In classification tasks, the most used metrics are accuracy,
Area Under the Curve (AUC), Sensitivity, specificity, False Negative Rate (FNR), and False
Positive Rate (FPR). Accuracy measures the model’s overall correctness, while AUC mea-
sures the model’s ability to distinguish between classes. Sensitivity and specificity are
used to evaluate the model’s ability to identify positive and negative instances correctly.
Other metrics used in the literature are Precision, Recall, and F1-score [18]. These metrics
are particularly important in scenarios where the balance between false positives and
false negatives is crucial, such as in disease detection or pest identification in crops [66].
Figure 4 shows the most frequently employed metrics in classification and regression tasks
as identified in the reviewed studies.

Figure 4. Metrics commonly utilized in both classification and regression tasks across reviewed studies.

Some studies compare various machine learning and deep learning models using
a combination of the above metrics to determine the best-performing model for specific
tasks, such as drought prediction or disease identification [67]. The choice of metrics and
methods for model evaluation in agriculture depends on the specific task, whether it is
classification or regression, and the nature of the agricultural problem being addressed.
The key is to select metrics that accurately reflect the model’s performance in real-world
agricultural scenarios.

5.2. Challenges and Best Practices in Applying ML to Agriculture

Most applications in agriculture tend to use supervised learning, especially for clas-
sification and prediction tasks, as seen in studies like leaf disease detection [49,68] and
corn plant disease classification [67]. Deep learning applications in agriculture face sev-
eral challenges, including the need for large labeled datasets, high computational costs,
and the complexity of interpreting DL models. Issues like overfitting, data imbalance,
and variability in environmental conditions also pose significant challenges. There is a
growing interest in integrating ML and DL with other technologies like IoT for precision
agriculture [69,70] and using deep learning for more nuanced tasks like pest detection [71]
and yield prediction [28]. However, there are some challenges and limitations, hence the
approach in this area. Often, the datasets used for training DL and ML models in crop
modeling need to be increased in size and diversity. This inadequacy can lead to models
that do not generalize well to real-world conditions [21]. Accuracy issues arise due to
environmental variations like nutrient levels, soil dampness, and temperature fluctuations.
Farmers often need help in performing the optical observation of plant leaves for disease
diagnoses due to limited resources [72]. Challenges in model interpretability and the need
for significant computational resources to train and deploy models are notable issues [14].
In other applications, accurately classifying various rice leaf diseases and achieving high
validation accuracy in models is difficult [68]. Inadequate pre-processing steps, lack of
accurate feature identification, and suboptimal classification algorithms hinder accurate
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disease grade measurement. Challenges related to similarity in disease symptoms and the
extraction of irrelevant features are common.

5.3. Transparency Gaps in Data Processing for Agricultural ML

A critical observation in reviewing recent literature on ML and DL applications in
agriculture is the frequent omission of detailed descriptions regarding data processing archi-
tectures and specifics of model construction [18,68]. This gap presents significant challenges
in replicating studies, understanding the nuances of model performance, and applying
these models in varied agricultural contexts.

One of the primary challenges in agricultural ML applications is data acquisition and
quality [73]. The effectiveness of ML models heavily relies on the volume and quality of
training data [10]. In agricultural contexts, obtaining a large, well-annotated dataset is
often challenging, affecting the robustness and reliability of the models [74]. Few-shot
learning methods and transfer learning have been utilized to address data scarcity. While
these methods show promise, they introduce complexity and may only sometimes be
directly applicable to diverse agricultural datasets [33,67]. Data processing is crucial in ML
and DL applications, directly impacting the model’s performance [10]. However, many
studies need more information on how data is cleaned, transformed, or augmented. Key
aspects such as handling missing values, normalization techniques, and data augmentation
strategies should be reported and included more. This lack of transparency hinders the
ability of other researchers to understand and replicate the research fully.

5.4. Challenges in Model Architecture and Training Transparency

Selecting appropriate model architectures and training methodologies is critical. Agri-
cultural datasets often exhibit high variability, necessitating careful consideration in model
selection to ensure adaptability to specific characteristics of agricultural data [73]. Addition-
ally, the performance evaluation of these models is complicated by the diversity of datasets
used in different studies.

Several ML and DL studies tend to focus on the outcomes rather than the journey
of reaching those outcomes [19–21,37]. For instance, studies often highlight the accuracy
and effectiveness of their models without providing a comprehensive breakdown of the
model architecture, parameter settings, or training processes [18,20,28]. Information about
the layers in a neural network, the activation functions used, or the specifics of the op-
timization algorithms is vital for a thorough understanding of the model’s performance
and applicability.

Figure 5 outlines the methodologies employed in the analyzed studies, focusing
on feature engineering, model selection, hyperparameter optimization, and validation
strategies. Of the 66 papers examined, merely 12 provided comprehensive discussions
on these methodologies, supported by examples and citations [27,67,75]. Notably, 39%
(26 studies) omitted documentation on feature selection, and a significant 61% (40 studies)
acknowledged the features used without detailing the selection process. The practice of
feature scaling was largely overlooked, with 92% (61 studies) not detailing the method and
only 7% (5 papers) mentioning normalization. Regarding model validation and testing, 44%
(29 studies) mentioned cross-validation without specifying the k-fold value, and 26 papers
outlined a data split for training and testing without justifying the chosen split ratio.

Moreover, for some papers that did provide certain details, the information concerning
the model was often insufficient for result reproduction [19,26,30,32,68]. A substantial
inconsistency was observed regarding metric selection, with many papers comparing
their results to randomly chosen algorithms. While they claim improved performance,
particularly with DL techniques, they frequently omitted architecture search details or
failed to explain how they determined their architecture as superior to other possible
combinations. This issue persisted even when parameters and hyperparameters were
reported to have been tuned, suggesting a need for more transparency in the tuning process.
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Figure 5. Quantitative assessment of data preprocessing, model selection, fine-tuning of parameters,
feature selection, and model validation techniques. (a) The bar graph shows the types of prepro-
cessing techniques used in different studies to process the dataset. It indicates that randomness
assessment and feature scaling are widely selected, whereas feature selection is less frequently present.
(b) This graph presents a similar analysis, revealing that hyperparameter optimization is commonly
addressed in the studies, while the use of multiple evaluation metrics and multiple ML algorithms
is less common, and feature importance analysis is notably scarce. (c) The pie chart illustrates the
distribution of dataset split methodologies, with cross-validation being the most prevalent, followed
by separate testing and training sets, and a significant portion of studies not mentioning the protocol
used for evaluation.

5.5. Enhancing Replicability and Scalability in Agriculture through AutoML

The absence of comprehensive descriptions regarding data processing and model
construction in agricultural ML and DL applications can pose significant challenges in
terms of replicability, scalability, and adaptability of these models. Agricultural datasets
often exhibit intricate patterns and domain-specific nuances, making it imperative to
address these challenges. Traditional ML models may need help to effectively capture
the inherent complexities of agricultural data, leading to suboptimal results. Moreover,
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developing custom ML models for agricultural applications demands considerable time and
expertise [73]. This may impede research progress and limit the accessibility of advanced
ML techniques to a broader audience. Additionally, these customized models may need
more scalability and reproducibility to apply research findings across diverse agricultural
scenarios, hindering their broader utility.

On the contrary, AutoML tools offer a promising solution by streamlining critical
aspects of the modeling process [12]. They automate tasks such as model selection, hy-
perparameter tuning, and feature engineering, resulting in substantial time and resource
savings for researchers. Furthermore, AutoML democratizes ML by making it accessible to
researchers with varying levels of expertise, potentially fostering a wider adoption of ML
techniques within the agricultural community [11]. AutoML pipelines provide standard-
ized workflows that enhance experiment reproducibility across various agricultural studies
and settings. These tools also adapt to evolving agricultural data and research questions,
offering flexibility and agility in addressing complex challenges [76].

However, it is essential to consider these types of frameworks’ potential benefits and
inherent limitations. AutoML, by automating ML pipelines, it can significantly reduce the
time and computational resources required for model development [77]. This automation,
however, confronts the combinatorial optimization problem, where there is a trade-off
between computational resources and the time necessary for finding optimal solutions [78].
Implementing heuristic and metaheuristic algorithms within AutoML frameworks can miti-
gate this issue by providing efficient solutions within a reasonable timeframe. Additionally,
AutoML’s ease of use might lead to a superficial grasp of machine learning concepts among
users, potentially causing misinterpretations or difficulties in troubleshooting subopti-
mal model performance [77]. The opaque nature of AutoML systems further complicates
transparency and accountability, particularly critical in precision agriculture where model
trustworthiness is crucial. The risk lies in the potential for AutoML to exacerbate existing
biases within agricultural datasets, potentially leading to skewed results. However, it is
important to recognize that these limitations are not unique to AutoML, but rather extend
to the broader field of machine learning [79].

Mitigating risks associated with AutoML in agriculture goes beyond simply using
the tool. Rigorous validation and testing protocols are crucial to guard against overfitting
and bias. This involves splitting data into training, validation, and testing sets, employ-
ing cross-validation techniques, and selecting relevant evaluation metrics specific to the
agricultural task. Additionally, emphasizing model interpretability is essential [79]. A
feature importance analysis and the use of interpretable models like decision trees can
help growers understand the factors influencing model outputs. Furthermore, Explainable
AI (XAI) techniques can shed light on the model’s internal workings, fostering trust and
ensuring responsible application [80]. By combining these practices, AutoML frameworks
can be leveraged to democratize access to advanced analytics in agriculture. Standardizing
validation and testing procedures within the framework ensures a consistent level of rigor
across users. Similarly, promoting interpretable models and XAI techniques empowers
growers to understand the model’s reasoning and assess its alignment with established
agricultural practices.

The success of AutoML in agriculture hinges on a symbiotic relationship between
automated tools and the intrinsic understanding of machine learning principles by the
researchers [81]. Such knowledge is crucial for selecting suitable AutoML tools, interpret-
ing results accurately, diagnosing issues, and critically evaluating model outputs within
the agricultural context. This foundational understanding is indispensable for identi-
fying and correcting errors, as the sophistication of a model does not exempt it from
generating erroneous outputs if the input data or underlying assumptions are flawed [82].
Future responsible deployment of AutoML in agriculture relies on the integration of au-
tomated efficiency and the invaluable depth of human expertise, establishing a balance
where automation enhances analytical accessibility without compromising the need for
critical, domain-specific insight. In this manner, AutoML can serve not just as a tool
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for efficiency but as a collaborative partner in the nuanced field of agricultural research,
blending the strengths of technology with the irreplaceable value of human knowledge
and experience [82].

The no-free-lunch theorem reminds us that no single algorithm excels at solving every
problem [41]. Despite this, AutoML frameworks democratize access to machine learning
expertise, particularly in the agricultural context [11]. They shift the focus toward more
knowledge-intensive tasks, such as identifying meaningful features for inclusion in datasets,
thus emphasizing a data-centric approach over model development [83]. This shift can
enhance the quality of agricultural research outcomes. Even slight improvements in model
precision, which might seem marginal in statistical terms, can have significant practical
implications in the field. For instance, a small increase in model precision can be critical
in disease detection within agriculture, as timely detection is crucial. Though numerically
modest, such improvements could substantially impact farmers’ decision making and
operational efficiency [8].

An illustrative example of how the Tree-based Pipeline Optimization Tool (TPOT)
can be applied in agricultural applications is showcased in [59]. This research highlights
TPOT’s utility in addressing the challenges of high-dimensional datasets prevalent in
vegetation mapping and analyses. Multi-date Sentinel-2 images, rich in phenological and
canopy structural information, present a complex, high-dimensional dataset crucial for
enhancing mapping accuracy. The study focuses on optimizing classification accuracies
for landscapes infested by the invasive parthenium weed (Parthenium hysterophorus),
a significant agricultural pest. By employing TPOT, which utilizes a genetic algorithm to
automatically generate and optimize machine learning pipelines, the researchers were able
to navigate the complexity of the multi-date image data effectively. The TPOT’s application
facilitated the identification and selection of the most relevant features from the dataset,
optimizing the classification process despite the data’s high dimensionality and the presence
of redundant variables. A novel approach, named “ReliefF-Svmb-EXT-TPOT”, combining
feature selection with TPOT’s optimization capabilities, was also tested to enhance the
efficiency of the classification. This integrated method aimed to reduce computational costs
while maintaining high accuracy levels. The study reported overall accuracies of 91.9%
with the TPOT model and an improved 92.6% using the ReliefF-Svmb-EXT-TPOT approach,
demonstrating the potential of TPOT, particularly when combined with feature selection
techniques, to handle complex agricultural datasets effectively. This example underscores
the promise of TPOT in agricultural applications, particularly in precision agriculture tasks
such as invasive species mapping, by leveraging its sophisticated algorithmic capabilities
to process and analyze high-dimensional remote sensing data, thus offering a powerful
tool for enhancing agricultural decision making and environmental management.

Figure 6 showcases the application of ML in agricultural research, highlighting the
deployment of traditional ML and DL methods. While adopting AutoML in agriculture
is currently limited, its benefits are increasingly evident. As AutoML tools continue to
evolve and cater to the specific requirements of agricultural research, we anticipate a
shift toward more widespread adoption. This transition holds the potential to overcome
the limitations associated with traditional ML approaches and accelerate innovation and
problem solving within the agriculture sector. To facilitate this shift, it is recommended
that future research places a greater emphasis on documenting and sharing comprehensive
details of data processing techniques and model architectures. This approach enhances
research transparency, contributes to the collective knowledge base, and paves the way for
more robust and adaptable ML and DL solutions in agriculture.
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Figure 6. The integration of machine learning techniques in agricultural research, depicting the use
of traditional ML and deep learning, with a noted absence of AutoML applications.

5.6. Future Research Directions

Addressing the challenges and future directions in agricultural machine learning and
deep learning research requires a focused approach that acknowledges current successes
and recognizes improvement areas. A key concern in the field is the frequent omission of
detailed reporting on model architectures, training processes, and data handling, as exem-
plified in Section 5. This gap in the literature hampers the replication of studies and the
broader application of successful models. To enhance the transparency and replicability of
ML and DL applications in agriculture, future studies must adopt more rigorous standards
for documenting and sharing models and datasets.

Despite these issues, the availability of diverse datasets from satellite imagery has been
instrumental in advancing the field. These datasets provide invaluable insights into crop
health, growth patterns, and environmental impacts. However, integrating such complex
and high-dimensional data into ML models introduces additional complexity, necessitating
sophisticated modeling and analysis techniques. AutoML emerges as a promising solution
to these challenges, offering a pathway to simplify the development and application of ML
models [12]. By automating critical aspects of the ML pipeline, such as model selection,
hyperparameter optimization, and feature engineering, AutoML can make advanced ML
techniques more accessible and applicable to a broader range of agricultural problems.
Consider the application of satellite data for crop yield prediction. Traditional approaches
might involve manually developing and tuning CNN models to analyze satellite images
and extract relevant features for yield prediction. This process requires significant expertise
and can be time-consuming and prone to error. In contrast, AutoML tools can automate
the selection of the optimal model architecture and preprocessing steps, streamlining the
development process. For example, an AutoML framework could automatically test var-
ious CNN architectures, adjust preprocessing techniques for satellite imagery, and tune
hyperparameters based on performance metrics, all without extensive manual interven-
tion [84]. This AutoML-driven approach simplifies the modeling process and opens up new
possibilities for integrating diverse data sources into predictive models. By reducing the
barriers to advanced ML applications, AutoML can accelerate innovation in agricultural
research, leading to more accurate, efficient, and scalable solutions for crop yield prediction
and other critical challenges.

To fully realize the potential of AutoML in agriculture, future research must focus
on developing AutoML tools tailored to the unique characteristics of agricultural data
and challenges. This includes improving data preprocessing techniques, incorporating
domain-specific knowledge into AutoML algorithms, and enhancing model interpretability.
By addressing these areas, the agricultural research community can leverage AutoML to
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advance the state of the art in agricultural ML and DL, ultimately contributing to more
sustainable and productive farming practices worldwide.

6. Conclusions

The exploration of AutoML systems within the agricultural sector uncovers a trans-
formative potential to redefine traditional machine learning methodologies. This paper
has highlighted critical challenges facing agricultural ML applications, including the need
for detailed documentation on model architectures, training processes, and data handling.
Such gaps hinder the replicability of studies and the broad application of successful models,
ultimately limiting the field’s progress.

AutoML stands out as a promising solution to these challenges. By automating the
selection of models, tuning hyperparameters, and streamlining data preprocessing, Au-
toML has the potential to democratize ML technologies, making them accessible to a
broader range of researchers and practitioners. This accessibility is crucial for tackling com-
plex agricultural challenges, where integrating advanced ML techniques can significantly
enhance decision-making processes, improve yield predictions, and contribute to sustain-
able farming practices. Furthermore, this paper underscores the necessity of integrating
domain-specific knowledge and enhancing data diversity in ML models. Emphasizing
the importance of transparency in ML applications, it advocates for rigorous documen-
tation standards that can facilitate the replication of research findings. Looking ahead,
the incorporation of AutoML into agricultural research represents a paradigm shift toward
more efficient, scalable, and adaptable ML applications. This shift promises to advance the
sector’s technological capabilities and foster a more collaborative and innovative research
environment. To realize these benefits, it is imperative for the research community to
prioritize the comprehensive documentation of ML workflows, from data acquisition to
model deployment. Such efforts will contribute to building a transparent, reproducible,
and robust foundation for future ML and DL solutions in agriculture.

In conclusion, the paper advocates for a concerted effort to embrace AutoML tech-
nologies, alongside a commitment to enhancing research transparency and collaboration.
By addressing the identified challenges and harnessing the potential of AutoML, we can
unlock transformative opportunities for progress in agricultural research, driving forward
the global agenda for food security and sustainability.
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