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Abstract: Industrial greenhouse mushroom cultivation is currently promising, due to the nutritious
and commercial mushroom benefits and its convenience in adapting smart agriculture technologies.
Traditional Device-Cloud protocol in smart agriculture wastes network resources when big data
from Internet of Things (IoT) devices are directly transmitted to the cloud server without processing,
delaying network connection and increasing costs. Edge computing has emerged to bridge these
gaps by shifting partial data storage and computation capability from the cloud server to edge
devices. However, selecting which tasks can be applied in edge computing depends on user-specific
demands, suggesting the necessity to design a suitable Smart Agriculture Information System (SAIS)
architecture for single-crop requirements. This study aims to design and implement a cost-saving
multilayered SAIS architecture customized for smart greenhouse mushroom cultivation toward
leveraging edge computing. A three-layer SAIS adopting the Device-Edge-Cloud protocol, which
enables the integration of key environmental parameter data collected from the IoT sensor and RGB
images collected from the camera, was tested in this research. Implementation of this designed
SAIS architecture with typical examples of mushroom cultivation indicated that low-cost data pre-
processing procedures including small-data storage, temporal resampling-based data reduction,
and lightweight artificial intelligence (AI)-based data quality control (for anomalous environmental
conditions detection) together with real-time AI model deployment (for mushroom detection) are
compatible with edge computing. Integrating the Edge Layer as the center of the traditional protocol
can significantly save network resources and operational costs by reducing unnecessary data sent
from the device to the cloud, while keeping sufficient information.

Keywords: smart agriculture; mushroom; edge computing; farm management information system
(FMIS); machine vision; Agricultural IoT

1. Introduction

Nowadays, edible mushrooms are well known as not only a healthy food but also a
valuable pharmacy, since they can provide rich nutrients such as protein, minerals, and
vitamins as well as increase the human immune system to prevent many diseases, even
cancer [1,2]. Therefore, the demand for mushroom products is increasing in the world’s
food market, especially after the COVID-19 pandemic [3,4]. Although wild mushrooms
can be harvested in the natural environment, their high sensitivity to seasonal variations of
weather/climate factors leads to unsustainable production [5,6]. Industrialized mushroom
cultivation in the greenhouse offers an alternative strategy to natural cultivation to improve
both the quantity and quality of mushroom production because the key environmental
parameters affecting mushroom growth can be monitored and controlled. However, the
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traditional cultivation method based on manual monitoring, controlling, and harvesting
involves time-consuming and labor-intensive work which can then increase operational
costs, demanding timely, automated, cost-effective, and eco-friendly solutions for the
mushroom industry [7,8].

Along with the Fourth Industrial Revolution (Industry 4.0) when innovative technolo-
gies such as the Internet of Things (IoT), cloud computing, Big Data (BD), and Artificial
Intelligence (AI) have been commonly employed in industrial automation, a parallel revo-
lution in agriculture (Agriculture 4.0) boosts automation in farming activities by applying
those new technologies to the agriculture sector, so-called smart agriculture/farming (or
precision agriculture, digital agriculture, and Agricultural IoT). Although it can contribute
to the reduction in labor costs, deploying smart agriculture systems in practice is facing
other cost-related problems such as setup costs and running costs [9]. On the one hand,
from the users’ point of view, especially in some developing countries where most people
working in agriculture are smallholder farmers, they have limited access to modern smart
farming infrastructure due to the expensive product prices (setup costs). On the other hand,
from the perspective of service developers/providers, smart farming system construction
and applications, which are commonly implemented in centralized cloud servers can con-
sume massive resources for BD storage, management, analytics, and security, resulting
in higher overall cloud service costs (running costs). Cutting those unnecessary costs is
therefore pivotal for many business organizations, especially small and medium enterprises
(SMEs), to optimize their smart farming systems toward serving smallholder clients with
cost-saving infrastructures.

Besides the cloud service costs, traditional smart agriculture systems are often limited
by the slow network connection (low bandwidth) between Agricultural IoT devices and
cloud servers when all the huge numbers of data collected from the devices are directly sent
to the cloud, which then delays the system decisions and hampers real-time applications
in smart agriculture (high latency) [10–12]. This is a challenge for mushroom cultivation
when its key parameters require strict monitoring within short time intervals [13]. Edge
computing (including cloudlets, fog, and mobile edge computing) has recently emerged as
a promising solution to bridge this connection gap, thanks to the rapid advancement of
information and communication technologies as well as hardware capacity. Specifically, an
edge computing node can be regarded as a decentralized local server (edge server) that
allows for storing a small number of data and bringing data computation closer to the edge
devices [14–16]. By coupling the edge computing paradigm with a classical Device-Cloud
protocol, the original BD is effectively managed in an offline process at the edge server
before transmission instead of storing and processing all the collected raw data at the cloud
server [17]. This can free up the bandwidth for faster connection and for the cloud server
load spent on complicated analytics and applications [16,18]. Despite the wide deployment
of edge computing in smart homes and smart cities, it is not very commonplace in smart
farming, and thus there is still room for leveraging and improving this paradigm to meet
the demands of smart agriculture as well as the greenhouse mushroom industry.

Shifting partial work from cloud to edge offers SMEs an effective and cost-saving
solution to overcome the issues of excessive bandwidth-cloud utilization and high la-
tency [10]. However, determining which features should be conducted in the edge server
highly depends on the specific functional requirements and capacity of each smart farming
system [19]. This suggests the necessity to design a proper digital Farm Management Infor-
mation System (FMIS) architecture assisting smart agriculture applications for the specific
farmer’s requirements (e.g., for each different crop) [20–22], hereafter the Smart Agriculture
Information System (SAIS). From the perspective of an SME, Sejong Rain Company in col-
laboration with Chungnam National University aims to design and implement a low-cost
SAIS architecture customized for smart greenhouse mushroom management in association
with a paradigm shift to edge computing for business objectives, in this article. This system
was tested in a pilot site located in Songsan Green City, Republic of Korea. The advanced
Agricultural IoT sensors developed by Korean companies, a standard network flow that
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is possible for scalability, and edge computing tasks suitable for greenhouse mushroom
cultivation, together with examples of how to implement them, were introduced through
the proposed SAIS architecture. Finally, a potential SAIS architecture for business purposes
in future studies was also suggested, especially for the developing country markets that
consider smart agriculture development as the core industry.

2. Background and Related Work
2.1. Smart Agriculture Information System (SAIS)

The traditional FMIS, which relied on simple farm recordkeeping tasks, has been
developed since the 1970s to provide useful information for decision-makers to effectively
manage farming activities [23]. However, in the era of Agriculture 4.0 nowadays, the
adoption of a traditional FMIS is limited when massive data are provided from the IoT
sensors and complex tasks are required for modern farm management [24,25]. To cope
with the rapid increase of agricultural data pools and data-driven farming applications,
the SAIS, whose cornerstone is the large digital FMIS specialized for precision agriculture,
can improve the automation and efficiency in managing enormous amounts of farming
information including data collection, data processing, and data-driven decision mak-
ing [20,25]. Although the core of the SAIS is the multi-layered architecture comprising four
basic components of Smart Product, Network Connection, Data, and Smart Service [22],
recent studies paid more attention to adapting this core SAIS to the domain-specific uses
by breaking it into higher-level architectures, ranging from the classical three- or four-layer
up to the advanced seven- or eight-layer architectures. Among the classical architectures,
the three-layer one, which corresponds to the two-layer without the Network Layer, refers
to the Device-Cloud protocol where the raw data obtained by sensors will be directly
transmitted to the cloud for storage, processing, and applications. The four-layer archi-
tecture (three-layer without the Network Layer) can allow edge computing to involve
those cloud tasks. Integrating a separate layer of edge computing into SAIS architectures is
also gaining attraction and possibly becoming a trending paradigm in future studies [17].
Additionally, advanced architectures improved on the classical ones for business objectives
by proposing enterprise architecture by adding new layers such as the Business, User, or
Security Layers [26]. For more details, the readers are referred to the literature reviews of
different multi-layered SAISs in previous studies, summarized in Table 1.

Table 1. Literature reviews of multi-layered Smart Agriculture Information Systems.

Architecture Study Edge Computing Layer

Three-layer
(Two-layer

without Network Layer)

[27] No Node, Base Station, Data Center
[25] No Device, Network, Application
[28] No Data Aggregation, Communication, Application

Four-layer
(Three-layer without

Network Layer)

[29] Yes Things, Edge, Communication, Cloud

[30] Yes Sensors and Actuators, Fog Computing Clients and Devices,
Platform Controller, Cloud Agent

[31] No Perception, Network, Middleware, Application

Five-layer [32] Yes Crop CPS, Edge Computing, Access Network, Data
Cloud, Analytics

Six-layer [33] No Physical, Network, Middleware, Service, Analytics,
User Experience

Seven-layer [20] No Device, Network, Session, Application, Business,
Management, Security

Eight-layer [34] Yes
Data Wrapper, Device Manager, Exploration Module, Data

Aggregation, Data Federation, Event Recognition, Real-time
Reasoning, Outward Agent
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2.2. Smart Greenhouse Mushroom Cultivation

Aside from the benefits for human health and commerce, edible mushrooms are cur-
rently becoming the preferred crop for indoor cultivation, even in urban farming, because
they are easily relocated, do not require large space and direct sunlight, and need only a
short duration until harvesting [35]. However, the major limitation came from the high sen-
sitivity of mushrooms to the surrounding environment, since extreme weather conditions
can immediately damage mushroom health. Therefore, the most important task of indoor
mushroom cultivation relies on the timely and continuous control of the key environmental
parameters’ ideal conditions at every mushroom growing stage [36]. Previous studies
listed a wide range of those key parameters [13], but the two most important ones that are
worth regarding are air temperature and humidity, while several studies further consid-
ered light intensity or carbon dioxide (CO2) levels. The ideal ranges for these parameters
vary depending on different mushroom species [7,37], and they can be easily, timely, and
automatically observed and controlled in the greenhouse using IoT sensors, which have
been widely reported in the literature as the common approach for indoor mushroom
management. Alongside the development of computer vision and precision agriculture
technologies, high-resolution cameras associated with AI-based image processing have
been successfully applied in the mushroom industry to enhance management accuracy
and efficiency [38]. Current advances improved by combining the advantages of IoT sen-
sors and camera computer vision, which opens a new door for future smart greenhouse
mushroom cultivation in particular and smart agriculture in general. Literature reviews of
smart greenhouse mushroom management using IoT sensors, cameras, and integrated IoT
sensor-camera systems are summarized in Table 2.

Table 2. Literature reviews of smart greenhouse mushroom management.

System and Method Study Mushroom Species Monitoring Parameters

IoT
environmental

sensor

[39] shiitake temperature, humidity, CO2
[40] oyster temperature, humidity, light
[13] oyster temperature, humidity, light
[36] gourmet * temperature, humidity, CO2, light
[41] oyster temperature, humidity

Camera and AI computer vision

[42] enoki RGB image
[43] white button RGB image
[44] gourmet RGB image
[45] oyster RGB image
[8] gourmet RGB image

Integrated IoT
environmental
sensor-camera

[46] white button temperature, humidity, RGB image
[47] white button temperature, humidity, CO2, RGB image

[28] gourmet temperature, humidity, soil moisture, soil temperature,
light, RGB image

[48] gourmet temperature, humidity, RGB image
[49] oyster temperature, humidity, light, soil moisture, RGB image

* gourmet mushrooms include all edible mushrooms such as oyster, shiitake, enoki, or white button mushrooms.

3. System Architecture Design

Based on the potential of the SAIS with edge computing and the increased need for
mushroom products, this study aims to design and implement a multi-layered SAIS archi-
tecture with leveraging edge computing for cost-effective smart greenhouse mushroom
cultivation. In particular, an integrated IoT environmental sensor-camera system and the
oyster mushroom were selected to test in this study. To highlight the capability of coupling
the edge computing model to the classical Device-Cloud protocol, a general three-layer
SAIS architecture (without the Network Layer), which adopted the Edge Layer as a bridge
for the Device and Cloud (Device-Edge-Cloud protocol), was employed. Moreover, we also
suggested the integration of a bidirectional (two-way) communication mechanism in this
system to separate the network flow into two major domains for different functional tasks,
including the Forward and Backward Domains. In each layer, two modules were included
to respond to separated functional tasks in the Forward and Backward Domains, respec-
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tively. The proposed SAIS architecture applied to greenhouse mushroom management in
this paper is depicted in Figure 1. Specifically, according to Figure 1, the Forward Domain
enables data transmission from the Device Layer (Data Collecting module) through the
Edge Layer for quality control and aggregation (Data Preprocessing module), and then
to the Cloud Layer (Data Storage module). In contrast, the Backward Domain allows an
inverse direction that AI-based solutions developed at the Cloud Layer using stored data
(Data Analytics/AI Development module) to be deployed at the Edge Layer for real-time
applications (Real-time AI Deployment module), then to control the ideal conditions of
the environmental parameters if necessary via controlling actuators/sensors at the Device
Layer (Device Controlling module). The Forward Domain is responsible for the data man-
agement and storage tasks while the Backward Domain is responsible for the solutions
development and decision-making based on the obtained data. In this study, we describe
the proposed architecture following its network flow and focus especially on the Forward
Domain, since it is the mainstream in the SAIS. It is important to note that although the Net-
work/Communication Layer which encompasses the protocols for network connection is
also important and was already employed in this paper, we did not focus on modifying this
layer, so it was not mentioned here as a major layer. A detailed description of the proposed
SAIS architecture and its implementation for smart greenhouse mushroom management at
the testbed site is provided below.
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Figure 1. A proposed design of the Smart Agriculture Information System (SAIS) architecture for
smart greenhouse mushroom cultivation. The blue dashed border and arrows indicate the Forward
Domain and its procedure, and the red dashed border and arrows indicate the Backward Domain
and its procedure.

3.1. Forward Domain–Device Layer

The Device Layer is the first layer in this proposed SAIS architecture, which enables a
workspace for Agricultural IoT end devices. In this layer, the Data Collecting module is particularly
responsible for the Forward Domain. Its detailed architecture is presented in Figure 2.
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Data Collecting: This module aims to collect farming and environmental data ob-
served from the IoT sensors system. Since the integrated IoT environmental sensor-camera
system was employed, this module was separated into two sub-modules for better manage-
ment, consisting of (1) the one-dimensional (1D) Data sub-module which stands for point
environmental data collected from the IoT sensors, and (2) the two-dimensional (2D) Data
sub-module, which stands for image data collected from the cameras.

• 1-Dimensional Data (1): This sub-module offers a workspace for the point IoT sensors
to collect the environmental data time series. Because temperature, humidity, and
CO2 are generally the key environmental parameters for mushroom growth in the
literature, they were considered in this system. A three-in-one IoT environmental
sensor, which measures automatically and simultaneously the three key parameters
of temperature (T), relative humidity (RH), and CO2 levels (CO2) in real-time using
only one sensor, was adopted in this study. This low-cost combination sensor is a
domestic Korean product that was researched and developed by the Sejong Rain
Company, Republic of Korea, and is currently being tested before commercialization.
Even though this combination sensor can observe real-time data, the maximum 10 min
time resolution has been set to be updated in this sub-module. For more information
or inquiries on this combination IoT sensor, please refer to the company homepage
(http://sejongrain.com/, accessed on 10 January 2024). Its photos and specifications
are shown in Figure 3a,b, and Table 3, respectively.

Agriculture 2024, 14, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 2. The architecture of the Forward Domain in the Device Layer. 

Data Collecting: This module aims to collect farming and environmental data ob-
served from the IoT sensors system. Since the integrated IoT environmental sensor-cam-
era system was employed, this module was separated into two sub-modules for better 
management, consisting of (1) the one-dimensional (1D) Data sub-module which stands 
for point environmental data collected from the IoT sensors, and (2) the two-dimensional 
(2D) Data sub-module, which stands for image data collected from the cameras. 
• 1-Dimensional Data (1): This sub-module offers a workspace for the point IoT sen-

sors to collect the environmental data time series. Because temperature, humidity, 
and CO2 are generally the key environmental parameters for mushroom growth in 
the literature, they were considered in this system. A three-in-one IoT environmental 
sensor, which measures automatically and simultaneously the three key parameters 
of temperature (T), relative humidity (RH), and CO2 levels (CO2) in real-time using 
only one sensor, was adopted in this study. This low-cost combination sensor is a 
domestic Korean product that was researched and developed by the Sejong Rain 
Company, Republic of Korea, and is currently being tested before commercialization. 
Even though this combination sensor can observe real-time data, the maximum 10 
min time resolution has been set to be updated in this sub-module. For more infor-
mation or inquiries on this combination IoT sensor, please refer to the company 
homepage (http://sejongrain.com/, accessed on 10 January 2024). Its photos and spec-
ifications are shown in Figure 3a,b, and Table 3, respectively. 

 
Figure 3. Photos of the combination IoT environmental sensor: (a) displaying temperature and hu-
midity and (b) displaying CO2 level; and (c) photo of the surveillance camera used in this study. The 
Korean word in the IoT combination sensor label is the name of the company who develops this 
device, the Sejong Rain Company, Republic of Korea. 

Figure 3. Photos of the combination IoT environmental sensor: (a) displaying temperature and
humidity and (b) displaying CO2 level; and (c) photo of the surveillance camera used in this study.
The Korean word in the IoT combination sensor label is the name of the company who develops this
device, the Sejong Rain Company, Republic of Korea.

Table 3. Specifications of the combination IoT environmental sensor used.

Specification Temperature (T) Humidity (RH) CO2 Level (CO2)

Measuring unit ◦C % ppm

Measuring range −40–120 0–100 0–2000

Resolution 0.1 0.1 1

Accuracy ±0.2 ±3 ±20

Stability maintaining an error of less than 1% throughout the life of the sensor

Response time less than 1 s

Operating condition −30–70 ◦C (temperature)/0–100% (humidity)

Ingress Protection (IP) rating 65 (certificated by the authorized organization)

• Two-Dimensional Data (2): Besides the IoT environmental sensor, this system uses a
surveillance camera system to collect crop image/video (time series of RGB images)

http://sejongrain.com/
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data, which enhances automation in intuitive recognition of mushroom characteris-
tics (e.g., shapes, colors, species, phenological stages, or related diseases) and was
implemented in this sub-module. Specifically, an industrial high-definition (HD 720p)
digital camera (model SMT-720PUSBBOX) manufactured by Smtkey Electronic Tech-
nology Company, Shenzhen Guangdong, China, was employed to provide streaming
images/video of the oyster mushroom. However, to match the temporal resolution of
the environmental sensor, the camera system was set to capture image time series at
10 min intervals in single red (R), green (G), and blue (B) bands. A photo of the camera
used is shown in Figure 3c and its specifications are presented in Table 4.

Table 4. Specifications of the surveillance camera used.

Surveillance Camera Specification

Image sensor

Sensor 720P CMOS

Lens 2.8–12/5–50/6–60 CS
Fixed Varifocal Zoom Lens (optional)

Effective pixel FHD 1280 (H) × 720 (V)
Output image format MJPEG/YUV2 (YUYV)

Minimum illumination 0.051 lux

Night vision mode supported
(need to cooperate with infrared lens @ 850 or 940 nm)

Operating temperature (◦C) −10–60

Weight (g) 30

3.2. Forward Domain–Edge Layer

The Edge Layer or edge server is a middle layer in this proposed three-layer SAIS,
where edge computing is executed, and is the major part of this study. It is important to note
that edge computing is not a replacement for traditional cloud computing, but that it is a
complement for cloud computing. Edge computing is normally conducted in low-memory
and low-power microprocessors and assigned for small workloads with lightweight com-
putation, which fits in with real-time AI applications. In contrast, cloud computing is
compatible with smart solutions requiring BD and heavy computation capacity. Therefore,
a powerful, low-energy-consumption, and cost-effective Raspberry Pi single-board com-
puter was used in this study for edge computing in both Forward and Backward Domains.
In particular, the Raspberry Pi 3 Model B+, which also provides a high-speed processor suit-
able for HD video processing and dual connections via both WiFi (wireless) and Ethernet
port (wired), was employed in the system. For a more detailed description of its speci-
fications, users are referred to the company’s website (https://www.raspberrypi.com/,
accessed on 10 January 2024). The related tasks are shown in the Data Preprocessing
module for the Forward Domain, and its architecture is depicted in Figure 4.
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and bandwidth workloads. Hence, the main mission of this module is to reduce the number
of raw data observed from the Device Layer while keeping data quality before sending
them to the Cloud Layer, based on the following sub-modules for preprocessing:

• Small-Data Storage (1): Since a previous study indicated the effective greenhouse
mushroom monitoring on an hourly basis [13], we also set a one-hour (1 h) interval as
the standard temporal resolution to be sent to the cloud and for mushroom cultivation
in this study. To this end, several raw data should be stored in the Edge Layer for
further temporal data resampling and quality control development.

• Temporal Resampling (2): The temporal resampling applied in this sub-module aims
to convert the 10 min raw data into hourly data and relies on a simple Average Filtering
method, whereas the six raw data samples within every 1h interval stored in the Small-
Data Storage sub-module will be transferred to this sub-module for averaging into
one data sample. This method can be applied to both 1D and 2D data in this SAIS and
may help it reduce the number of data together with overcoming the temporal gaps
(missing data) that occurred at the original 10 min interval.

• Data Quality Control (3): Despite the benefit of temporal resampling in dealing
with the gaps in raw data time series, the resampled data still probably suffer from
temporal gaps (when six raw data samples are missing values) or sudden extreme
conditions. This requires an AI-based data quality control filter that can not only
automatically and continuously detect such outliers in the data stream, but also has
a low computational cost when it is applied to the Edge Layer. Even though several
lightweight AI models are compatible with edge/fog computing, the well-known
k-nearest neighbors (k-NN) algorithm was used for showcasing in this research. The
k-NN is simply a non-parametric supervised learning method, which considers k
samples of training data to solve the classification and regression problems, but it can
be regarded as an unsupervised learning algorithm when it is applied to anomaly
detection [50]. The k-NN integrated with a 24 h moving window was applied in this
study to identify whether real-time data are anomalous or not, based on the lagged 23h
data samples stored in the Small-Data Storage sub-module. Whenever the ksample
is detected and masked, it can be continuously used to identify the (k + 1) sample,
and the (k − 23) sample is then automatically removed from the Small-Data Storage
sub-module. This AI-based data quality control filter can be applied to both 1D and 2D
data. For 1D data, besides transmitting them to the Cloud Layer for long-term storage,
the processed data were also sent to a responsive module of the Backward Domain in
the Edge Layer to support the system’s real-time decision-making. However, in the
case of 2D data, to reduce the high computational cost when processing image data,
the RGB images obtained from the camera were first converted to grayscale images
and then transformed to 1D format by simply averaging the digital number (DN)
values within an image scene (scene-averaging) before they can be applied, with the
data quality control filter. Anomalous DN data samples closer to 0 can be identified as
temporal gaps (black images), while those with high values (e.g., higher than 80—a
typical average grayscale digital number value) can be classified as light images, which
still provide useful information. The quality-controlled image data on an hourly basis
were sent only to the Cloud Layer.

3.3. Forward Domain–Cloud Layer

The Cloud Layer is the final layer in this proposed SAIS, which is widely used in
various architectures and allows high computational application development based on
the quality-controlled BD. Hence, the Forward Domain offers long-term high-quality data
to be stored firstly in the Cloud Layer under the Data Storage module management.

Data Storage: Because the accuracy of AI models significantly depends on the quality
and quantity of the training data, this module aims to provide a space to store long-
term (e.g., one life cycle of mushrooms) high-quality data observed from the integrated
environmental sensor-camera system to develop AI-based solutions which require a high
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computation cost. These necessary datasets stored in this module can be then transmitted
to the responsive module of the Backward Domain in the Cloud Layer for training AI
models with respect to specific user requirements.

3.4. Backward Domain–Cloud Layer

As highlighted in the description above, the mission of the Backward Domain is to
develop AI-based smart solutions and make decisions based on the collected and stored
data in the Forward Domain. Therefore, in the Cloud Layer, the Backward Domain tasks
are conducted in the AI Development module. Figure 5 presents the architecture of the
Backward Domain in the Cloud Layer.
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AI Development: This module is designed to account for AI-based smart solution
development for specific demands, which requires BD for high computational cost training
and complex analytics. The implementation of this module in the Backward Domain of the
Cloud Layer follows the two sub-modules:

• AI Model Training (1): This sub-module includes the feature selection task for training
AI models based on user-specific demands, whereas relevant important features were
extracted from the BD in the Data Storage module. Furthermore, several well-known
AI model candidates will be selected for training.

• Parameter Storage (2): The optimal AI model among the candidates was chosen and
its optimal parameters were then stored in this sub-module for further deployment.

Various AI-based smart greenhouse mushroom-cultivation solutions can be considered
for development. However, to showcase only one example of the high-computational-cost
AI model application with BD (mostly with image/video data) in the Cloud Layer, a well-
known, fast, effective, and advanced computer vision algorithm version among the series
of the “You Only Look Once” (YOLO) framework [51], the YOLOv5 model, was used in
this study for real-time mushroom detection with a surveillance camera. Specifically, the
YOLOv5 model, whose cornerstone is a simple deep convolutional neural network, was
introduced in 2020 to improve on its predecessors in object detection. The YOLOv5 model
divides images into a grid cell and finally predicts the objects with multiple bounding boxes
per grid cell. Its architecture consists of three main components: the BackBone for feature
extraction, the Neck for feature fusion, and the Head for feature conversion to bounding-
box parameters. The BD images stored in the Big-Data Storage module can be labeled for
training the YOLOv5 model. To reduce the training costs (including the training time and
number of training-data samples), this study adopted the Transfer Learning method to
fine-tune the pre-trained YOLOv5 model for mushroom detection to be compatible with
the current training mushroom images in the Big-Data Storage module. The optimal model
parameters were stored in the Parameter Storage sub-module and then transferred to the
Edge Layer for real-time deployment.
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3.5. Backward Domain–Edge Layer

The Backward Domain in the Edge Layer provides the workspace for real-time smart
agriculture solution deployment, which was assigned to the Real-time AI Deployment
module, with its architecture provided in Figure 6.
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Real-time AI Deployment: This module consists of four sub-modules for integrat-
ing analytics from both environmental sensors and cameras to improve real-time solu-
tion/decision making, as follows:

• Short-term Analytics (1): This sub-module receives the analytical results from the
Forward Domain in the Edge Layer (Data Preprocessing module), mainly based on
temporary small-data storage of the 1D data from the IoT environmental sensor.

• Long-term Analytics (2): The optimal AI model obtained from the Backward Domain
based on BD analytics in the Cloud Layer (AI Development module) was deployed in
this sub-module, mainly for the 2D image data.

• Integrated Analytics (3): This sub-module combines the analytical results from the
Short-term and Long-term Analytics sub-modules to enhance decision-making.

• Solutions/Decision Making (4): Relevant solutions/decisions will be made in this
sub-module, based on the results from the Integrated Analytics sub-module.

3.6. Backward Domain–Device Layer

The Backward Domain in the Device Layer covers the Device Controlling module.
Device Controlling: This module aims to automatically control sensors/actuators

to make farm management decisions as soon as possible, based on the analytical solu-
tions provided by the Real-time AI Deployment module in the Edge Layer. For example,
the image-based mushroom detection solution allows users to recognize whether the
mushrooms are currently in the growing period or have been harvested. In the case of
extreme conditions observed by the environmental sensor during the mushroom grow-
ing period, this module enables the modulating of key environmental parameters by
controlling IoT sensors/actuators such as the heater/cooling fan (for temperature), hu-
midifier/dehumidifier (for humidity), or air ventilation (for CO2 level) via connection to
a microcontroller.

4. Implementation Results
4.1. Implementation of Forward Domain–Device Layer

Installation of the integrated IoT environmental sensor-surveillance camera system
for smart greenhouse mushroom cultivation is the first implementation step and was
carried out in a mushroom house located in Songsan Green City, Republic of Korea. This
system aims to collect the key environmental parameters affecting mushroom growth
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and intuitive mushroom information, which is the responsibility of the Data Collecting
module belonging to the Forward Domain in the Device Layer. Figure 7 describes the
installation of the combination IoT environmental sensor for simultaneously measuring
the real-time 1D data of three key environmental parameters including air temperature (T),
atmospheric relative humidity (RH), and CO2 level (CO2), together with the construction of
a data logger containing the Raspberry Pi single-board computer. Data collected from the
IoT environmental sensor were then transmitted to the data logger for further processing,
mainly via a wireless connection (Figure 7a). However, we also set up ethernet cables here
to ensure that data transmission can be automatically switched to a wired connection when
the wireless connection collapses, maintaining their stable transmission (Figure 7b). It is
important to note that although the environmental sensor was set up in the greenhouse
environment, we constructed the data logger outside the mushroom house for future
combination with outdoor smart agriculture sensors/actuators such as smart precipitation
gauges, unmanned aerial vehicles, tractors, and so on (Figure 7c).
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Figure 7. Installation of the combination IoT environmental sensor for the greenhouse mushroom
information system with connection to data logger via the following: (a) wireless connection and
(b) wired connection. (c) Construction of data logger outdoors with potential combination with
outdoor sensors. The Korean words in the label of the data logger represent for the system name
“Agriculture Environment Data Collection System” and the company name “Sejong Rain”.

The time series of the raw 1D data (at 10 min of temporal resolution) for the three key
parameters from the installed IoT environmental sensor for nearly one month (one life cycle
of the mushroom) is depicted in Figure 8. In general, no major operational errors occurred
when continuous data were collected without missing values and the observed data range
fell within the sensor’s allowable measuring range for each parameter, according to Table 3.
This suggests that the combination IoT environmental sensor used in this study, which
was developed by the Korean company, is ready and has potential for smart mushroom
monitoring and further applications in smart agriculture.

Besides the IoT environmental sensor, the simultaneous installation of the surveillance
camera to capture real-time intuitive 2D data for crop information was also implemented
in the pilot area, as illustrated in Figure 9. The camera was fixed to collect a time series of
RGB images covering a partial mushroom farm for preliminary testing. We also connected
the camera system to the data logger for data transmission.

Time series of the raw 2D data at 10 min time intervals were obtained from the installed
surveillance camera. We showcase several RGB image samples of mushrooms at different
growth stages in Figure 10. It can be drawn from Figure 10 that intuitive mushroom
information can be well captured by the installed surveillance camera, even with the
changes between growth stages. However, there are several temporal gaps (image samples
with no-value/black images) that occurred during the operation which need to be noticed
and addressed. All the raw data collected in the Device Layer were then sent to the Edge
Layer for pre-processing.
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4.2. Implementation of Forward Domain–Edge Layer

The raw 1D and 2D data collected at the Device Layer were then delivered to the
Forward Domain in the Edge Layer for further preprocessing before being transmitted to
the Cloud Layer. The Edge Layer is the major layer in this designed SAIS, whose main
goal is a stepping stone toward saving cloud and bandwidth resources as well as selecting
essential data for the cloud server. Therefore, the Forward Domain in this layer (represented
by the Data Preprocessing module) is responsible for reducing unnecessary data collected
from the Device Layer and conducting quality control for high-quality data sent to the
Cloud Layer. To this end, several raw data samples (small data) should be stored in this
layer for a short period and the Small-Data Storage sub-module is responsible for providing
storage space in this task.

The first preprocessing task in this module is data reduction. Since the mushroom
monitoring on an hourly basis is sufficient and was selected as the standard temporal
resolution to be updated in the cloud, an average filtering technique was utilized as the
temporal resampling method to convert 10 min data into 1h data. Figure 11 illustrates
examples of how to conduct this temporal resampling method in both 1D and 2D data time
series. In particular, every six raw data samples/images within a current 1h duration were
initially stored. Since no significant differences were observed among these raw data, an
hourly representative point value/image can be generated by simply taking an average
of those six data samples/images. After an hourly representative data sample/image is
given, it will be sent back to the Small-Data Storage sub-module for temporal storage and
the current raw data will be automatically removed from this sub-module for updating the
coming raw data. It is important to note that, besides the data reduction benefit, this method
also supports dealing with temporal gap problems, ensuring continuous measurement of
the data stream. For example, a black image (temporal gap) that occurred in the raw 2D
data was successfully removed and replaced by a representative image (average image
of the six raw data in 10 min intervals within every 1h interval) while keeping sufficient
information, as illustrated in Figure 11b.

The second preprocessing task in the Forward Domain of the Edge Layer is for data
quality control, which is covered by the Data Quality Controlling sub-module. For the 1D
data, since the important task of smart greenhouse mushroom cultivation is mainly based
on modulating the ideal conditions of key environmental parameters, this sub-module
aims to determine the sudden extreme conditions occurring in the environmental data,
supporting the system with timely responses to address the problems as well as managing
high-quality data sent to the cloud server. However, because edge computing is compatible
with light computing applications that can work well in short-term small-data numbers
stored in this layer, effective and lightweight AI algorithms are preferable for this task. As
a result, a widely used lightweight AI model, the k-NN algorithm, was selected as the
anomaly-detection method in this study. More specifically, the k-NN was conducted in a
24h moving window (k = 23) for the continuous hourly data samples stored in the Small-
Data Storage. The real-time outlier detection of the current data sample (the k sample) can
be performed based on its recent 23 lagged hourly data samples. Whenever the k sample
is detected and masked, it can be continuously used to identify the (k + 1) sample, and
the (k − 23) sample is automatically deleted from the Small-Data Storage sub-module.
Figure 12 presents the results of applying the k-NN algorithm-based anomaly detection
to the 1D hourly data of three key environmental parameters for mushroom cultivation.
These successful implementation results of the k-NN model-based anomaly detection in the
1D environmental data, as illustrated in Figure 12, highlight the suitability and potential
application of lightweight AI models for edge computing.
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As regards the 2D data, one problem is that although the temporal resampling method
can deal with temporal gaps in the raw data, they still possibly occur in the resampled
data (when the six original images within one hour are all black images). Hence, the
anomaly-detection method should be applied to the hourly 2D data to detect these gaps.
However, to deal with the high computational cost when processing numerous crop images,
a preprocessing procedure series was applied to the 2D data to transform them into 1D
data before conducting the AI-based anomaly detection. In particular, an RGB image was
first converted to a grayscale image and subsequently transformed into a digital number
value by averaging grayscale digital numbers from all pixels within an image scene (scene
averaging). Figure 13 provides a general example of how to carry out AI-based anomaly
detection in the 2D data and their results for mushroom images in this study. As can
be seen from Figure 13, two types of outliers have been identified by using the k-NN
anomaly-detection method. Anomalous data with digital numbers closer to 0 are assigned
to the temporal gaps (black images), which do not provide any useful information, whereas
the outliers with the highest values (e.g., greater than 80—a typical average grayscale
digital number value) are identified and masked as “light image”, which still provide
similar crop information to the normal images but at a higher brightness. Finally, after the
resampled data are quality-controlled, they will be sent to the cloud server for storage and
to the Short-term Analytics sub-module in the Backward Domain of the Edge Layer for
supporting real-time decision making.
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4.3. Implementation of Forward- and Backward-Domain–Cloud Layer

In the Cloud Layer, high-quality BD transmitted from the Edge Layer after passing
the data quality control procedure will be initially stored in the Big-Data Storage Module
of the Forward Domain. These high-quality BD stored in the Cloud Layer were then sent
to the AI Development Module for training high-computational-cost AI models based on
specific user requirements. This study employed a widely used deep learning-based object-
detection algorithm, the YOLOv5 model, to address the mushroom recognition problem,
mainly for the 2D image data. Moreover, to reduce the computational cost during the
training process, the transfer learning technique was integrated to fine-tune the pre-trained
YOLOv5 model for adapting the mushroom images stored in the Cloud Layer. Detailed
information on training and evaluation of the YOLOv5 model for mushroom detection in
this study is shown in Table 5. The obtained optimal hyperparameters were subsequently
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stored in the Parameter Storage module and were used for real-time deployment of this
solution in the Edge Layer.

Table 5. Information on the training and evaluation of the YOLOv5 model for mushroom detection.

Training Evaluation

No. of samples 402 No. of samples 118
Optimizer Stochastic Gradient Descent Precision 0.97

Loss function Cross entropy Recall 0.98
Learning rate 0.01 Average Precision (AP) 0.99

Batch size 16 Mean Average Precision
(mAP) 0.77Epoch 100

4.4. Implementation of Backward Domain–Edge Layer

The Backward Domain in the Edge Layer, which was carried out by the Real-time
AI Development module, aims to provide integrated analytics for decision-making by
combining the results of short-term and long-term analytics. In particular, on the one
hand, the Short-term Analytics module in this layer obtained the key environmental-
parameter anomaly-detection results from the Forward Domain in the Edge Layer, which
was described in the section above (Implementation of Forward Domain–Edge Layer) and
is shown in Figure 12. On the other hand, when it comes to long-term analytics, this module
adapted the developed YOLOv5-based mushroom-recognition model for detection, based
on the stored optimal model hyperparameters from the Backward Domain in the Cloud
Layer. Representative examples of the YOLOv5 model deployment for mushroom detection
in this study are depicted in Figure 14, whereas single-object (mushroom) areas are detected
in continuous images with the red bounding box and confidence level by further applying
instance segmentation. According to the figure, in general, most of the mushroom areas
during the fruiting period can be well identified by the system, with a clear discrimination
of the non-mushroom areas observed. This indicated the successful deployment of a high-
computational-cost AI model in the Edge Layer, demonstrating its suitability to adopt
a developed AI model in the Cloud Layer for edge computing. However, there are still
several mushroom areas in an image that the system cannot detect, suggesting the need
for retraining the model to improve its performance by the updated high-quality BD sent
to the Cloud. The results from the long-term analytics can be integrated with those from
the short-term analytics to support the system’s decision-making. For example, if outliers
are detected in the streaming environmental data (results from the short-term analytics)
during the mushroom’s fruiting period (results from the long-term analytics), the system
can automatically send an alert notification to the users or control the sensors/actuators for
maintaining the normal status of environmental conditions.
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5. Discussion and Future Direction

The major difference between this proposed research and related work mentioned in
Tables 1 and 2 is the combined use of the edge-computing paradigm in a smart greenhouse
mushroom-cultivation information system. In particular, the Edge Layer was not included
in the SAIS architecture for mushroom cultivation in Table 1 [28], while none of the previous
mushroom management studies in Table 2 employed the edge computing model in their
system. Thus, the successful practical application of this study can shed new light on lever-
aging edge-computing paradigm shifts as well as improving smart mushroom cultivation
systems. In addition, a minor discrepancy that is worth mentioning is the introduction
of a new low-cost combination IoT environmental sensor made by a Korean company.
This product combines three single sensors for different environmental parameters into
one sensor (three-in-one sensor) and also employs low-cost Raspberry Pi single-board
computers working in the resource-saving edge computing paradigm, so it can contribute
to the diverse selections for clients in low-cost smart agriculture devices and information
system markets.

Notwithstanding the benefits of edge computing in complementing classical cloud
computing and in improving smart greenhouse mushroom cultivation, this preliminary
study may suffer from several challenges in the future. First, the implementation costs
when scaling this framework up to a larger scale for other crops, together with integrating
outdoor smart agriculture systems, are questionable, since additional costs from new
IoT devices and their installation might be included in the system. This may limit the
commercialization of this framework for business objectives. Second, the improvement in
mushroom production efficiency when the edge computing paradigm is included is not
fully analyzed, suggesting the implementation of more detailed analyses for this problem
in further studies.

Addressing potential challenges is also related to the future outlook of this research.
Besides the application customized for mushroom cultivation, the successful practical
implementation of this study suggests a potential to scale up this framework for business
objectives and other user-specific requirements (e.g., other crops) in future studies. To this
end, in the future direction, this fundamental SAIS architecture is expected to be coupled
with the two new layers, including the User and Administration Layers. The potential
architecture for future the SAIS is illustrated in Figure 15, and a detailed description for
each added layer is provided below.

• User Layer: This layer is particularly designed for the users of the SAIS such as
farmers or clients. From the user’s perspective, the acquisition of quality-controlled
datasets and the intuitive visualization of these datasets with timely notifications if
any anomalous events occur from the Cloud Layer, and the capability to control the
devices manually in an emergency in the Device Layer, are preferable. Thus, several
respective modules such as Data Extraction, Visualization/Notification, or Manual
Device Controlling Modules can be considered in this layer. Since the users mainly
work in the Device and Cloud Layers, the users can only access these two layers, and
they do not need to access the Edge Layer to adjust any edge computing tasks.

• Administration Layer: This layer is particularly designed for the providers or develop-
ers (e.g., companies) of the SAIS for business goals. Unlike the users, the administrators
aim to manage all the data flow from the Device Layer to the Cloud Layer, so they can
access and collect data from all the layers in this system, which can be conducted by the
Data Extraction/Management module. Moreover, the administrators can meet the spe-
cific user requirements by developing suitable solutions, and ensure the safety of the
system by maintaining the security. Therefore, the two respective modules including
Application Development and Network Security are considered in this layer.
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Not only are the above additional layers being included, but the Device Layer is also
planning to be extended with new sensors, in the future system. Microcontrollers and
several controlling sensors/actuators (e.g., heaters, fans, humidifiers, or air ventilation. . .)
are expected to be utilized, which can complement the current indoor system. Furthermore,
a parallel SAIS for outdoor smart agriculture with relevant IoT devices (e.g., smart rain
gauges, automated weather sensors, irrigation valves, or unmanned aerial vehicles. . .) can
be considered and developed for an integrated indoor–outdoor smart agriculture system.

6. Conclusions

Traditional Device-Cloud protocol in smart agriculture often suffers from the chal-
lenges of delayed system responses caused by low bandwidth and high latency, together
with high cloud-service costs for data computation and storage when enormous numbers
of data acquired from IoT devices are directly transmitted to the cloud server without
processing. Novel edge computing offers an effective solution to deal with challenges in
this traditional protocol by shifting partial data storage and computation capability from
the cloud server to edge devices. Nevertheless, selecting which tasks can be implemented in
edge computing depends on user-specific demands, suggesting the need to design a specific
and proper Smart Agriculture Information System (SAIS) architecture that is compatible
with single-crop requirements.

Based on the nutritious and commercial benefits of edible mushrooms as well as the
necessity of cost reduction from a business viewpoint, the major goal of this study is to
design and implement a standard multilayered SAIS architecture for smart greenhouse
mushroom cultivation toward leveraging edge computing, which can be scalable for
business goals. In this designed SAIS, the three-layer architecture, which couples edge
computing in the central layer to connect the Device and Cloud Layers (Device-Edge-Cloud
protocol) and enables automation in mushroom management using an integration of the
IoT environmental sensor (for mushroom key environmental-parameter monitoring) and
surveillance camera (for intuitive mushroom monitoring) was employed and tested in
a testbed site in the Republic of Korea. Via this designed SAIS, we aim to introduce the
advanced combination environmental IoT sensors developed by Korean companies, a
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standard network flow that is possible for scalability and suitable edge computing tasks,
with typical examples. Moreover, a potential SAIS architecture with additional layers for a
future direction for business purposes was also suggested.

The successfully implemented SAIS architecture indicated that our combination IoT
environmental sensor integrated with a surveillance camera could monitor the real-time
key environmental parameters affecting mushroom growth and intuitive mushroom infor-
mation. Typical examples of mushroom cultivation based on the collected data revealed
that several low-cost data pre-processing procedures including small-data storage, tem-
poral resampling-based data reduction, and lightweight artificial intelligence (AI)-based
data quality control for anomaly detection within environmental conditions, together with
real-time AI model (YOLOv5) deployment for mushroom recognition from crop images,
are compatible with edge computing. In contrast, high-quality BD storage and high-
computational-cost AI model development can be implemented in the cloud. Moreover,
integrating the Edge Layer as the center of the traditional protocol can significantly save
network resources and operational costs by reducing unnecessary data sent from the device
to the cloud while keeping sufficient information. Finally, the future improvement suggests
including additional layers to meet user-specific demands for business objectives and the
extension of the current system with new controlling sensors and a parallel outdoor system,
toward an integrated indoor–outdoor smart agriculture system.

Author Contributions: Conceptualization, H.H.N., D.-Y.S. and D.-H.L.; methodology, H.H.N. and
D.-Y.S.; software, H.H.N.; validation, D.-Y.S., W.-S.J. and T.-Y.K.; formal analysis, T.-Y.K.; investiga-
tion, W.-S.J.; resources, D.-Y.S.; data curation, H.H.N.; writing—original draft preparation, H.H.N.;
writing—review and editing, D.-Y.S., W.-S.J. and T.-Y.K.; visualization, H.H.N.; supervision, D.-H.L.;
project administration, D.-H.L.; funding acquisition, D.-H.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the “Regional Innovation Strategy” (RIS) through the
National Research Foundation of Korea (NRF), funded by the Ministry of Education (MOE) (2021RIS-
004), and the research fund of Chungnam National University (CNU), Republic of Korea (2022-0694-
01). The APC was also funded by the MOE through the NRF RIS project (2021RIS-004) and the CNU
research fund (2022-0694-01).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: Authors Hoang Hai Nguyen and Dae-Yun Shin were employed by the company
Sejong Rain Co., Ltd. The remaining authors declare that the research was conducted in the absence
of any commercial or financial relationships that could be construed as a potential conflict of interest.
The funders had no role in the design of the study; in the collection, analyses, or interpretation of
data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Ba, D.M.; Ssentongo, P.; Beelman, R.B.; Muscat, J.; Gao, X.; Richie, J.P. Higher Mushroom Consumption Is Associated with Lower Risk

of Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Adv. Nutr. 2021, 12, 1691–1704. [CrossRef] [PubMed]
2. Roncero-Ramos, I.; Delgado-Andrade, C. The Beneficial Role of Edible Mushrooms in Human Health. Curr. Opin. Food Sci. 2017,

14, 122–128. [CrossRef]
3. Hamza, A.; Ghanekar, S.; Santhosh Kumar, D. Current Trends in Health-Promoting Potential and Biomaterial Applications of

Edible Mushrooms for Human Wellness. Food Biosci. 2023, 51, 102290. [CrossRef]
4. Kour, H.; Kour, D.; Kour, S.; Singh, S.; Jawad Hashmi, S.A.; Yadav, A.N.; Kumar, K.; Sharma, Y.P.; Ahluwalia, A.S. Bioactive

Compounds from Mushrooms: Emerging Bioresources of Food and Nutraceuticals. Food Biosci. 2022, 50, 102124. [CrossRef]
5. Kauserud, H.; Stige, L.C.; Vik, J.O.; Økland, R.H.; Høiland, K.; Stenseth, N.C. Mushroom Fruiting and Climate Change. Proc. Natl.

Acad. Sci. USA 2008, 105, 3811–3814. [CrossRef]
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