
Citation: Cao, Y.; Dai, J.; Zhang, G.;

Xia, M.; Jiang, Z. Combinations of

Feature Selection and Machine

Learning Models for Object-Oriented

“Staple-Crop-Shifting” Monitoring

Based on Gaofen-6 Imagery.

Agriculture 2024, 14, 500. https://

doi.org/10.3390/agriculture14030500

Academic Editors: Aichen Wang,

Minglu Tian and Liyuan Zhang

Received: 24 January 2024

Revised: 17 March 2024

Accepted: 18 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Combinations of Feature Selection and Machine Learning
Models for Object-Oriented “Staple-Crop-Shifting” Monitoring
Based on Gaofen-6 Imagery
Yujuan Cao 1,2 , Jianguo Dai 1,2,*, Guoshun Zhang 1,2, Minghui Xia 1,2 and Zhitan Jiang 1,2

1 College of Information Science and Technology, Shihezi University, Shihezi 832003, China;
cyj_work@foxmail.com (Y.C.); zgs_inf@shzu.edu.cn (G.Z.); slgxmh@foxmail.com (M.X.);
jiang_zhi_tan@foxmail.com (Z.J.)

2 Geospatial Information Engineering Research Center, Xinjiang Production and Construction Crops,
Shihezi 832003, China

* Correspondence: djg_inf@shzu.edu.cn

Abstract: This paper combines feature selection with machine learning algorithms to achieve object-
oriented classification of crops in Gaofen-6 remote sensing images. The study provides technical
support and methodological references for research on regional monitoring of food crops and pre-
cision agriculture management. “Staple-food-shifting” refers to the planting of other cash crops
on cultivated land that should have been planted with staple crops such as wheat, rice, and maize,
resulting in a change in the type of arable land cultivated. An accurate grasp of the spatial and
temporal patterns of “staple-food-shifting” on arable land is an important basis for rationalizing land
use and protecting food security. In this study, the Shihezi Reclamation Area in Xinjiang is selected as
the study area, and Gaofen-6 satellite images are used to study the changes in the cultivated area of
staple food crops and their regional distribution. Firstly, the images are segmented at multiple scales
and four types of features are extracted, totaling sixty-five feature variables. Secondly, six feature se-
lection algorithms are used to optimize the feature variables, and a total of nine feature combinations
are designed. Finally, k-Nearest Neighbor (KNN), Random Forest (RF), and Decision Tree (DT) are
used as the basic models of image classification to explore the best combination of feature selection
method and machine learning model suitable for wheat, maize, and cotton classification. The results
show that our proposed optimal feature selection method (OFSM) can significantly improve the
classification accuracy by up to 15.02% compared to the Random Forest Feature Importance Selection
(RF-FI), Random Forest Recursive Feature Elimination (RF-RFE), and XGBoost Feature Importance
Selection (XGBoost-FI) methods. Among them, the OF-RF-RFE model constructed based on KNN
performs the best, with the overall accuracy, average user accuracy, average producer accuracy, and
kappa coefficient reaching 90.68%, 87.86%, 86.68%, and 0.84, respectively.

Keywords: Gaofen-6; crop classification; feature selection; object-oriented; machine learning;
remote sensing

1. Introduction

Cultivated land is the basis for human survival, development, and prosperity and is
also a key element in ensuring food security. The “staple-crop-shifting” of cultivated
land will lead to a decline in total food production, which will have a direct impact on
food security, and continuous monitoring of food-producing areas is therefore essential.
To address this challenge, the China Government has issued a series of announcements,
such as “The Opinions On Preventing The Degradation Of Cultivated Land And Stabilizing
Grain Production”, which call for strict adherence to the red line of cultivated land and
the prevention of the tendency to degradation of cultivated land [1,2]. Cultivated land
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protection is imperative, and real-time and accurate information on the dynamic changes
in the cultivation status of cultivated land is the key to monitoring “staple-food-shifting”.

Timely and accurate information on staple crops is the basis for monitoring and man-
agement of “staple-crop-shifting” [3,4]. Because remote sensing images are characterized by
large-scale observation, multispectral information, and multitemporal sequences, they are
widely used in crop classification and identification, area statistics, and change monitoring
studies [5,6]. Utilizing satellite remote sensing data is an important method to improve
the accuracy of crop identification [7], and this technique has been widely used in the
field of agricultural remote sensing and crop identification in wheat [8], maize [9,10], and
cotton [4,11].

Pixel-level-based classification and object-oriented classification are the two main ap-
proaches to crop classification using remote sensing. Pixel-level classification only considers
the features of individual pixels and is prone to category confusion, especially among crops
with similar spectral features, leading to “salt and pepper noise” [12], and it is difficult to
utilize the spatial relationship between pixels to capture information such as the shape
and size of the objects or crops in the farmland. The object-oriented classification method
uses segmented objects rather than pixels as processing units, which takes into account
the spatial relationship between objects and can better capture the spatial information of
farmland. By introducing features such as the shape, texture, and spectrum of an object, it
is possible to reduce confusion between categories and improve classification accuracy [13].
Many studies have used various object-oriented supervised machine learning classification
algorithms for crop identification from satellite remote sensing data [14,15]. Common algo-
rithms include Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT),
k-Nearest Neighbor (KNN), and Neural Networks [16–19]. For example, Luo et al. [20]
conducted experiments on crop classification based on pixel-level and object-oriented
methods in Heilongjiang farm areas, and the results showed that the overall accuracy of
the object-oriented method was 3% higher than that of the pixel method, and the “salt
and pepper noise” in crop mapping was significantly improved. Xue et al. [21] classified
crops based on Google Earth Engine (GEE) and the results showed that the combination
of Simple Non-Iterative Clustering (SNIC) multiscale segmentation and Random Forest
Classification based on time-series radar and optical remote sensing images can effectively
reduce the “ salt and pepper noise ” in the classification and improve the classification accu-
racy up to 98.66%, with a kappa coefficient of 0.98, as compared to the pixel-based method.
Zhu et al. [22] used Sentinel-2 images combined with object-oriented and pixel-based
methods to extract maize fall, and the results showed that the overall accuracy and kappa
coefficient of multi-feature combined with object-oriented RF classification were 93.77%
and 0.87, respectively, which were significantly higher than those of pixel-based methods.
Wang et al. [23] fused multi-source domestic high-resolution imagery and object-oriented
methods for remote sensing identification of crops in the south, and the results showed
that object-oriented crop classification based on GF-2 was better than that based on pixels,
in which the overall accuracy was about 1.35% higher.

In recent years, with the increase in the number of satellite remote sensing image types
and improvement in spatial resolution, scholars have proposed a variety of classification
methods that comprehensively utilize multiple features, such as image spectra, textures,
geometries, and spectral indices, which significantly improve classification accuracy [24,25].
While object-oriented methods make up for the lack of pixel-based methods, they also lead
to an increase in the dimensionality of the feature space. However, not all features have
a positive impact on classification, and several studies have found that too many input
features may reduce classification accuracy and increase computational effort [10,26]. The
feature selection (FS) technique is an efficient method to reduce redundant information
and aims to find the optimal subset of features that have the highest relevance to the object
and the lowest redundancy. Various FS methods have been widely used in object-based
classification. For example, the feature selection (FS) technique is an efficient method to
reduce redundant information, which aims to find the optimal subset of features that have
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maximum relevance to the object and minimum redundancy. Various FS methods are
widely used in object-based classification. Zhang et al. [27] constructed a feature selection
method based on the optimal extraction cycle of features based on Sentinel-2 remote sensing
images, which significantly improved the recognition accuracy of mountain rice, with the
best overall classification accuracy and kappa coefficient of 86% and 0.81, respectively.
Fu et al. [28] demonstrated that the Random Forest Recursive Feature Elimination (RF_RFE)
algorithm can provide more useful features and improve the crop identification accuracy
after feature selection by 1.43% to 2.19%, 0.60% to 1.41%, and 1.99% to 2.18% in 2002,
2014, and 2022, respectively, compared to crop identification without feature optimization.
Jin et al. [3] used Decision Trees to construct the optimal feature space in order to achieve
fine crop classification and used an object-oriented Random Forest classification algorithm
to classify the multi-feature space, and the final overall accuracy and kappa coefficient
were 90.18% and 0.877, which were greater than for the pixel-level and single-feature
classification accuracies. In summary, there is no generalized FS method to obtain the
optimal features for different machine learning classifiers, regions with different climatic
conditions, and remote sensing data types. In addition, the impact of each FS method
on the actual crop classification effect is still unclear, and the effectiveness of different
algorithms for regional crop identification also needs to be further explored. Therefore,
the utility and efficiency of FS methods need to be further investigated according to specific
research objectives.

In the field of remote sensing, the application of satellite remote sensing data has become
an important tool for land use/land cover (LULC) classification studies. High-resolution satel-
lite data, especially panchromatic/multispectral sensor (PMS) images from China’s Gaofen-6
(GF-6) satellite, offer the possibility of precise surface feature identification due to their high
spatial resolution and enhanced spectral resolution. Gaofen-6 (GF-6), which was successfully
launched on 2 June 2018, is a satellite specially designed for monitoring agricultural appli-
cations [29], and it is mainly applied to industries such as precision agriculture observation
and forestry resources survey. Regarding the research progress on LULC classification using
GF-6 PMS data, several papers have reported the effectiveness of its application in urban
land cover, agricultural monitoring, and forest resources survey [30–33]. These studies show
the potential advantages of GF-6 satellite data in distinguishing fine-grained surface features,
especially in the detailed delineation of farmland boundaries. In view of this, this study
proposes an object-oriented multi-feature preference-based monitoring method for “non-food”
monitoring of high-resolution imagery using GF-6 imagery, aiming to provide a new research
idea for the accurate identification of food crops and cash crops. The specific objectives of this
study are (1) to explore the methods applicable to the accurate identification of food crops
in the northern border area, and to study the advantages of GF-6 remote sensing images in
the identification; (2) to evaluate and compare key features and FS methods in grain crop
identification; and (3) to explore the best combination of FS methods and machine learning
classifiers to recognize various crop types.

2. Study Area and Data
2.1. Study Area

The study area is located in Shihezi Reclamation Area of the Eighth Division of Xinjiang
Production and Construction Corps, with a longitude of 85◦51′50′′ E∼86◦0′30′′ E and a
latitude of 44◦20′30′′ N∼44◦15′13′′ N (as shown in Figure 1) and covers an area of about
112.767 km2. The main staple crops grown are maize and wheat, and cash crops include
cotton, grapes, and zucchini, etc. The study area is located in the Shihezi Reclamation Area
of the Eighth Division of Xinjiang Production and Construction Corps. A few trees and
roads exist between neighboring plots. The region has a temperate continental climate
with abundant light, which is suitable for the growth of a wide range of crops. The terrain
of the study area is relatively flat and the cultivated land is flat and continuous, which
makes it suitable for high-frequency remote sensing image monitoring and precision
agriculture research.
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Figure 1. Area of study.

2.2. Gaofen-6 Imagery

Considering the crop types and cultivated land in the study area, this paper selected
Gaofen-6 (GF-6) remote sensing images covering the study area on 18 September 2022
and 4 August 2020, with good image quality and no cloud occlusion, for crop classifica-
tion. The GF-6 satellite was launched in 2018, and it provided panchromatic images at
2 m resolution and multispectral images at 8 m, including blue (0.45∼0.52 µm), green
(0.52∼0.60 µm), red (0.63∼0.69 µm), and near-infrared (0.76∼0.90 µm) bands (as shown
in Table 1). The image preprocessing was carried out using the ENVI 5.6 platform, and the
radiometric calibration, atmospheric correction, and orthometric correction were performed
on the panchromatic and multispectral data, respectively, and then the image fusion was
performed on both of them to obtain the GF-6 multispectral image with a resolution of 2 m.
The fused images were geometrically corrected using ground-truth control points and
quadratic polynomial methods, and, finally, the images were mosaicked and cropped
according to the vector boundaries of the study area to obtain the study area image.

Table 1. Specifications of GF-6 satellite.

Band Name Spectral Range (µm) Spatial Resolution (m) Width (km)

Blue 0.45∼0.52 8

90
Green 0.52∼0.60 8
Red 0.63∼0.69 8

NIR 1 0.76∼0.90 8
PAN 2 0.76∼0.90 2

1 NIR is the near-infrared band; 2 PAN is the panchromatic band.

2.3. Crop Field Survey

Field surveys and visual interpretation using Google Earth high-resolution image data
were conducted to gain an understanding of the type and distribution of major crops grown
in the study area. We conducted field surveys in the study area in May and August 2022
and accurately recorded the cultivation and vegetation types in the plots. Figure 2 shows
the images of major crops grown taken during the survey. The main types of crops grown
in the study area include cotton, maize, wheat, watermelon, grapes, and zucchini, among
other crops. The results of the field survey showed that maize, wheat, and cotton are more
widely grown in the study area. Of these, maize and wheat are staple crops and cotton
is a cash crop. Considering that the objective of this study is to monitor the “staple-crop-
shifting” of cultivated land, other crops were found sporadically planted in the study area,
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but the planted area was relatively small, and, to ensure the validity of the sample size,
they were grouped together and collectively referred to as other crops.

In order to ensure sample balance, the number of samples was set according to the area
share of each crop type. A total of 91,448 pixels were finally selected as training samples
(including maize 4758, wheat 18,743, cotton 56,467, and other crops 11,480). In addition,
ArcMap tool was used to randomly select 600 pixels as validation samples in the study area
(of which maize 52, wheat 122, cotton 347, and other crops 79). In this study, maize and
wheat were categorized as staple crop types and cotton and other crops were categorized
as cash crop types, and the samples were uniformly randomly distributed throughout the
study area.

a. Wheat-May b. Maize-May c. Cotton-May d. Wheat-August e. Maize-August f. Cotton-August

Figure 2. Pictures of three main crops planted.

3. Methods

In this paper, we first preprocess the multitemporal GF-6 image and then segment the
image into objects based on the Multi-resolution Segmentation (MRS) algorithm and the
scale parameter estimation tool Estimation of Scale Parameter2 (ESP2), and construct the
initial 65 features from them, including the original spectral features, geometric features,
spectral index features, and texture features. Then, the features are preferred based on
six feature selection methods and combined with three object-oriented machine learn-
ing classification algorithms to classify and identify crops. Finally, a validation sample
is used to determine the optimal “staple-crop-shifting” monitoring method by compar-
ing classification accuracy and validation accuracy. The technology roadmap is shown
in Figure 3.

3.1. Image Segmentation

In object-oriented classification methods, image segmentation is used to obtain image
objects by dividing similar spatial and spectral features. In this study, MRS is used for
image segmentation and MRS has three key parameters [34], including Segmentation
scale (Scale parameter), Shape factor (Shape), and Compactness factor (Compactness),
and Image Layer weights need to be set before segmentation. In this study, all the layer
weights are set to one, and Shape and Compactness are determined using the fixed single
factor method, and several segmentation experiments are conducted on the Shape and
Compactness parameters with a step size of 0.1, covering a range of values from 0.1 to 0.9,
and the optimal values of Shape and Compactness are finally determined to be 0.1 and
0.5, respectively. To determine the optimal segmentation scale, ESP2 was used to obtain
multiple segmentation scale values, the essence of which is to maximize inter-segmentation
heterogeneity and intra-segmentation homogeneity, and the optimal segmentation scale
is the corresponding scale value when the ROC-LV curve peaks [34]. According to the
ROC-LV curves and LV curves obtained by ESP2 (e.g., Figure 4), the optimal segmentation
scale is between 110 and 180, as can be seen by observing the variance rate of change curve.
Moreover, 112, 116, 128, 136, 165, and 173 were taken as alternative optimal segmentation
scale parameters, and the segmentation experiments were performed sequentially, and 136
was finally selected as the optimal segmentation scale for this study. Figure 5 shows the local
image segmentation effect under this optimal segmentation scale, and the segmentation
effect is better without over-segmentation and under-segmentation.
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Figure 5. Local region segmentation result.

3.2. Features Extraction

The key to improve the accuracy of crop classification is the effective selection of
multiple feature variables [35] in order to find the features suitable for recognizing the
main crops in the study area; this study used eCongnition 10.3 software to extract the
spectral index, spectral, geometric, and texture information of the object to construct a set
of four types of feature variables based on image segmentation, as shown in Table 2. These
include 13 spectral index features, 10 spectral features, 10 geometric features, and 32 texture
features, which can provide rich spectral, texture, and spatial features. Among them,
the texture features are extracted based on the gray-level co-occurrence matrix (GLCM) of
all dir. The formulae for DVI, GI, GNDVI, MCAIR, MSAVI, MSR, NDVI, RDVI, RVI, SAVI,
TCARI, TVI, and Vl green in spectral index features are as follows:

DVI = ρNIR − ρR (1)

GI = ρG − ρNIR (2)

GNDVI = (ρNIR − ρG)/(ρNIR + ρG) (3)

MCAIR = ((ρNIR − ρR)− 0.2 × (ρNIR − ρG))× (ρNIR/ρR) (4)

MSAVI = (2ρNIR + 1 −
√
(2ρNIR + 1)2 − 8(ρNIR − ρR))/2 (5)

MSR = ((ρNIR/ρR)− 1)/(
√

ρNIR/ρR + 1) (6)

NDVI = (ρNIR − ρR)/(ρNIR + ρR) (7)

RDVI = (ρNIR − ρR)/(
√

ρNIR/ρR) (8)

RVI = ρNIR/ρR (9)

SAVI = (ρNIR − ρR)× (1 + 0.5)/(ρNIR + ρR + 0.5) (10)

TCARI = 3 × ((ρNIR − ρR)− 0.2 × (ρNIR − ρG)× (ρNIR/ρR)) (11)

TVI = 0.5 × (120 × (ρNIR − ρG)− 200 × (ρR − ρG)) (12)

VI green = (ρG − ρR)/(ρG + ρR) (13)

where ρNIR is the near-infrared band reflectance, ρR is the red band reflectance, ρB is the
blue band reflectance, and ρG is the green band reflectance.
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Table 2. Feature variable set.

Feature Type Characteristic Factors

Spectral index features (13)

1. Difference Vegetation Index (DVI) 2. Greenness Index (GI) 3. Green Light Normalized Difference
Vegetation Index (GNDVI) 4. Modified Chlorophyll Absorption in Reflectance Index (MCAIR) 5.
Modified Soil Adjusted Vegetation Index (MSAVI) 6. Modified Simple Ratio (MSR) 7. Normalized
Difference Vegetation Index (NDVI) 8. Renormalized Difference Vegetation Index (RDVI) 9. Ratio
Vegetation Index (RVI) 10. Soil Adjusted Vegetation Index (SAVI) 11. Transformed Chlorophyll
Absorption in Reflectance Index (TCARI) 12. Triangular Vegetation Index (TVI) 13. Green Vegetation
Index (Vl green)

Spectral features (10)
14. Brightness 15. Blue_Mean 16. Green_Mean 17. Red_Mean 18. NIR_Mean 19. Max.Diff 20.
Blue_Standard Deviation (Blue_Std) 21. Green_Standard Deviation (Green_Std) 22. Red_Standard
Deviation (Red_Std) 23. NIR_Standard Deviation (NIR_Std)

Geometry features (10) 24. Area 25. Length/Width 26. Number of Pixels 27. Asymmetry 28. Border Index 29. Compactness
30. Density, 31. Rectangular Fit 32. Roundness 33. Shape Index

Texture features (32)

34. Blue Homogeneity (Blue_Hom) 35. Green Homogeneity (Green_Hom) 36. Red Homogeneity
(Red_Hom) 37. Near-Infrared Homogeneity (Nir_Hom) 38. Blue Contrast (Blue_Contrast) 39. Green
Contrast (Green_Contrast) 40. Red Contrast (Red_Contrast) 41. Near-Infrared Contrast (Nir_Contrast)
42. Blue Dissimilarity (Blue_Dissimilarity) 43. Green Dissimilarity (Green_Dissimilarity) 44. Red
Dissimilarity (Red_Dissimilarity) 45. Near-Infrared Dissimilarity (Nir_Dissimilarity) 46. Blue En-
tropy (Blue_Entropy) 47. Green Entropy (Green_Entropy) 48. Red Entropy (Red_Entropy) 49.
Near-Infrared Entropy (Nir_Entropy) 50. Blue Second Moment (Blue_Second moment) 51. Green
Second Moment (Green_Second moment) 52. Red Second Moment (Red_Second moment) 53. Near-
Infrared Second Moment (Nir_Second moment) 54. Blue Mean (Blue_GCLMMean) 55. Green Mean
(Green_GCLMMean) 56. Red Mean (Red_GCLMMean) 57. Near-Infrared Mean (Nir_GCLMMean) 58.
Blue Variance (Blue_Variance) 59. Green Variance (Green_Variance) 60. Red Variance (Red_Variance)
61. Near-Infrared Variance (Nir_Variance) 62. Blue Correlation (Blue_Correlation) 63. Green Cor-
relation (Green_Correlation) 64. Red Correlation (Red_Correlation) 65. Near-Infrared Correlation
(Nir_Correlation)

Note: numbers in () are the number of features.

3.3. Feature Selection

The participation of all features in classification not only increases model complexity
and information redundancy but also causes “dimensionality catastrophe”, which leads
to degradation of classification performance. In order to reduce the data redundancy of
the initial features, it is necessary to optimize the initial features. The forms of feature
selection include filter, wrapper, embedded, and hybrid [36]. First, three traditional feature
selection methods (TFSM) are introduced, including Random Forest Feature Importance
Selection (RF-FI), Random Forest Recursive Feature Elimination (RF-RFE), and XGBoost
Feature Importance Selection (XGBoost-FI), where RF-FI and XGBoost-FI are embedded
methods and RF-RFE is a hybrid method of embedded and wrapper. Based on TFSM,
optimal feature selection method (OFSM) is proposed, which is a hybrid method combining
filter, wrapper, and embedded.

3.3.1. Traditional Feature Selection Method (TFSM)

Random Forest Feature Importance Selection: RF-FI is a method of calculating the
importance of features using the Random Forest algorithm and performing feature selection
based on their importance [37]. Random Forest evaluates feature importance for the integra-
tion of multiple Decision Trees and determines the importance of a feature by measuring
the split contribution of the feature in the Decision Tree. A higher feature importance
indicates that the feature contributes more to the classification or regression task.

Random Forest Recursive Feature Elimination: RF-RFE first uses Random Forest to
rank all the features, then eliminates the lowest ranked features and retrains the model,
looping the process until a predefined stopping condition is reached [38]. Through this
gradual elimination, RF-RFE generates an optimal subset of features to reduce the feature
dimensionality to improve the performance of the model.
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XGBoost feature importance selection method: XGBoost-FI is a feature selection
method based on the Gradient Boosting Tree algorithm [39]. The XGBoost model evaluates
the importance of features by measuring the split gain or the number of splits of the
features in each Decision Tree. Features with larger splitting gain contribute more to the
performance and predictive power of the model.

3.3.2. Optimal Feature Selection Method (OFSM)

In order to improve the efficiency of feature selection and to provide informative fea-
ture combinations for crop classification, a hybrid feature selection method, called optimal
feature selection method (OFSM), was designed in this study with the aim of integrating
the advantages of different feature selection strategies to improve the classification accu-
racy. The specific implementation steps of OFSM are as follows and are visually depicted
in Figure 6. In the first step, we calculated Pearson correlation coefficients between in-
put features and multi-category target labels. Given that Pearson correlation coefficients
were originally designed to assess linear relationships between continuous variables, we
used a One-vs-Rest approach to adjust the multi-category labels by converting them into
a series of binary variables. That is, each category formed a binary comparison relative
to the other categories, and the feature correlations were calculated separately for each
category. We then take the average of the correlation coefficients of these binary scenarios
to comprehensively assess the relevance of the features to the original multi-category labels.
Features with correlation coefficients lower than 0.10 are eliminated according to a preset
correlation threshold to ensure that the retained features have sufficient correlation with the
target label. In the second step, by calculating the Pearson’s correlation coefficient between
features, we identify and remove redundant features that are highly correlated (correlation
coefficient greater than 0.95). This step helps to reduce the complexity of the model and
increase the computational efficiency. In the third step, a nested loop model based on
Random Forest-Recursive Feature Elimination (RF-RFE) is constructed. The model starts
from the K features filtered in step 2 and gradually reduces to M features. In each iteration,
we remove the features that are considered least important in the Random Forest model.
At the end of the iterations, the remaining M features form what we call the optimal combi-
nation of features, i.e., the OF-RF-RFE method. Finally, we calculate the importance of the
remaining K features using the Random Forest Feature Importance (RF-FI) and XGBoost
Feature Importance (XGBoost-FI) methods and rank the features based on these importance
scores. The top M features with the highest scores are selected to form the optimal feature
combinations for the OF-RF-FI and OF-XGBoost-FI methods, respectively.

To validate the effectiveness of the selected feature combinations, a series of statistical
tests are performed. These tests aim to assess the significance between the selected features
and the classification results, and to compare the differences between different feature
selection methods. The specific statistical methods and test results will be reported in detail
in the Results section.

3.4. Crop Classification Based on Object-Oriented Multi-Features
3.4.1. Comparison Scheme

This study investigates the effects of object-oriented and multi-feature preferences on
crop classification results by setting up four comparison schemes. These include scheme 1:
pixel-level single-feature-based classification (Pixel-SF), scheme 2: pixel-level multi-feature-
based classification (Pixel-MF), scheme 3: object-oriented single-feature-based classification
(Object-SF), and scheme 4: object-oriented multi-feature-based classification (Object-MF).
Pixel-level classification is performed in ENVI 5.6 and texture features are extracted using
co-occurrence measures, and object-oriented classification is performed in eCognition
10.3. In this case, single features are the spectral features of the four bands of the image,
and multi-features are the features optimized by the OFSM method.
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Figure 6. The implementation process of optimal feature selection method.

3.4.2. Classification Model

In order to verify the advantages of different models in object-oriented classification, this
study utilizes the K-Nearest Neighbor (KNN), Random Forest (RF), and Decision Tree (DT)
models, which are commonly used in the eCognition software, to perform object-oriented
multi-feature crop type classification. After optimization, the hyperparameters of KNN are
the following: Use class description = Yes, n_neighbors = 5, Distance measurement = eu-
clidean; the hyperparameters of RF are the following: Max categories = 16, Active variable = 0,
Max tree number = 50, Termination criteria = 0, Termination criteria = 1, tree number = 50,
Termination criteria type = Both, Number of features=square root, Impurity function = gini
coefficient; DT hyperparameters are Depth = 0, Min sample count = 0, Use surrogates = No,
and Max categories = 16.

3.5. Accuracy Assessment

To quantitatively analyze the extraction effect of different models and different feature
combination schemes, User’s Accuracy (UA), Producer’s Accuracy, (PA), Overall Accuracy
(OA), and kappa coefficients in the confusion matrix were used to evaluate the performance
of the classifier. Among them, UA and PA can evaluate the classification accuracy of each
category, while OA and kappa coefficient are used to describe the overall performance of
the classifier. Their specific calculations are shown below:

UAi =
Nii
Ni+

(14)

PAi =
Nii
N+i

(15)

OA =
∑K

i=1 Nii

N
(16)

Kappa =
N ∑K

i=1 Nii − ∑K
i=1 Ni+N+i

N2 − ∑K
i=1 Ni+N+i

(17)

where N represents the total number of samples and K is the total number of categories.
Nii is the number of samples assigned to the correct category. N+i and Ni+ are the true
number of samples in category i and the number of samples predicted to be in category i,
respectively.
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4. Results
4.1. Selected Features Using Different FS Methods
4.1.1. Optimal Feature Selection Method

In this study, our proposed optimal feature selection method (OFSM) selects the
combination of features that is most useful for crop classification from an initial set of
65 features. The process was divided into several steps as follows. First, the Pearson
correlation coefficients between the features and the labels were calculated and the features
with absolute values of correlation less than 0.1 were excluded (as shown in Figure 7,
the features located below the red line were excluded). At the end of this step, 37 features
were retained, which are listed in Table 2. By comparing the Pearson correlation coefficients
between these 37 features (as shown in Figure 8b), we further removed redundant features
with correlations greater than 0.95. After this step, the number of features was reduced to 27,
which effectively reduces the redundancy of the data and the processing time. Compared to
the initial 65 features (redundancy is shown in Figure 8a), the redundancy of these features
is significantly reduced (as shown in Figure 8c).
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Figure 7. Correlations between feature variables and labels.

Next, a nested-loop Random Forest Recursive Feature Elimination (RF-RFE) method
was used to compute the contribution of the remaining twenty-seven features to the
classification, and finally an optimal subset of eight features was identified, which included
GI, NDVI, RVI, Brightness, Blue_Mean, Green_Mean, Blue_Std, and Red_Std. In addition,
we scored and ranked the initial twenty-seven features using Random Forest Feature
Importance (RF-FI) and XGBoost Feature Importance (XGBoost-FI), and also retained the
eight features with the highest importance scores. Table 3 shows the results of the optimal
feature combinations filtered using the RF-FI and XGBoost-FI methods. Combining the
results of RF-RFE, RF-FI, and XGBoost-FI, we found that the spectral index features (GI,
NDVI, and RVI) contributed significantly to crop classification, while the texture and
geometric features contributed less to crop identification compared to the spectral index
features.

Table 3. Ranking of OFSM feature importance scores.

Order of Importance
Feature Selection Algorithm

OF-RF-FI OF-XGBoost

1 GI GI
2 NDVI NDVI
3 RVI RVI
4 Blue_Mean Green_Var
5 Brightness Blue_Mean
6 Green_Mean Red_Dis
7 Blue_Std Brightness
8 Red_Mean Green_Mean
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Figure 8. Pearson correlation coefficient data between features of different feature selection methods:
(a) 65 feature correlations, (b) OFSM Step 1:37 feature correlation, (c) OFSM Step 2:27 feature corre-
lation, (d) 27 feature correlations of RF–FI, (e) 27 feature correlations of XGboost–FI, (f) 27 feature
correlations of RF–RFE.

4.1.2. Traditional Feature Selection Method

In the comparative study, we also used the Traditional Feature Selection Method
(TFSM) to evaluate the initial 65 features and identify the features that contribute signifi-
cantly to the classification. The process is summarized as follows: first, the contribution
of each feature to the classification task is calculated by the Random Forest-Recursive
Feature Elimination (RF-RFE) method. In this process, we obtained a subset of 27 fea-
tures including DVI, GI, GNDVI, MCARI, MSAVI, MSR, NDVI, RDVI, RVI, SAVI, TCARI,
TVI, VIgreen, Brightness, Blue_Mean, Green_Mean, Red_Mean, NIR_Mean, NIR_Mean,
NIR_Mean, NIR_Mean, RDVI, Mean, NIR_Mean, Max.diff., Blue_Std, Green_Std, Red_Std,
NIR_Std, Length/Width, Asymmetry, Blue_GLCMDis, and NIR_GLCMDis. Next, using
RF-FI and XGboost-FI algorithms, importance scoring and ranking of all the features were
performed and again the top 27 features were retained. Figures 9 and 10 show the results of
the feature importance scores for the RF-FI and XGBoost-FI algorithms. These results fur-
ther emphasize the importance of spectral index features in classification as these features
are generally high in the importance ranking. In contrast, geometric and texture features
scored lower and ranked lower. Taken together, the feature variables were ranked in the
following order of importance: spectral index features > spectral features > texture features
> geometric features.

Figure 8d–f exhibit the correlations between the 27 features selected under TFSM,
which are listed in Table 2. From the figure, it can be seen that the correlations between
these features are still high, indicating that the traditional method may select features that
have more redundant information with each other.
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In summary, the traditional feature selection method selects features with higher
correlations in the set of features; i.e., there is more redundancy among the features than in
the OFSM method. Compared with the relatively independent 27 features selected via the
OFSM method (see Figure 8c), the TFSM method may lead to less efficient model learning
and an increased risk of overfitting.
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Figure 10. XGBoost–FI feature variable importance scores.

4.2. Object-Oriented Multi-Feature Classification
4.2.1. Comparative Analysis of Feature Selection Methods

The results of object-oriented multi-feature classification are presented in detail in
Table 4 and Figure 11. In this comparative analysis, we consider a number of different
feature selection methods; TF-RF-FI(27), TF-RF-RFE(27), and TF-XGBoost(27) are the 27
preferred features selected through TFSM. TF-RF-FI(8) and TF-XGBoost(8) are the top eight
features selected through TFSM. OF-RF-FI(8), OF-RF-RFE(8), and OF-XGBoost(8) are the
features selected through OFSM. NO(65) is the original 65 features without feature selection.
The experimental results show that the OFSM algorithm outperforms the original feature
set overall without feature selection, which emphasizes the importance of preprocessing
for feature selection before classification.

Method 5 (TF-XGBoost(8)) has the lowest average OA of 78.64% and an average
kappa coefficient of 0.61. Method 2 (TF-RF-RFE(27)) achieves the highest average OA
of 88.18% and an average kappa coefficient of 0.79 amongst all the feature selection methods.
After OFSM optimization, method 7 (OF-RF- RFE(8)) achieves an average OA of 86.86%
and an average kappa coefficient of 0.76. Compared to the other methods, method 7
achieves a significant percentage increase in average OA and kappa coefficient, as well
as a significant reduction in the number of features, which improves the data processing
efficiency. Although the average OA of method 7 is slightly lower than that of method 2,
its significant reduction in the number of features reduces the model parameter burden
and improves the efficiency of model operation. A comparison of the performance of
the RF-RFE algorithm and the XGBoost-FI algorithm in TFSM and OFSM shows that the
RF-RFE algorithm generally outperforms the XGBoost-FI algorithm with the same number
of features and classification models. In addition, when the number of features and the
selection algorithm are the same, the accuracy of OFSM is better than that of TFSM. The
average OA of OF-RF-FI(8) is 86.61%, and the average kappa coefficient is 0.76, which is an
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improvement of 2.47% in average OA and 4.66% in average kappa coefficient compared
with TF-RF-FI(8), while OF-XGBoost-FI(8) has an average OA of 82.31% and average kappa
coefficient of 0.67, which is an improvement of 3.67% in average OA and 6.31% in average
kappa coefficient compared to TF-XGBoost-FI(8).

Figure 12 shows the producer accuracy (PA) and user accuracy (UA) of different
methods and different classification models on each crop type. Overall, all the classification
models in methods 6 to 8 outperform the other schemes in terms of average PA and UA.
Among all the classification results, cotton has the highest classification accuracy with
PA and UA values ranging from 90.66% to 97.94% and 78.30% to 94.95%, respectively.
Wheat and maize also showed high classification accuracy, with PA and UA values ranging
from 79.25% to 94.74% and 53.61 to 92.45% (wheat), and from 75.86% to 81.08% and 85.71%
to 96.55% (maize), respectively. The classification accuracy values of other crops were
relatively low, with PA and UA values ranging from 15.38% to 78.13% and 58.62% to 85.23%,
respectively.

In summary, it shows that the feature selection method in this paper effectively
improves the classification accuracy, which is crucial for improving the performance of
object-oriented multi-feature classification.

Table 4. Object-oriented multi-feature classification result table.

Model Accuracy

Feature Selection Method
1 2 3 4 5 6 7 8 9

TF-RF-FI
(27)

TF-RF-
RFE (27)

TF-
XGBoost-

FI (27)

TF-RF-FI
(8)

TF-
XGBoost-

FI (8)

OF-RF-
FI (8)

OF-RF-
RFE (8)

OF-
XGBoost-

FI (8)
NO (65)

KNN OA/% 88.33 88.80 87.76 86.72 82.81 90.27 90.68 84.16 88.09
Kappa 0.79 0.80 0.77 0.76 0.69 0.83 0.84 0.70 0.78

RF OA/% 87.42 87.84 86.16 82.21 77.46 85.34 85.13 81.80 83.68
Kappa 0.77 0.78 0.74 0.66 0.57 0.72 0.72 0.66 0.70

DT OA/% 84.50 87.90 83.86 83.48 75.66 84.21 84.76 80.98 84.87
Kappa 0.70 0.78 0.69 0.70 0.56 0.71 0.73 0.64 0.72

Note: the beginning of TF is the traditional feature selection algorithm, the beginning of OF is the best feature
selection method in this paper, and NO is the method without feature selection. The number in parentheses ()
represents the number of features that reach the corresponding OA value.
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Figure 11. Object-oriented multi-feature classification result graph.



Agriculture 2024, 14, 500 15 of 22

R
es

ul
t /

%
R

es
ul

t /
%

Method Method Method

Maize Wheat Cotton Other

Figure 12. Producer accuracy and user accuracy of each crop type. Note: UA is user accuracy and PA
is producer accuracy.

4.2.2. Comparative Analysis of Object-Oriented Models

Based on the nine preferred features, the KNN, RF, and DT models were used for
crop classification comparison. According to Table 4 and Figure 11, it can be concluded
that KNN accuracy is significantly higher than RF and DT, and KNN achieves the best
OA and kappa coefficient with the same feature selection method. The average OA of
KNN is 87.51% and the average kappa coefficient is 0.77, which is an increase of 3.40%
and 4.15% in the average OA compared to RF and DT, and an increase of 7.00% and 7.85%
in the average kappa coefficient, respectively. The KNN model obtained the highest OA
of 90.68% on OF-RF-RFE(8), which is the highest accuracy among all the classification
combinations of nine feature selection methods and three machine learning classification
models, and only eight features were selected with a kappa coefficient of 0.84. For the
RF model, the TF-RF-RFE (27) obtained the highest OA (87.84%) with a kappa coefficient
of 0.78. For the DT model, TF-RF-RFE (27) also obtained the highest OA (87.90%) with a
kappa coefficient of 0.78. In terms of individual feature classification accuracy (Figure 12),
in comparison to RF and DT, KNN improved UA for cotton, maize, and other crops, ranging
from 4.89% to 42.94%; meanwhile, KNN improved PA for cotton, wheat, and other crops,
ranging from 0.16% to 62.94%. The KNN model had lower variance in PA and UA for the
monitoring of four different crop types and was more stable compared to the other two
models. This may be due to the fact that, in crop classification, the KNN model classifies
each object by calculating its distance from the nearest neighbor samples, which is robust
to outliers and noise, and shows strong stability when dealing with unbalanced category
samples and noisy data [40]. Therefore, it usually produces better classification results
when dealing with remote sensing image data. Overall, the three models showed better
results in object-oriented classification in the study area. Without using any FS method,
the OA value of KNN is 88.06%, which is 4.40% and 3.21% higher than that of RF and DT,
further proving that the KNN algorithm can show good performance in crop identification.

The classification results based on different models of OF-RF-RFE(8) are shown in
Figure 13, which shows that most of the areas can be accurately identified, and there is
obvious distinction between different crops, and the final classification results have no
fragmentation phenomenon and clear boundaries, which is in line with the actual situation
of the study area, and good results have been achieved. After comparing the classification
results with the Google Earth high-resolution images, it is found that, in the monitoring
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of “non-food” cultivated land in the study area, the main error is the misclassification of
other crops and maize. The KNN model based on OF-RF-RFE(8) had a PA of 78.13% and
80.00% for other crops and maize, respectively (Figure 14), and a UA of 85.22% and 93.33%,
respectively, while the PA of 95.59% and 92.98% for cotton and wheat, respectively, and a
UA of 94.95% and 77.94%, respectively. It can also be seen from Figure 14 that the KNN
model is significantly better than RF and DT for crop identification.

a. Original image b. KNN Classification c. RF Classification d. DT Classification

Maize Wheat Cotton Other Non-cultivated land

Non-cultivated land

Figure 13. Classification results of different classification models.

Figure 14. Precision results of each crop based on OF-RF-RFE (8).

4.2.3. Comparative Analysis of Classification Schemes

In order to quantitatively investigate the effect of object-oriented and multi-feature
optimization on the crop classification results, the experiment uses the RF classification
model, the RF parameters of each scheme are set the same, and the classification results of
different schemes are shown in Table 5 and Figure 15. According to the table data, it can be
concluded that the Pixel-SF scheme has the worst classification effect, the OA is only 75.88%,
and the kappa coefficient is only 0.65, while the Object-MF scheme has the best classification
effect; the OA and the kappa coefficient are 85.34% and 0.72, respectively. From Figure 15,
pixel-level classification can be observed based on the existence of a more serious “salt
and pepper noise” phenomenon, while the results based on object-oriented classification
show clearer plot boundaries, which are more in line with the actual planting structure and
spatial distribution of crops. Comparing schemes 1–3 and schemes 2–4, it can be found
that, compared with pixel-level classification, the object-oriented method can effectively
improve the classification accuracy of crops, whether single-feature or multi-feature. The
OA is improved by 7.49% and 6.95%, and the kappa coefficient is improved by 2.91% and
3.61%, respectively. Meanwhile, comparing Scenarios 1–2 and 3–4, it can also be found
that multi-feature is also one of the effective methods to improve the crop classification
accuracy compared to single-feature. The OA is improved by 2.51% and 1.98%, and the
kappa coefficient is improved by 3.75% and 4.45%, respectively. In summary, the method
based on object-oriented and multi-feature optimization is characterized by high accuracy,
stability, and credibility and is a practical method for crop classification.
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Table 5. Comparison of classification accuracy of different schemes with RF.

Scheme Scheme Name OA Kappa

1 Pixel-SF 1 75.88 0.65
2 Pixel-MF 2 78.39 0.69
3 Object-SF 3 83.37 0.68
4 Object-MF 4 85.34 0.72

Note: 1 pixel-level single-feature-based classification; 2 pixel-level-based multi-feature classification; 3 object-
oriented single-feature-based classification; 4 object-oriented multi-feature-based classification.

a. Pixel-SF b. Pixel-MF c. Object-SF d. Object-MF

Maize Wheat Cotton Other Non-cultivated land

Figure 15. Classification results of different schemes.

For different crop types, the results were evaluated for accuracy using PA and UA
(shown in Table 6). As can be seen from Table 6, the constructed optimal feature spaces
are all better for the classification of crops in the study area, and the object-oriented multi-
feature-based classification method performs the best in terms of recognition accuracy
for cotton, with 95.24% and 85.12% for PA and UA, respectively, followed by maize,
with 89.14% and 81.82% for PA and UA, respectively, and also better for wheat, with 76.92%
and 86.00% for PA and UA, respectively. Overall, for individual crop types, the PA values
of object-oriented multi-feature-based classification are higher than those of other schemes,
indicating that the method is able to effectively distinguish different crop types.

Table 6. Evaluation of classification accuracy of different schemes.

Accuracy Crop
Classification Scheme

Pixel-SF Pixel-MF Object-SF Object-MF

PA (%)

Maize 87.50 87.50 88.55 89.14
Wheat 69.23 69.23 75.25 76.92
Cotton 91.01 91.01 92.56 95.24
Other 57.89 57.89 42.12 41.07

UA(%)

Maize 94.53 87.50 95.83 81.82
Wheat 60.00 60.00 76.47 86.00
Cotton 84.38 86.17 77.48 85.12
Other 59.46 64.71 77.97 78.95

4.3. “Staple-Crop-Shifting” Monitoring

Combined with the actual situation, this paper considers that, when the crop type
is transformed from the original staple crops to cash crops, all of them are regarded
as the existence of the phenomenon of “staple-crop-shifting” cultivated land. The post-
classification comparsion (PCC) method is a commonly used method for remote sensing
change monitoring, which detects the change in features or land surface by comparing
the classification results of remote sensing images at different time points. By comparing
the classification results, the changes in the features can be visualized and understood.
In addition, the method does not require an additional training process and can directly
utilize the classification results for change detection, reducing computational and time costs.

In this study, the eight features preferred by the optimal feature selection algorithm
(OF-RF-RFE) and the KNN model were applied to the two-period images (2020 and 2022)
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to extract the crop types using the post-classification comparison method based on an
object-oriented strategy. By matching the supervised classification image results with the
original images, the output matrix was obtained and the area of each crop in 2020 and 2022
was counted. The statistical area and change area of each specific crop are shown in Table 7,
and the results of monitoring the change regarding each crop are shown in Figure 16.

Table 7. Statistical table of crop area based on object-oriented OF_RF-RFE and KNN classification
results (km2).

Crop
Staple Crop Crash Crop

NoC 1 Total Changed
Maize Wheat Cotton Other

Maize 0.22 0.40 0.74 0.55 0.25 2.17 8.55
Wheat 3.25 0.70 3.55 0.55 0.25 2.17 8.55
Cotton 5.71 1.21 45.62 5.46 3.09 61.10 −8.08
Other 1.21 0.35 2.39 6.07 5.11 15.14 0.12
NoC 1 0.32 0.66 0.71 1.28 19.97 22.94 7.38
Total 10.72 3.33 53.02 15.26 30.32 112.64 -

Changed −8.55 7.97 8.08 −0.12 −7.38 - -

Note: the horizontal data are 2020 data and the vertical data are 2022 data; 1 NoC: non-cultivated land.

According to the data in Table 7, the area of staple crops and cash crops in the study
area in 2020 was 14.03 km2 and 68.26 km2 respectively, which accounted for 17.05%
and 82.95% of the total crop area in the study area. In 2022, the area of staple crops
and cash crops was 13.45 km2 and 76.22 km2 respectively, which accounted for 14.50%
and 85.50% of the total crop area. The unchanged areas of maize, wheat, cotton, and other
crops in the study area were 0.22 km2, 0.70 km2, 45.62 km2, and 6.07 km2, respectively.
Among them, there was a decrease in the area of maize and other crops and an increase in
the area of wheat and cotton. Specifically, the area converted from staple crop to cash crop
was 8.48 km2, while the area converted from cash crop to staple crop was 6.73 km2. Taken
together, there was a decrease in the area of staple crop by 0.58 km2, an increase in the area
of cash crop by 7.96 km2 and an increase in the area of cultivated land in the study area
by 7.38 km2.

→
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→
→
→
→
→
→
→

cotton

other
wheat

cotton
maize
other
cotton
wheat
maize
wheat
maize
other

maize
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wheat
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other
other
other
cotton
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no change

Figure 16. Monitoring results of “staple-crop-shifting” change in 2020–2022; A → B means that crop
A has changed to crop B.
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5. Discussion and Future Work

In terms of object-oriented classification, the KNN, RF, and DT models demonstrate
superior performance. The KNN model achieves an OA value of 88.06% without the use of
any FS method, surpassing the RF and DT models by 4.40% and 3.21%, respectively. This
finding confirms the effectiveness of the KNN model in crop classification, as previously
reported by Xiao et al. [41].

The results of this study confirm that FS methods play a crucial role in distinguish-
ing crop types in different machine learning models, which is consistent with previous
findings [42,43]. A robust FS method should be able to rank and reduce a large number of
input features [44]. In this study, we used the OF-RF-RFE method to select features and
successfully reduced the initial sixty-five features to eight. Based on these eight features,
the classification accuracy of the KNN model was improved by 2.60%. This indicates that
the proposed OF-RF-RFE method is effective in crop classification. Compared with the
OF-RF-FI algorithm and OF-XGBoost, the OF-RF-RFE algorithm performs better in feature
selection for crop classification. GI, NDVI, RVI, Blue_Mean, Brightness, and Green_Mean
are the features jointly selected by the three feature selection methods, which indicates that
spectral and spectral index features have significant advantages in crop type identifica-
tion [45].

Comparing our results with existing studies, Wang et al. [46] achieved the highest
OA of 77.12% by classifying large-scale regional crop types by combining four machine
learning models and two deep learning models with time-series satellite data. Fu et al. [28]
constructed features based on multiscale segmentation and extracted crop information
for the river valley area based on Landsat imagery. The OA was 86.97% and the kappa
coefficient was 0.82. In comparison, this study used feature selection combined with the
object-oriented KNN model to classify crops in Shihezi Reclamation Area with OA over
90.68% and kappa coefficient over 0.83. Our results show higher crop classification accuracy
than previous studies, which suggests that the KNN model can be used to classify crops in
Shihezi Reclamation Area by using the OF-RF-RFE method to optimize the feature subset
and achieve better classification results.

In this study, we describe in detail the methodological framework adopted, including
the selection of key algorithms, parameter settings, and the feature extraction and selection
process. The methods were carefully designed to be adaptable to different regional datasets
and environmental conditions. Our study area covers a wide range of crop types, including
major food crops (maize and wheat) and important cash crops (cotton), which are grown
globally, and thus our methods have good generalization capabilities and can be directly
applied to other regions with similar crop types. Our proposed method is not only applica-
ble to the mapping of large “non-food” areas but also significantly improves the accuracy
of image classification, thus providing a new methodological reference for large-scale
remote sensing monitoring, which is of great significance for the future monitoring of crop
dynamics on arable land in other areas.

In this paper, some progress has been made in the monitoring research of “staple-crop-
shifting” cultivated land by using GF-6 remote sensing images. It lays a foundation for
future research, but there are still some important parts that need to be further explored
and discussed in depth:

(1) The KNN algorithm for object-oriented multi-feature selection based on GF-6 remote
sensing images is used to carry out the study of “staple-crop-shifting” cultivated land,
and it has achieved good recognition accuracy and stability. With the continuous
development of information technology, deep-learning-based methods have achieved
remarkable results in the field of image processing. Therefore, in future research, we
can further explore the comparative analysis of deep learning algorithms and the
algorithm of this study in order to explore a more accurate and efficient monitoring
method of “staple-crop-shifting”.

(2) This study focuses on the effects of different characteristic variables of cotton, maize,
wheat, and other crops regarding the identification of “staple-crop-shifting” informa-
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tion of cultivated land in the study area, and the time span of identification is years.
In future studies, we will focus on the contribution of different months of imagery data
to crop type extraction in order to realize the integration of time series and features.
In order to improve the applicability of the model, we will also conduct experimental
work for more crop types and regions to validate and improve the model algorithm,
and explore the temporal and spatial variations that affect the accuracy.

6. Conclusions

In this study, based on GF-6 remote sensing images, the best scale segmentation
and optimal feature construction of the image are performed via the ESP2 algorithm and
OFSM, crop classification is performed by combining KNN, RF, and DT classification
models, and the results are evaluated for accuracy by using the validation dataset, and,
finally, the optimal feature selection method (OF-RF-RFE) is combined with the optimal
object-oriented model (KNN), which proposes a new crop classification method based on
object-oriented multi-feature optimization to monitor crops in Shihezi Reclamation Area in
terms of “staple-crop-shifting”. The main conclusions are as follows:

(1) Feature optimization can significantly improve classification performance. The op-
timal feature space constructed in this study performs well in classifying the three
main crops of cotton, maize, and wheat in the study area. It can effectively distinguish
different crop types, and the producer accuracy of each crop type is higher than 76%.
The use of the OF-RF-RFE(8) feature combination method can effectively improve the
monitoring accuracy, with an average increase of 1.31% in OA and 2.68% in kappa
coefficient compared to NO(65), while the number of feature variables was reduced
from sixty-five to eight. Compared with other feature selection methods, such as
TF-RF-FI(27), TF-XGBoost-FI(27), TF-RF-FI(8), TF-XGBoost-FI(8), OF-RF-FI(8), and OF-
XGBoost-FI(8), the OA method is improved by 0.11%, 0.93%, 2.72%, 8.21%, 0.25%, and
4.55% on average, and the kappa coefficients are improved by 0.66%, 2.42%, 5.15%,
15.46%, 0.49%, and 9.15% on average, respectively.

(2) The choice of classification model is crucial for improving the accuracy. When the
OF-RF-RFE(8) feature combination method is used, the KNN model exhibits the
highest classification accuracy and confidence, with OA reaching 90.68% and kappa
coefficient reaching 0.8357. Compared with RF and DT, OA is improved by 5.55% and
5.92%, and the kappa coefficient is improved by 11.61% and 10.94%, respectively.

(3) Object-oriented crop classification of remote sensing images is a feasible approach.
Pixel-based classification results often show the phenomenon of “salt and pepper
noise”, while the plot boundaries of object-oriented classification results are more ob-
vious and more in line with the actual planting structure of the crop space. The object-
oriented approach combined with multi-feature optimization for crop classification
achieves the best results. Compared with the results based on pixel-level single-feature
and multi-feature classification, OA is improved by 9.47% and 6.95%, and the kappa
coefficient is improved by 7.36% and 3.61%, respectively.
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