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Abstract: Storm ‘Daniel’ caused the most severe flood phenomenon that Greece has ever experienced,
with thousands of hectares of farmland submerged for days. This led to sediment deposition in
the inundated areas, which significantly altered the chemical properties of the soil, as revealed by
extensive soil sampling and laboratory analysis. The causal relationships between the soil chemical
properties and sediment deposition were extracted using the DirectLiNGAM algorithm. The results
of the causality analysis showed that the sediment deposition affected the CaCO3 concentration in
the soil. Also, causal relationships were identified between CaCO3 and the available phosphorus
(P-Olsen), as well as those between the sediment deposit depth and available manganese. The
quantified relationships between the soil variables were then used to generate data using a Multiple
Linear Perceptron (MLP) regressor for various levels of deposit depth (0, 5, 10, 15, 20, 25, and 30 cm).
Then, linear regression equations were fitted across the different levels of deposit depth to determine
the effect of the deposit depth on CaCO3, P, and Mn. The results revealed quadratic equations for
CaCO3, P, and Mn as follows: 0.001XCaCO3

2 + 0.08XCaCO3 + 6.42, 0.004XP2 − 0.26XP + 12.29, and
0.003XMn2 − 0.08XMn + 22.47, respectively. The statistical analysis indicated that corn growing
in soils with a sediment over 10 cm requires a 31.8% increase in the P rate to prevent yield decline.
Additional notifications regarding cropping strategies in the near future are also discussed.

Keywords: causal machine learning; soil analysis; causal discovery; crop fertilization; flood;
agriculture; deposition; climate change

1. Introduction

According to recent reports, based on several years of observations by 27 national
academies from the European Union (EU), Norway, and Switzerland, the frequency of
extreme weather events, including hydrological events, has increased by 60% in Europe over
the past three decades. The largest increase has been observed in hydrological phenomena,
such as floods, landslides, and avalanches [1,2]. Also, severe summer and late-spring floods
have occurred more frequently in the last few years in Greece. Global warming might
cause periods of heavy precipitation in Europe during the summer, which may lead to
more frequent floods, even though summers may become drier on average [3,4].

On 5–7 September 2023, Thessaly was hit by a once-in-a-1000-year weather event,
where extreme rainfall (700 mm in 48 h) caused extensive floods. By 7 September 2023,
less than 60 h after the rains started, 72,951 ha had been inundated by flooding (Figure 1).
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The flood led to land loss due to erosion and resulted in the accumulation of sediment in
various areas across the Thessaly plain.
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Storm ‘Daniel’ caused an extended sediment deposition in the flooded areas, which,
in some cases, reached a 60 cm depth of deposit (Figure 2). Clearly, the 2023 crop season
suffered significant impacts due to flooding. The floods destroyed annual crops just before
the harvest period like cotton and corn, as well as other vegetable crops such as clover
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(mainly alfalfa), but also industrial tomato (i.e., the medium–late varieties). Permanent
vine plantations and tree crops such as olives, apples, pears, almonds, pistachios, walnuts,
peaches, kiwis, etc., also suffered extensive damage. Moving forward, it is crucial to educate
farmers about the flood’s influence on soil chemistry. This is especially important because
numerous fields experienced substantial soil deposition. Understanding these changes is
key for effective management in the upcoming crop season.
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Focusing exclusively on correlation analysis, in the context of the complex and multidi-
mensional dataset that was derived from the soil analysis, introduces significant obstacles.
It is imperative to unravel the causal links instead of depending on the correlations that
might arise from the superficial associations among variables [5]. In essence, approaches
that mainly concentrate on learning correlations to assess the influence of an environmental
factor on soil quality often fall short in accurately capturing the real underlying dynamics.
Statistical-based methods fail to reveal the direct and indirect causal connections in data.
They also face challenges in identifying and adjusting for potential biases [6]. In recent
years, machine learning (ML) has been extensively used in processing complex data, like
environmental or soil data, thereby aiding in decision making and forecasts [7,8]. However,
the effectiveness of these prediction models in environmental contexts is dependent on the
dataset size. If there are not enough data available, then the models do not generalize well
in varied settings. A key issue is that ML models often capture non-causal links between
inputs and outputs, thereby leading to reduced effectiveness in different environments [9].

Conducting controlled experiments is an effective way to identify and understand
causal mechanisms for various natural phenomena [10]. However, performing controlled
experiments is often impossible and expensive. Causal inference in general has become
increasingly important in medicine and social science as, in many cases, it is ethically
impossible to experiment, discover, or understand the causal mechanisms of the various
factors affecting life [10]. Causal machine learning may likely play a significant role in
the field of environmental sciences, particularly in considering the complexity of the
variables affecting the nutrient availability in soil, the high dimensionality of soil data, and
the extensive nature of agriculture. To estimate the causal effect of sediment deposit on
soil chemical properties, directed acyclic graphs (DAGs) were employed to delineate the
potential causal connections among variables, thereby aiding in creating a more universally
applicable prediction model for the effect of sediment deposit on the chemical properties
of soil. Fehr [9] suggested that prediction accuracy improves in diverse settings when the
models are based on causal factors rather than on the resultant elements of the predicted
variable. Causal machine learning (CML) introduces a deeper layer of comprehension to
the system, thereby enhancing the general applicability and explicability of existing ML
frameworks [6].
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A major challenge with employing machine learning and deep learning methods is
the lack of interpretability in how outcomes are derived, as highlighted by Prendin [11].
Typically, the selection of models is based on their predictive accuracy following the
adjustment of hyperparameters. Nonetheless, in the context of agriculture, where models
inform decision making, it is essential for these algorithms to be comprehensive and
interpretable. Interpretability refers to the extent to which the rationale behind a model’s
decisions can be understood. To address the opacity of complex models, various tools have
been developed in recent years to shed light on the workings of black box models. One
such tool is Shapley Additive Explanation (SHAP) analysis, an approach that is grounded
in game theory and quantifies the contribution of each feature to the model’s prediction
through the computation of Shapley values [12,13]. This involves systematically altering
the input data across all observations and features, while keeping the dataset otherwise
unchanged, to isolate the effect of each feature [14,15]. In this research, we adopted an
innovative approach through constructing a causal model that uses techniques for causal
inference, and we evaluated its reliability with a machine learning algorithm paired with
an interpretability mechanism like SHAP. The consistency in results from both the causal
and interpretative analyses allowed for an increased confidence in the outcomes, thereby
emphasizing that precise feature interpretation is crucial for the model in recommending
effective management strategies for crop fertilization. While correlation analysis is the
most popular statistical tool used to understand the relations among soil variables, it is
not appropriate in the context of this study because our objective extends beyond not
only examining the relationships between the soil variables, but also exploring whether
sediment deposit causes change in the soil chemistry [16]. To strengthen the foundation
of our study, we used the current advancements of causal inference along with ML. By
integrating these two methods, our study contributes to the application of causal inference
and ML in environmental applications.

The objectives of the current work are twofold: firstly, to quantitatively assess the
causal effects of sediment deposition on key soil chemical parameters such as CaCO3, P,
and Mn levels; and, secondly, to develop management strategies to mitigate the potential
yield losses in crops due to altered soil chemistry.

2. Materials and Methods

A combination of Copernicus Sentinel satellite images (European Space Agency, Paris,
France), i.e., Sentinel-1 and Sentinel-2, was utilized for monitoring the flood [17]. Sentinel-
1 is a radar satellite mission designed to provide all-weather, day-and-night imaging
capabilities. It is particularly useful for monitoring natural disasters like floods as it can
penetrate cloud cover and gather data on surface conditions. Sentinel-2 is a multispectral
imaging satellite mission designed to provide high-resolution optical imagery. It can
capture detailed visual information about the Earth’s surface. A combination of the radar
data from Sentinel-1 and optical imagery from Sentinel-2 offered a comprehensive view of
the flood-affected regions. These Copernicus Sentinel satellites are part of the European
Union’s Copernicus Earth Observation program, which aims to provide accurate and
timely information for environmental monitoring, emergency response, and other Earth
observation applications. The use of both radar and optical satellite data allows for a more
thorough analysis of the flood event, encompassing both the physical presence of the water
and the visual changes in the landscape caused by the inundation. Monitoring via satellite
imagery for identifying and delineating the affected areas revealed that severe inundation
occurred in the Karditsa, Larissa, and Lake Karla areas, as shown in Figure 1. The flood
caused an extended sediment deposition in the flooded areas, as shown in Figure 2.

2.1. Soil Sampling and Analysis

Composite soil samples (i.e., three subsamples from a 1 × 1 m surface area were mixed
to make a composite soil sample) were extracted to a depth of 30 cm from
321 locations in the area that was impacted by the flooding. Immediately after the flood-
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waters receded, the soil samples were collected from the surface at each site. Out of these,
217 samples originated from areas without any sediment coverage, while 104 samples
were gathered from fields with sediment layers varying between 1 and 60 cm in depth.
The soil samples were air-dried and sieved following standard procedures. The soil sam-
ples were analyzed for soil fertility (macro and micro-elemental analysis) and other basic
soil physicochemical parameters with standard internationally recognized methods at the
accredited laboratory of Soil, Plant and Water analyses of the Institute of Industrial and
Forage Crops of the Hellenic Agricultural Organization “DIMITRA”. The analysis assessed
18 soil parameters, including the weight percentage of sand, clay, and silt, as well as the
soil pH, electrical conductivity (EC), soil organic matter content (SOM), calcium carbonate
content (CaCO3), organic carbon (C), total nitrogen (N), phosphorus (P), potassium (K),
sodium (Na), magnesium (Mg), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and
calcium (Ca) levels. The pH and EC values were measured using a soil-to-water ratio of 1:1
with specific meters [18,19]. Total nitrogen was quantified via the Kjeldahl technique [20],
while C and SOM were determined by the Walkley–Black method [21]. The CaCO3 content
was assessed by titration [22], and the soil texture was evaluated using the Bouyoucos
hydrometer approach [23]. The Olsen method was employed for P [24]. The ammonium
acetate extraction method, followed by an atomic absorption spectrophotometer reading,
was used for Na, K, Ca, and Mg [25]. Additionally, Mn, Cu, Fe, and Zn were extracted
using DTPA and quantified with an atomic absorption spectrophotometer [26].

2.2. Data Preprocessing

The dataset that was analyzed to assess the impact of sediment on soil chemistry, after
excluding the missing data, comprised 296 entries. The dataset was randomly divided
into a training set (80%, or 237 entries) and a test set (20%, or 59 entries). To reduce
dimensionality and filter out insignificant attributes, the random forest algorithm was
employed [27]. This step led to the exclusion of variables deemed of low importance based
on the feature importance scores derived from the random forest model [28]. The remaining
variables from the initial set were then examined for collinearity using Spearman’s rank
correlation. Features that were found to be less critical by the random forest model and did
not significantly increase error rates were removed [29].

2.3. Machine Learning

A LightGBM regressor was utilized to establish a relationship between the soil deposit
depth and the soil variables [30]. Table 1 provides definitions for the soil variables, which
serve as input features for the LightGBM model. The LightGBM algorithm was used
to identify the relative importance of each variable on deposit depth. The LightGBM
regressor was selected as it is a dynamic ML technique delivering state-of-the-art results
in the ML framework [31]. Introduced by Microsoft in 2017, LightGBM is an advanced
optimization model algorithm that builds on the gradient-boosted decision tree framework.
It represents an enhancement over XGBoost [32] by offering more efficient parallel training,
reduced memory usage, and improved accuracy. Utilizing a histogram-based decision tree
algorithm, LightGBM transforms weak learners into strong ones. The key advantage of this
technique is that it provides a refined sample splitting approach that minimizes the risk of
overfitting. Additionally, its gradient-based, one-side sampling (GOSS) is an innovative
feature. GOSS prioritizes samples with larger gradients while randomly selecting those
with smaller gradients, thereby enhancing the algorithm’s efficiency and accuracy [30]. The
LightGBM algorithm depends a great deal on the optimal selection of hyperparameters;
thus, despite it uses the gradient boosting framework, which is prone to overfitting, it is
a very efficient algorithm. The Optuna library was used for the hyperparameter tuning
of the LightGBM algorithm [33]. A total of 100 trials with different combinations of
hyperparameters were tested, and the combination of parameters that minimized the
Mean Absolute Error (MAE) was selected. The optimum hyperparameter values for the
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LightGBM model were as follows: learning_rate = 0.02, num_leaves = 662, subsample = 0.2,
colsample_bytree = 0.63, and min_data_in_leaf = 15.

Table 1. Input variables of the LightGBM regressor.

Soil Variables Definition Mean Std *

Clay Weight percentage of clay 26.56% 14.00
Sand Weight percentage of sand 38.99% 13.09
Silt Weight percentage of silt 34.41% 10.64
pH Soil pH in soil to water ratio 1:1 7.82 0.43
EC Electrical conductivity in soil to water ratio 1:1 480.14 µS/cm 318.82

CaCO3 Calcium carbonate content 6.8% 7.28
SOM Soil organic matter content 1.71% 0.63

N Total Kjeldahl soil nitrogen 0.1% 0.05
C/N Ratio of organic carbon to nitrogen 12.94 10.72

P Olsen extractable phosphorus 11.78 mg/kg 10.74
K Ammonium acetate extractable potassium 0.6 cmol/g 0.37

Cu DTPA extractable copper 2.83 mg/kg 2.00
Fe DTPA extractable iron 31.19 mg/kg 23.64
Mn DTPA extractable manganese 23.08 mg/kg 27.02

* Std = standard deviation. Number of observations (n) = 296.

2.4. SHAP Analysis

To elucidate the factors related to deposit depth, as determined by the LightGBM
model, Shapley Additive Explanation (SHAP) analysis was implemented [12,13]. Linear
regression models are more easily explainable, yet they fall short in capturing the com-
plex, nonlinear relationships within data. In contrast, more complex algorithms are more
capable in capturing nonlinear patterns, but they present greater challenges in terms of in-
terpretability [34]. For this study, the SHAP method was selected due to its ability to deliver
a detailed assessment of feature significance. SHAP, an Explainable Artificial Intelligence
(XAI) approach, draws from game theory and quantifies a feature’s effect on a model’s
output [14,15]. It calculates a Shapley value for each prediction by altering the input data
across all rows for one feature per test, while keeping the remaining data consistent with
the original. Each SHAP value, thus computed individually for every prediction, elucidates
that specific prediction. It does so by assessing the deviation from the model’s forecast to
that obtained by altering a single feature. A significantly positive sum of these deviations
suggests a strong positive influence of the feature on that prediction. Conversely, a highly
negative sum indicates a negative influence, while a sum near zero implies the feature’s
minimal impact. Practically, SHAP constructs a small explainer model for each obser-
vation, thereby explaining the rationale behind the model’s prediction for that case [35].
This is especially useful for nonlinear methods like LightGBM. While this algorithm is
effective in reducing prediction errors, discerning the logic behind their outputs is often
challenging. For visualization purposes, the SHAP library was utilized to create graphical
representations of feature importance and SHAP dependency plots.

2.5. Casual Representation, Discovery, and Reasoning

Causal models offer insights into the generative processes involved in the creation of
the data by going beyond the mere correlations between the variables [36]. Causal represen-
tation involves an understanding of the causal relationship between the variables. Causal
discovery is the process of discovering the causal links between the variables, while causal
reasoning focuses on estimating the impact of the interventions between the variables [6].
In DAGs, each node symbolizes a variable, while the directed edges indicate direct causal
influences, with the arrow pointing from the cause to its subsequent effect [9,37]. A DAG
was employed to map the causal connections among the variables. Initially, the Direct
Linear non-Gaussian Acyclic Model (DirectLiNGAM) was employed to map the causal
links between the variables. The DirectLiNGAM algorithm is an improvement on the
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LiNGAM algorithm as it can more robustly estimate the causal structure in the data if
the data do not strictly meet the non-Gaussianity assumption of the original LiNGAM
algorithm. DirectLiNGAM assumes that the actual causal connection in the data is linear,
acyclic, and without any hidden confounders. It also introduces an improved method
for estimating the causal order in the variables, which is characterized by the following
three key steps: pairwise causality tests, the estimation of the causal ordering based on the
pairwise tests, and the estimation of the connection strengths. In general, the assumption of
non-Gaussianity (data that are non-Gaussian-distributed) enables the LiNGAM algorithm
to extend beyond second-order statistical analysis, such as covariance, to fully uncover the
causal structure within the data [10,16,38].

Subsequently, Regression with Subsequent Independence Test (RESIT) was employed
to illustrate the impact of sediment deposition on the soil chemistry. Proposed by Hoyer
et al. [39] and Peters et al. [40], RESIT is recognized as a method for non-linear causal
discovery, and it is capable of discerning causal structures under the assumption of non-
linearity. The RESIT method is based on the principle that if X causes Y, then, after
regressing Y on X, the residuals should be independent of X. There are three steps in
this procedure: a regression is performed between Y and X to predict Y based on X, the
residuals representing the part of Y not explained by X are computed, and a kernel-based
conditional independence test is performed between X and the residuals [41]. For this
study, the RESIT algorithm was incorporated with a Multiple Linear Perceptron (MLP)
regressor for its implementation instead of a simple linear regression as MLP is a non-linear
model and particularly useful for complex data coming from soil analysis. The RESIT
algorithm can make use of any regression model for regressing each of the variables with
all the other variables for the purpose of finding the causal link [40]. However, for this
specific study, it was found that the RESIT model, when the MLP regressor was included
as part of its regression mechanism, yielded the best results. The confidence level for the
different deposit depths was obtained by bootstrapping the dataset 10 times using the
multiscale bootstrap method. The multiscale bootstrap method gives unbiased p-values
with much higher statistical reliability [42]. For the MLP regressor, the data were scaled
using the standard scaler (scaled = (x − µ)/σ, where µ is the mean, and σ is the standard
deviation from the mean). The MLP model was configured with the maximum iteration
parameter set to 500. This parameter defines the maximum number of epochs over the
data before the training process is halted. This hyperparameter is crucial for controlling
the training time and preventing overfitting [43,44]. An MLP is a class of feedforward
artificial network (ANN) that consists of at least three layers of nodes: an input layer,
one or more hidden layers, and an output layer. The hidden_layer_sizes hyperparameter
defines the size and number of the hidden layers. For this architecture, two configurations
were considered for tuning: a two-layer configuration where each layer consisted of
10 neurons, and a three-layer configuration with each layer also consisting of 10 neurons.
Finally, the optimum architecture included a three-layer configuration for the hidden layers.
Data were evaluated using the bootstrap approach with n_sampling = 10, which allowed
examining the generated causal effects through confidence intervals. Following this, data
were generated based on the causal relationships of the soil data. A MLP regressor was
used to fit the causal data generator, which produced datasets for varying sediment deposit
depths (0, 5, 10, 15, 20, 25, and 30 cm). Then, linear regression equations were fitted to
determine the trends of increase in the CaCO3 and Mn, as well as the decrease in P, in
relation to these deposit depth levels.

Cadmium, lead, zinc, and nickel were measured but were not found to be higher
compared to the soils without sediments, and they were also not found in higher-than-
normal levels; for this reason, they were not included in the causal inference analysis.

The entire process, encompassing data analysis, model development, and visual-
ization, was conducted using Python [45] with tools like Matplotlib and seaborn aiding
in visualization creation [46,47]. The lingam library was used for performing the Di-
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rectLINGAM [10,38] and RESIT algorithms [40]. An overview of the analysis pipeline and
processes is presented in Figure 3.
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3. Results
3.1. Causal Inference

The soil analysis showed a significant impact of sediment depth on the soil chemical
properties. In addition, a Spearman’s test showed a significant positive correlation between
deposit depth and CaCO3 (p < 0.001), Mn (p < 0.001), Fe (p < 0.001), Cu (p < 0.007), and pH
(p < 0.009), as well as a negative correlation with K (p < 0.004). Indeed, as demonstrated in
the histograms of Figure 4, elevated levels of Cu, Fe, and Mn were predominantly found in
the soil deposits. Causal data analysis suggested that the deposit depth affects the CaCO3
content in soil chemistry, there is a causal link between Mn and deposit depth, as well as
that a causal link exists between CaCO3 with P and Fe (Figure 5). The DAG, as shown in
Figure 5, also showed that the deposit depth affected the physical properties of the soil,
thereby leading to an increase in sand content and a reduction in the ratio of organic carbon
to total nitrogen content. Some estimated relationships, however, were controversial to the
domain knowledge, as, for example, the causal link between CaCO3 and P clearly went in
the opposite direction. This was also clearly true for the causal link between Mn and the
deposit depth, as the deposit caused Mn to increase, while the DAG shows the opposite.

The RESIT algorithm was used to obtain the confidence level for the various sediment
depths. Figure 6a shows that, for deposit depths higher than 10 cm, CaCO3 increased
significantly compared to the soils with no sediment deposit. Figure 6b additionally
indicates that, for a deposit depth exceeding 20 cm, the P concentrations were significantly
lower compared to soils without sediment. Figure 6c demonstrates that an increased
deposit depth resulted in significantly higher Mn concentration, while Figure 6d shows
that Fe levels were not affected by the soil deposit.

We generated data based on the causal relationships using an MLP regressor, which
provided datasets for various levels of deposit depths (0, 5, 10, 15, 20, 25, and 30 cm).
Polynomial equations showed that CaCO3 and Mn increased in relation to the sediment
depths according to the following equations (Figure 7):

CaCO3 = 0.001XCaCO3
2 + 0.08XCaCO3 + 6.42, (1)

Mn = 0.003XMn2 − 0.08XMn + 22.47. (2)
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Meanwhile, P decreased in relation to sediment depth according to the follow-
ing equation:

P = 0.004XP2 − 0.26XP + 12.29. (3)

However, the confidence intervals were only obtained by bootstrapping and are shown
in Figure 6.

3.2. Machine Learning and SHAP Analysis

A prediction model was developed using a LightGBM regressor, where the target
variable was the deposit depth and the input variables were the soil analysis data. The
prediction model was trained to identify the relative importance of each variable on the
deposit depth. The MAE of the model was equal to 5.37 cm of the deposit depth. MAE
is a metric that is used to evaluate the performance of regression models. It measures
the average magnitude of the errors in a set (test) of predictions. It is calculated as the
average of the absolute differences between the predicted values and the actual values. The
feature importance plot for the LightGBM model is presented in Figure 8. CaCO3, P, and
Mn were found to be the most important features for the LightGBM model. This plot was
used to understand how each feature influenced the prediction of the LightGBM model.
The feature importance is listed in the y-axis, and it is sorted so that the most influential
features are at the top and the least important at the bottom. The position of the point
on the x-axis also indicates whether the effect of that feature value increases or decreases
the prediction. Furthermore, the color of the points indicates the value of the feature for
that observation, with a red color representing high value and a blue color low value. The
density of the points indicates how much variation exists in the impact of a feature on the
output. Thus, a SHAP feature importance plot, also known as a SHAP summary plot, is
particularly useful for complex models such as the LightGBM regressor, which captures
nonlinear relationships [48].
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The SHAP dependence plots revealed that variables exhibiting highly significant cor-
relations based on the Spearman test (p < 0.001), namely CaCO3, Fe, and Mn, demonstrated
an upward trend as the deposit depth increased, as depicted in Figure 9a,c,d. However,
it is noteworthy that the normalized SHAP values indicated a narrower range of increase
for Fe (−0.2 to 0.8) in comparison to the other variables. Consequently, CaCO3 and Mn
held higher positions in the feature importance plot (Figure 8), while Fe ranked low in
the importance score. P, which has a connection with CaCO3, as demonstrated by the Di-
rectLiNGAM algorithm (Figure 5), ranked second in the feature importance score (Figure 8)
and decreased with increasing deposit depth. The primary interactions related to CaCO3,
P, Mn, and Fe were the C to N ratio with CaCO3, pH with P, N with Mn, and N with Fe
(Figure 9). It is worth noting that the C to N ratio exhibited a negative correlation with
the soil deposit due to a significant increase in N within the soil deposit, as illustrated in
Figure 8.
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Fe. The SHAP value indicates how much the value of a soil variable changes the prediction of the
deposit depth.

Finally, Figure 10 shows the relationship between CaCO3 and P for soils with sediment
and without sediment. The kernel density plot shows that there was a trend of reduced
P with increased values of CaCO3, which is known by the domain knowledge, and that
mostly the soils with deposit had a higher than 10% CaCO3. CaCO3 and P were chosen for
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further exploration using the kernel density plot as they were ranked highest in the feature
importance scores, as shown in Figure 8.
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3.3. Crop Phosphorus Fertilizer Rate for Soils with Sediments

The Soil and Water Resources Institute’s Fertilization Advisory Software (FAS) was
utilized to assess the P needs for corn in Thessaly, a crop that is commonly cultivated in
the region. FAS integrates an equation for calculating the P fertilizer rate, which includes
factors like soil texture, CaCO3 content, soil organic matter (SOM), available P, pH, and the
specific P requirements of crops to achieve maximum yield [49]. As statistical differences
of CaCO3 levels were observed for soil deposits above 10 cm (Figure 6a), the data were
binned into two groups: soil deposits with less or more than 10 cm. This categorization was
also driven by the observed variance in P needs for soils without deposits, ranging from
completely depleted to highly available P, which is a normal finding in agricultural soils.
The Shapiro test indicated non-normal variance in these groups. Thus, a Kruskal–Wallis
test was carried out to test the difference between the two groups [50]. The analysis showed
that 31.8% higher P fertilizer rates were needed for soils with greater than 10 cm sediments
for avoiding yield reduction in corn (p = 0.001).

4. Discussion

This study conducted a causal discovery between the soil variables to trace the effect
of sediment deposition on soil chemistry. The causal discovery algorithms presented in
this study (DirectLiNGAM and RESIT) are capable of capturing the effect of soil deposit on
soil chemistry as they are an evolution of the traditional causal algorithms employing the
assumption on non-Gaussianity and non-linear causal discovery for DirectLiNGAM and
RESIT, respectively. The results revealed a noteworthy effect of the soil deposit on CaCO3
content, which indirectly affected the P levels. The causal analysis, as shown in Figure 6,
demonstrated that there was a downward trend of P concentration in relation to deposit
depth, and the difference was significant for the soil that had deposits greater than 20 cm
compared to the soils without deposits. The LightGBM algorithm also confirmed that there
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was a downward trend, but it was less conservative compared to the RESIT algorithm as
it found that, for soils with sediments, it was unlikely to have a higher than 10 mg/kg
P concentration (Figure 9). Interestingly, although P was identified as the second-most
influential factor by the LightGBM algorithm, the Spearman correlation analysis did not
mark it as significant in relation to the deposit depth variable. This highlights the non-linear
association between the P levels and sediment presence.

Following nitrogen (N), P stands as a crucial nutrient essential for plant growth
and overall productivity. Even though, normally, the soil contains P at levels around
2000 times higher than what is found in plants, its fixation in the form of aluminum/iron
or calcium/magnesium phosphates renders it inaccessible for uptake by plants [24]. Con-
sequently, plants frequently encounter the challenge of P deficiency in agricultural fields.
Detecting this deficiency proved to not be an easy task, as the crops typically did not exhibit
visual symptoms during the early stages [51]. Thus, there was no consistent chlorosis
observed in the plants suffering from P deficiency. The shortage of P adversely affected
plant growth, a consequence that was attributed to either a decrease in photosynthesis
or an increase in energy investment. This limitation had a detrimental impact on both
crop yield and quality. It was estimated that P deficiency leads to reduced crop yields on
approximately 30–40% of the world’s arable land. In agricultural fields, the Phosphorus Use
Efficiency (PUE) ranges around 15–20%, thereby indicating that a significant portion of the
P applied to the soil remains inaccessible for plant uptake [52]. The reduced P availability
due to sediment deposition in the flooded areas necessitates the use of increased P rates for
the next growing season in Thessaly.

Corn was used as a model crop for running the FAS for all the soil samples taken from
the study region. The analysis revealed that a 31.8% higher P fertilizer rate is necessary
to avoid a yield reduction in the corn in Thessaly for the next growing season (Figure 11).
The fertilizer types normally used in Thessaly for corn, according to the potassium levels
at the various fields, are the following: (N-P-K) 21-7-10, 18-10-22, and 33-10-7. The rate at
broadcasting for these fertilizers was about 600 kg/ha. Thus, the P rate was 42 or 60 kg/ha,
according to the fertilizer type used, which was quite lower compared to the average
112 kg of P per ha suggested by FAS for soils without sediments. This necessitates extra
care for applying higher rates for soils with sediments compared to those normally used in
the Thessaly area.

Agriculture 2024, 14, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 11. The corn P fertilizer rate for deposit depths that were less or more than 10 cm. Error 
bars display the standard error of means (s.e.m.). 

Correlation analysis was not sufficient to explain the causality between the soil de-
posit and changes in nutrient availability in the soil. Despite that, a high Spearman cor-
relation was observed between the soil deposit and Fe (there were some high Fe values 
in soils with deposit as shown in the Fe histogram of Figure 4), the causal analysis eluci-
dated that the Fe concentration in the soil was not affected by the soil deposit. This result 
was also confirmed by the LightGBM algorithm, which classified Fe as low in the feature 
importance score (Figure 8) in explaining soil deposit variability. The directed acyclic 
graph (DAG) in Figure 5 shows that the effect of CaCO3 was negative on the Fe concen-
tration in soil, which is known by the domain knowledge, as the formation of calcium–
iron–phosphate compounds in the presence of CaCO3 can reduce the availability of the 
iron in the soil [53]. Thus, although there were some extreme Fe concentrations in the 
soil deposits, the presence of increased CaCO3 in the sediments resulted in the mitiga-
tion of iron in the soil, a trend which is also shown in Figure 6, as non-statistical differ-
ences were observed across the various deposit depths. This confirmed that the existence 
of correlation between variables was a necessary, but not sufficient, condition for causali-
ty [16]. 

The Mn concentration, though, presented an upward trend with an increase in de-
posit depth, which was confirmed by both the causal analysis and the LightGBM algo-
rithm. However, even these increased levels of Mn, i.e., 45 mg/kg of soil (for the upward 
limit of the confidence interval at a 30 cm deposit depth, as shown in Figure 6) did not 
limit plant growth. This highlighted the effectiveness of bootstrapping with the RESIT 
algorithm, which enabled the construction of confidence intervals at the various levels of 
deposit depth. This also underscored the potential risks associated with the lack of in-
terpretation for black box models, such as neural networks, a point that was further il-
lustrated by Prendin et al. [11] However, the construction of confidence intervals for the 
estimated causal effects using bootstrapping allowed for an assessment of the causal ef-
fects on the soil properties. This was because the confidence intervals showed that the P 
decrease caused by the deposit could be limiting plant growth, while a Mn increase was 
not found to be toxic for plants. To further elucidate the effect of deposit on P and Mn 
availability, an ML algorithm (LightGBM) was used along with SHAP analysis. SHAP 
can offer an explanation on how much each feature relates to the target variable, i.e., de-

Figure 11. The corn P fertilizer rate for deposit depths that were less or more than 10 cm. Error bars
display the standard error of means (s.e.m.).



Agriculture 2024, 14, 549 15 of 18

Correlation analysis was not sufficient to explain the causality between the soil deposit
and changes in nutrient availability in the soil. Despite that, a high Spearman correlation
was observed between the soil deposit and Fe (there were some high Fe values in soils
with deposit as shown in the Fe histogram of Figure 4), the causal analysis elucidated that
the Fe concentration in the soil was not affected by the soil deposit. This result was also
confirmed by the LightGBM algorithm, which classified Fe as low in the feature importance
score (Figure 8) in explaining soil deposit variability. The directed acyclic graph (DAG)
in Figure 5 shows that the effect of CaCO3 was negative on the Fe concentration in soil,
which is known by the domain knowledge, as the formation of calcium–iron–phosphate
compounds in the presence of CaCO3 can reduce the availability of the iron in the soil [53].
Thus, although there were some extreme Fe concentrations in the soil deposits, the presence
of increased CaCO3 in the sediments resulted in the mitigation of iron in the soil, a trend
which is also shown in Figure 6, as non-statistical differences were observed across the
various deposit depths. This confirmed that the existence of correlation between variables
was a necessary, but not sufficient, condition for causality [16].

The Mn concentration, though, presented an upward trend with an increase in deposit
depth, which was confirmed by both the causal analysis and the LightGBM algorithm.
However, even these increased levels of Mn, i.e., 45 mg/kg of soil (for the upward limit
of the confidence interval at a 30 cm deposit depth, as shown in Figure 6) did not limit
plant growth. This highlighted the effectiveness of bootstrapping with the RESIT algorithm,
which enabled the construction of confidence intervals at the various levels of deposit
depth. This also underscored the potential risks associated with the lack of interpretation
for black box models, such as neural networks, a point that was further illustrated by
Prendin et al. [11] However, the construction of confidence intervals for the estimated
causal effects using bootstrapping allowed for an assessment of the causal effects on the soil
properties. This was because the confidence intervals showed that the P decrease caused
by the deposit could be limiting plant growth, while a Mn increase was not found to be
toxic for plants. To further elucidate the effect of deposit on P and Mn availability, an ML
algorithm (LightGBM) was used along with SHAP analysis. SHAP can offer an explanation
on how much each feature relates to the target variable, i.e., deposit depth; thus, for the
scope of this study, the ML procedure along with SHAP worked as a robustness check for
the causal inference model. Finding consistent results across the ML and causal inference
methods enhanced the credibility of the causal model. The use of causal machine learning
along with the ML methods proved instrumental in transcending traditional correlation-
based analyses, thus allowing us to pinpoint the direct and indirect effects of sediment
deposition on soil chemistry. This approach provides a robust framework for developing
adaptive agricultural practices in response to extreme weather events, which are becoming
increasingly frequent due to climate change.

We found that some causal links between variables were controversial to domain
knowledge. For example, CaCO3 affects P availability, but this does not apply vice versa.
This observation might have likely stemmed from the limited size of the dataset. Nonethe-
less, the dataset size was inevitably small considering the extensive effort required to
collect these samples from the flooded region and to identify areas with sediments, es-
pecially given the narrow timeframe available for collecting samples before the growers
incorporated the sediments in the soil.

Other causal links identified by the DirectLiNGAM algorithm included the effect of
deposit depth on sand and the ratio of organic carbon to total nitrogen (C/N). As the feature
importance plot shows, the negative effect of the deposit depth on carbon to the total N
ratio was mostly because of the increase in the total N content in the sediments (which was
probably due to the transfer of floating organic matter together with the sediment). Thus,
N availability will possibly be increased in the soils that have sediments, and N will not
be limited for the next cropping season provided that the growers continue to apply the
suggested rates of N fertilizers. Potassium availability was not affected by the sediment as
potassium ranked last in the feature importance score (Figure 8).
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In addition to soil chemistry, it is crucial for farmers to manage the physical properties
of soils that are affected by sediment deposition. The presence of fine, silty particles with
small pores can lead to waterlogging as these particles absorb water without allowing it
to drain efficiently. This could result in a difficulty in root function and restrictions in the
aeration of the soil beneath. To mitigate these issues and ensure optimal crop production,
it is essential for the growers to incorporate these sediments thoroughly with the existing
soil, thus ensuring a homogeneous mixture that maintains the soil’s physical properties.

Data on the soil’s biological activity relevant to the current study are not available.
Nonetheless, a study by Shah et al. [54] has shown that, in scenarios where flooding is
temporary (such in the Thessaly plain), microbial activity tends to recover swiftly. More
specifically, according to their findings, microbiota in the soil can recover within three
weeks after flooding.

5. Conclusions

The present study unveiled the significant impact of sediment deposition, a conse-
quence of the unprecedented flood event that occurred due to Storm ‘Daniel’, on the soil
chemical properties in the Thessaly region of Greece. Through soil sampling, chemical
analysis, and the innovative application of causal machine learning algorithms, we eluci-
dated the causal relationships between sediment deposition depth and CaCO3, available
P, and Mn. Our findings reveal a significant effect of sediment depth on these crucial soil
parameters, highlighting the necessity for tailored soil management strategies to counteract
the effects of the deposit on agricultural productivity.

Our analysis indicates that corn crops in areas affected by sediment deposition exceed-
ing 10 cm require a significant adjustment in P fertilization rates to avert potential yield
declines. This insight is crucial for farmers and agricultural advisors in the region, as it
provides a data-driven basis for fertilization decisions after the flooding event.

Finally, this study underscores the critical role of advanced machine learning tech-
niques in environmental and agricultural sciences, thereby offering a paradigm for future
research in the face of escalating climate variability.
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