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Abstract: Tractor condition recognition has important research value in helping to understand
the operating status of tractors and the trend of tillage depth changes in the field. Therefore, this
article presents a method for recognizing tractor conditions, providing the basis for establishing the
relationship between tractor conditions and the tillage depth of the attached agricultural machinery.
This study designed a tractor condition recognition method based on neural networks. Using
real-world vehicle data to establish a data set, K-means clustering analysis was used to label the
data set based on four conditions: “accelerated start”, “constant speed”, “decelerated stop” and
“turning”. The learning vector quantization (LVQ) neural network and the VGG-16 model of a CNN
were selected for use recognizing the tractor conditions. The results showed that both the neural
networks had good recognition effects. The average accuracy rates of the VGG-16 model of CNN
and LVQ neural network were 90.25% and 79.7%, respectively, indicating that these models could be
applied to tractor condition recognition and provide theoretical support for the correction of angle
detection errors.

Keywords: tractor; condition recognition; CNN; VGG-16 model; LVQ neural network

1. Introduction

With the continuous improvement in agricultural machinery technology in China, the
mechanical level of tractors in the south has been rising year by year [1]. However, at the
same time, the rural labor force has decreased, which has put forward new requirements
and challenges for agricultural machinery technology to meet. Unmanned and intelligent
agricultural machinery has become an inevitable trend. Through the intelligent transfor-
mation of tractors [2], agricultural machinery can better meet the development needs of
Chinese agriculture. In terms of tractor condition recognition, there are few relevant studies,
and most of them are based on the use of tractor spatial position information [3,4] data
to study tractor conditions. The 13th Five Year Plan for the development of intelligent
manufacturing in China proposes strengthening innovation around key common technolo-
gies; focusing on perception, control, decision making, execution and other functions of
intelligent manufacturing systems; and researching and developing corresponding intelli-
gent manufacturing core support software to provide technical support for the intelligence
of the production equipment and processes. Perception, as a prerequisite for intelligent
implementation, is the foundation of control, decision making, and execution. Machine
perception is the use of machines or computers to simulate, extend, and expand human
perception or cognitive abilities. Technical forms of this perception include machine vision,
machine hearing, machine touch, etc. The use of signal processing and condition recogni-
tion technology to monitor the conditions of tractors can provide references for improving
the conditions of agricultural machinery, provide safety guarantees for agricultural pro-
duction activities, and provide technical support for the construction of intelligent and
unmanned modern agriculture. Li Jingyao et al. proposed the use of tractor operating
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condition recognition to diagnose the direction of tractor mechanical faults, while Deng
Tao et al. used operating condition recognition to assess the adaptive energy management
direction of hybrid vehicles. Turson Maimaiti et al. proposed using density clustering,
combined with agricultural machinery operation status characteristics, to cluster tractor
spatial position information in order to recognize tractor working conditions. Wang Pei
et al. [5] proposed a method for identifying the operating state of typical tractors based on
data mining and spatial data analysis methods, using tractor spatial location information
data. However, the above studies indirectly determined the operating state of tractors from
a spatial perspective by analyzing the characteristics of their spatial trajectories, which
had certain limitations. In terms of studying the conditions of tractors, in addition to
monitoring spatial location information and using other indirect methods, it is also possible
to collect a variety of parameter data from the tractor itself for use in condition recognition.
Deeply mining the status information of the tractor can more directly and clearly identify
the conditions of the tractor, thereby further satisfying the fine management of tractors [6]
and their unmanned and intelligent transformation, and helping agriculture to achieve
electrification, intelligence, networking, and digitalization as soon as possible, thus com-
prehensively promoting rural revitalization [7]. The acceleration and angular velocity of
the lifting arm in the three-point suspension system of a tractor will vary with the different
conditions of the tractor, which will affect the detection of the angle of the lifting arm in the
three-point suspension system. The angle of the lifting arm in the three-point suspension
system [8] is linearly related to the depth of tillage. In order to determine this difference
more accurately and improve the accuracy of agricultural machinery-related tillage depth
detection, it is necessary to judge the conditions of the tractor.

Pattern recognition using neural networks [9] is a recognition technology based on
neural networks. It achieves the automatic classification and recognition of various patterns
through learning and the simulation of large amounts of data. Pattern recognition using
neural networks has been widely applied in various fields, providing more efficient and
accurate solutions for people. The use of neural networks for tractor condition recognition
essentially relates to the application of pattern recognition in practical engineering. Tian
Yi et al. [10] established a driving condition recognition method based on fuzzy neural
networks, which identified the driving conditions of the main roads in Guangzhou and
Shanghai. The mainstream classification methods are basically distinguished according
to the methods used for condition recognition. Neural network, fuzzy control [11], clus-
tering analysis [12], and other methods provide a theoretical basis for the development of
condition recognition.

This article is based on research into neural networks in order to improve tractor
condition recognition. Based on the analysis of the measured data, it is necessary to
improve the relative values of the parameters of the tractor body and the three-point
suspension system in order to identify the tractor condition and comprehensively analyze
the motion parameters of the tractor body and the three-point suspension system. Generally
speaking, traditional control systems are based on mathematical models. However, in
some special cases, the mathematical models of control systems and control objectives do
not exist or are difficult to obtain, which causes many inconveniences in efforts to solve
problems. In recent years, intelligent control has developed rapidly and has been widely
applied in automation, electronics, and other industries. Neural networks are among the
best methods of intelligent control. In theory, the application of neural networks mainly
refers to two aspects: one is the perception of the surrounding environment through various
sensors, and the other involves taking the next step according to the control strategy. For
tractors equipped with a three-point suspension system, it is necessary to consider using
the results of condition recognition to determine the magnitude of the angle difference
between the three-point suspension system and the tractor body under various conditions.
Therefore, it is necessary to conduct research and innovate theoretically. Because of this,
condition recognition and neural network also need to cooperate and influence each other.
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In summary, among the mainstream algorithms for multi-parameter pattern recogni-
tion in complex environments, neural networks have wide scope for application, strong
applicability, and high accuracy. Therefore, this article selects LVQ neural networks and
CNNs with good performance in tractor condition recognition in order to verify the feasi-
bility of the algorithm.

2. Research Method

This article proposed a method for recognizing tractor conditions. This involved
obtaining a tractor’s operating state information by studying the tractor’s driving speed,
acceleration, angular velocity, and other real-world data. It also combined neural networks
to improve the accuracy of tractor condition recognition. First, a real-world test was
conducted to collect data in order to establish a data set for condition recognition. The
K-means [13] clustering algorithm present in the unsupervised learning [14] algorithm was
used to cluster the real-world data, outputting the cluster center, cluster category (KM-K-
Means), and the distance between the sample point and the cluster center (KMD-K-Means).
This resulted in four categories of conditions. A data set was established for neural network
model training. Finally, the tractor condition data set was used to train on LVQ [15] and
the deep learning convolutional neural network (CNN) [16] VGG-16 model. Using the
VGG-16 model, an iterative optimization algorithm Relu was selected for use in up to
50 iterations in order to establish a tractor condition recognition model, and the model
was evaluated using a test set. The comparative analysis of the training results of the two
algorithms yielded a tractor condition recognition method that could accurately recognize
the conditions of the tractor, and its management strategy is shown in Figure 1.
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Figure 1. Condition recognition management strategy based on neural networks.

2.1. Tractor Condition Recognition Based on One-Dimensional Convolutional Neural Networks

The most successful convolutional neural networks currently in use include the
AlexNet, GoogleNet, VGG, Inception, and ResNet series, as well as other emerging
lightweight networks such as capsule networks and MobileNet. Research has shown
that an excessively deep CNN structure can lead to overfitting and training degradation,
while an excessively shallow structure can lead to insufficient feature extraction and an
inability to express deep-level information. Through the experimental comparison of the
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above classic structural models, the VGG-16 network with 16 weight layers was selected as
the baseline structure for use in this study.

2.1.1. Algorithm Description

The basic structure of CNN is shown in Figure 2 [17]. It has wide applications in
image classification, face recognition, audio retrieval, ECG analysis, etc. The VGG-16 model
used in this article is a common CNN network structure, consisting of four layers: the
convolutional layer, pooling layer, fully connected layer, and softmax classification layer.
Specifically, it can be divided into five blocks, each containing several convolutional layers
and one pooling layer. For example, the first block contains two convolutional layers
and one pooling layer, and the fifth block contains three convolutional layers and one
pooling layer. Each layer of a neural network is constructed on multiple planes composed
of independently distributed neurons. The connection between layers occurs due to non-
fully connected convolutional computation, and each neuron is a weighted sum of some
dimensions of the input unit [18]. The width (number of channels) of the convolutional
layer is 64 to 512, and the size of the convolutional kernel is mostly 3 × 3, with some
convolutional kernels of size 1 × 1. This 1 × 1 convolutional kernel can be seen as a
linear transformation of the input channel. At the same time, in order to improve running
efficiency, a max pooling layer was constructed after some convolutional layers with a
window size of 2 × 2 and a stride of 2. The first two fully connected layers each had
4096 channels, and the third fully connected layer was used for classification and had
1000 channels. The fully connected layers of all networks were configured identically, using
ReLU as the activation function.
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In order to make the network more applicable and improve its performance, 1000 neu-
rons were selected for the output layer, and the softmax function was used to output the
predicted classification, as shown in Equation (1), in order to calculate the probability
values for each operating condition.

SC =
evc

∑t
c evc

(1)

where vc is the output of the classifier’s front end output unit, c is the current category
index, t is total number of categories, and SC is the ratio of the current element index to the
sum of all element indexes, which is the probability value used to determine the current
category of working condition.
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2.1.2. Calculation of Recognition Accuracy

After completing model training, it is necessary to quantify the recognition accuracy
using the test set. The specific formula is shown in Equation (2).

θ =
nTP

nTP + nFP
(2)

where θ is recognition accuracy, nTP is the number of correct predictions for a certain type
of state, and nFP is the number of prediction errors for a certain type of state.

2.2. Tractor Condition Recognition Based on LVQ Neural Network

The classification recognition algorithms used for condition recognition include the
Bayesian classification algorithm, decision tree, rough set theory, the fuzzy clustering
analysis algorithm, the LVQ algorithm, support vector machine, etc. The support vector
machine pattern recognition method is particularly suitable for two-dimensional problems.
LVQ neural network combines competitive learning and supervised learning algorithms
and has been successfully applied to pattern recognition, data compression, and other
fields. Neural networks are commonly used for condition recognition problems, and so the
LVQ algorithm was adopted as the method for condition recognition.

2.2.1. Algorithm Description

Neural networks are commonly used for the problem of condition recognition, and
so the LVQ neural network is adopted as the method for condition recognition [19]. LVQ
neural networks can be divided into LVQ1 and LVQ2 neural networks. This study adopts
LVQ1 from the LVQ networks. The basic idea behind this is to determine the nearest
competitive-layer neuron to the input vector and find the corresponding linear output-layer
neuron connected to it. If the category of the input vector is consistent with the category
corresponding to the linear output-layer neuron, then the corresponding competitive-layer
neuron’s weight moves in the direction of the input vector; otherwise, if the categories
are inconsistent, then the corresponding competitive-layer neuron’s weight moves in the
opposite direction of the input vector.

2.2.2. Network Structure

The LVQ1 neural network consists of three parts: the input layer, the competition
layer, and the linear output layer. Its structure is shown in Figure 3. In the figure, P is the R-
dimensional input pattern; R represents the dimension of the input training sample vector;
superscript 1 and 2, respectively, represent the competition layer and the linear output layer;
S is the number of neurons; n is the input of neurons; a is the output of neurons; IW(1,1) is
the weight coefficient matrix between the input layer neurons and the competition layer
neurons; LW(2,1) is the connection weight coefficient matrix between the competition layer
neurons and the linear output-layer neurons; ||ndis|| represents the distance between
two multi-dimensional vector sets; compet(·) represents the calculation processing of the
competition layer neural network; and purelin(·) represents the calculation processing of
the linear output-layer neural network.

2.3. K-Means Clustering Algorithm
2.3.1. Introduction to K-Means Clustering Algorithm

The K-means clustering algorithm is a very common, widely used, and highly rep-
resentative clustering algorithm. It mainly uses distance to determine similarity, with
the distance between two objects in terms of dimensional space indicating the degree of
similarity between the two objects. Nodes that are closer to the cluster center form a cluster.
After clustering, the best result is a compact cluster within the cluster and a dispersed
cluster between the clusters [20].
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2.3.2. K-Means Clustering Algorithm Process

The number of clusters k to be clustered is determined by the user, and there are
4 categories into which operating conditions are classified in this article.

We randomly selected k samples as the mean or center of the cluster, and the remaining
samples were assigned to the nearest cluster based on their distance from the cluster’s
center (usually assessed in terms of Euclidean distance).

It is necessary to recalculate the average value of samples within each cluster in
order to form new cluster centers and repeat the process until the criterion function (see
Equation (3)) converges.

E = ∑k
i=1 ∑ p∈Ci |p − mi|2, (3)

where E is the sum of squared errors, p is the point in the space, and mi is the mean value
of cluster Ci.

It is necessary to label data: For each cluster, a label can be assigned to represent
its features or meanings. For example, cluster 1 can be marked as an “accelerated start”
condition, cluster 2 can be marked as a “constant speed” condition, etc. The purpose of
labeling is to better understand and interpret clustering results.

3. Tractor Real-World Vehicle Data Collection and Result Analysis
3.1. Test Equipment

The experimental equipment used in this article included a Lovol tractor, an NVIDIA
Jetson Nano development board, an IMU attitude sensor, a Green Union wireless projection
device, and a differential GPS. The model, quantity, and function of the equipment are
shown in Table 1. In Table 2, the product parameters of the Lovol tractor can be seen. Some
devices are shown in Figures 4–6.
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Table 1. Test equipment.

No. Equipment Name Equipment Model Equipment Quantity Equipment Function

1 Lovol tractor M1204-4X 1 Main test object

2 NVIDIA Jetson Nano
development board Jetson Nano B01 1 Collect data from the posture sensor

3 IMU attitude sensor CMP10A 1 Collect the parameter data required
for condition recognition

4 Green Union wireless
projection device CM506 1

Remotely transmit image data from
the development board to the

MAKEBIT 4B display
5 Differential GPS N/A 1 Collect the tractor’s driving speed

6 MAKEBIT 4B display N/A 1 Display the output image of the
development board

Table 2. Tractor information.

Parameter Name Unit Parameter

Engine power Ps 120
Driving form N/A Four-wheel drive
Gear position N/A 12 + 12

Maximum traction force KN 30
External dimensions mm 4660 × 2090 × 2860

Wheelbase mm 2270
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Table 2. Cont.

Parameter Name Unit Parameter

Front wheel track width mm 1650
Rear wheel track width mm 1500

Power output shaft speed r/min 540/760
Forward speed range km/h 1.9–34.1
Reverse speed range km/h 1.7–29.9

3.2. Data Acquisition and Preprocessing

The data came from the actual operation records of a Lovol tractor. The data acquisition
and recording software was the Vite Intelligence upper computer produced by Shenzhen
Vite Intelligence Co., Ltd. (Shenzhen, China) with version number V6.2.60, and the serial
port debugging assistant XCOM developed by Shenzhen Pixel Intelligence Technology Co.,
Ltd. (Shenzhen, China) with version number V2.6. The acquired data included the tractor’s
driving speed, acceleration, angular velocity, pitch angle, roll angle, and heading angle.

In the process of constructing the condition recognition model, tractor driving data
were classified and processed in practical situations, and this classification and processing
could usually be directly used to construct the condition recognition model.

3.2.1. Data Acquisition

Related research shows that, if the test’s data collection time is too short, it cannot
accurately include complete feature information. Conversely, if the test’s data collection
time is too long, the computational burden will be too heavy under real-time control condi-
tions [21]. To facilitate calculation and operation, the test’s time data segment needs to be
changeable. The fixed distance method was used for the calculation, with a straight distance
of 50 m and a turning radius of 4 m. The test was performed on 5 and 6 October 2023,
and the test’s location was the experimental base of the Hunan Agricultural University.
The geographical location was 111◦53–114◦15 E and 27◦51–28◦41 N. The common driv-
ing operations performed by drivers when operating tractors were straight-line forward,
straight-line backward, and turning. Therefore, the test scenario was set to straight and
curved roads, and the test’s implementation plan is shown in Table 3. The experimental
scenario is shown in Figure 7.

Table 3. Test Plan.

Test No. Test Scenario Engine Speed Distance Traveled Number of Tests Steering Wheel
Amplitude

1 Straight-line drive ahead 1800 r/min 50 m 5 0
2 Straight-line drive back 1800 r/min 50 m 5 0
3 Straight-line drive ahead 2100 r/min 50 m 5 0
4 Straight-line drive back 2100 r/min 50 m 5 0
5 Turn left 1800 r/min 360◦ 5 Full
6 Turn left 2100 r/min 360◦ 5 Full
7 Turn right 1800 r/min 360◦ 5 Full
8 Turn right 2100 r/min 360◦ 5 Full

Agricultural tractors were classified into four conditions: accelerated start, constant
speed, turning, and decelerated stop. The accelerated start condition (condition type “0”)
referred to the intermediate state of the tractor when moving from rest to constant speed.
The constant speed condition (condition type “1”) referred to the tractor maintaining a
constant driving speed when moving forward or backward. The decelerated stop condition
(condition type “2”) referred to the intermediate state of the tractor in terms of the constant
speed condition compared to the tractor at rest. The turning condition (condition type “3”)
referred to the driving state of the tractor when the steering wheel was rotated fully to the
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left or right under pressure from external forces when the tractor was driving at a constant
speed. The driving data of the tractor were segmented into short trips, and the driving
speed and other data were collected under various operating conditions in straight-line
driving and turning scenarios. Some of the measured data are shown in Table 4.
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Table 4. Some measured data.

Time(s) V(x) (m/s) V(y) (m/s) V(z) (m/s) a(x) (g) a(y) (g) a(z) (g) Condition Type

0 0.3788 0.1575 0.005 0.0171 0.0132 0.9512 1
0.2 0.3296 0.2202 −0.1237 0.0259 0.0161 1.0293 1
0.4 0.3492 0.1904 −0.1189 0.0044 0.0254 0.9819 1
0.6 0.3163 0.254 −0.0617 0.0078 0.0151 1.0698 1
0.8 0.3979 0.1753 −0.0193 0.0176 −0.0127 1.0024 2
1.0 0.3369 0.1816 −0.1013 0.0259 −0.0146 1.0322 2
1.2 0.2551 0.1287 −0.0762 −0.0098 0.0132 0.9707 2
1.4 0.0944 0.0484 −0.0497 0.0039 0.0454 1.0098 2
1.6 −0.0116 −0.0149 −0.0176 0.0342 −0.0381 1.0547 2

3.2.2. Data Processing

GPS differential principle is as follows: The key to differential positioning lies in
eliminating GPS signal errors. GPS signals are affected by many factors during propagation,
which can cause errors such as atmospheric delay clock bias, multipath effects, etc. These
errors are the same for both the reference station and the mobile station when they receive
the same satellite signal simultaneously. As such, by comparing the signal characteristics
received by both, these errors can be accurately calculated.

There are two main ways to achieve differential positioning: real-time differential
methods and post-processing differential methods. Real-time differential analysis is a
method for the real-time correction of signal errors using real-time observation data from
reference stations and wireless transmission with mobile stations, receiving GPS signals in
real time, in order to achieve high-precision positioning. The post-processing difference
refers to the method of comparing and processing the observation data of the reference
station and the mobile station after data collection is completed, eliminating signal errors,
and calculating the corrected position information.

IMU processes data errors based on the Kalman filtering principle, and the specific
filtering process is as follows:

1. Select state variables and observations;
2. Construct state space equations;
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3. Initialize parameters;
4. Substitute into the iterative formula;
5. Adjust hyperparameters.

3.2.3. Feature Generation

There were 12 characteristic parameters collected during the test, as shown in Table 5.
The characteristic parameters of the conditions should in principle include the character-
istics of each condition. If the selection of characteristic parameters for the conditions is
too large, the calculation is too large, and if the selection of characteristic parameters
is too small, the unique information of each condition cannot be accurately included,
resulting in large recognition errors. In order to optimize the number of characteristic
parameters and ensure that each characteristic parameter independently contained the
characteristic information of a certain operating condition, the tractor’s average driving
speed, acceleration, angular velocity, pitch angle, roll angle, and heading angle were
selected as characteristic parameters.

Table 5. Parameters collected.

No. Parameter Name

1 V(x) The x-axis of the fuselage is divided into velocity
2 V(y) The y-axis of the fuselage is divided into velocity
3 V(z) The z-axis of the fuselage is divided into velocity
4 a(x) The x-axis of the fuselage is divided into acceleration
5 a(y) The y-axis of the fuselage is divided into acceleration
6 a(z) The z-axis of the fuselage is divided into acceleration
7 w(x) The angular velocity of the x-axis of the fuselage
8 w(y) The angular velocity of the y-axis of the fuselage
9 w(z) The angular velocity of the z-axis of the fuselage
10 Angle(x) Fuselage pitch angle
11 Angle(y) Fuselage roll angle
12 Angle(z) Fuselage heading angle

The parameter data of the specific measured characteristic are shown in Figures 8–12.
The values of “v”, “w”, and “a” in the following text are the composite values of velocity,
angular velocity, and acceleration in the x-, y-, and z-axis directions.

As shown in the figure above, the change trends of six parameters, including the
driving speed, acceleration, angular velocity, roll angle, pitch angle, and heading angle,
were different under different conditions. During the accelerated start condition, the
driving speed and acceleration changed significantly. The driving speed increased abruptly
from 0 to a maximum speed of 0.32 m/s, and the acceleration approached 0.5 m/s2 at the
moment of starting. After that, the tractor entered the constant speed condition, while the
angular velocity did not change significantly and remained around 0 deg/s, fluctuating up
and down due to errors. During the constant speed condition, the driving speed remained
basically stable at 0.16 m/s, fluctuating up and down within the range of 0.06–0.28 m/s. The
acceleration and angular velocity approached 0. During the decelerated stop condition, the
vehicle speed decreased from 0.18 m/s to 0 m/s until the tractor stopped, and the angular
velocity approached 0. The acceleration of the tractor decreased from 0 to −0.27 m/s2,
and the roll angle, pitch angle, and heading angle changed in a consistent trend. The
roll angle and pitch angle were both 0, and the heading angle remained at 110◦. During
turning, the driving speed showed a sinusoidal trend. After driving the tractor steadily,
the angular velocity stabilized between by 10 deg/s and 15 deg/s, and the acceleration
basically remained at 0 m/s2. The roll angle and pitch angle were both 0, and the heading
angle gradually decreased between −190 deg~−110 deg when it was between 0~36 s. At
36 s, due to changes in steering angle, this increased to 195 deg, and then slowly decreased
to 95 deg before stopping.
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Figure 12. Variation curve of roll, pitch, and heading angles: (a) straight-line test scenario; (b) turn
test scenario.

Based on the above analysis, it could be found that the tractor’s driving speed, angular
velocity, acceleration, roll angle, pitch angle, and heading angle exhibited significant
differences under different operating conditions. The above parameters of the tractor
time-series sample points could be extracted in order to analyze and identify the tractor’s
operating conditions. The recognition of tractor conditions was achieved by training
neural networks to meet the requirements of subsequent related research into the precise
management of a tractor’s hitching agricultural machinery.

3.2.4. Data Denoising

Noise was introduced during the generation, collection, transmission, and processing
of parameter data during tractor movement. The presence of these noises posed challenges
to data cleaning and analysis, as the presence of noisy data could seriously affect the results
of data analysis. In machine learning tasks, noisy data could interfere with feature selection
and weight allocation, thereby reducing the accuracy of the algorithm. Therefore, in terms
of data processing, the following measures were taken in this article:

1. Values that clearly exceeded a reasonable range were considered to be errors and deleted.
2. In some cases, directly deleting noisy data may lead to information loss. As such, we

employed smoothing techniques could be used to reduce the impact of noise.
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After obtaining GPS and IMU data for the various conditions of the tractor, the
collected signals were denoised using the wavelet transform function in origin pro2022. Due
to the relatively small amplitude of changes in roll, pitch, and heading angles during the
test, only the speed, acceleration, and angular velocity were denoised in the following data.
During denoising, the Daubechies wavelet function was selected as the basic function for
transformation, and the wavelet transform level was 3. To process the wavelet coefficients, a
soft threshold was used as the threshold type. The wavelet soft-threshold denoising method
could reduce noise components in the signal, assist in the retention of important feature
information, and improve signal quality. The comparisons before and after denoising are
shown in Figure 13.
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Figure 13. Comparison of parameters before and after denoising in the data set: (a) straight-line
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angular velocity; (e) straight-line driving acceleration; (f) turning driving acceleration.
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The red lines shown in Figure 13a–f are the curves of driving speed and other parame-
ters before denoising, and the green lines are the curves after denoising. It can be seen from
Figure 12 that, in straight-line driving and turning scenarios, after wavelet transformation
with a wavelet transform level of 3, the noise reduction effect on the parameter curves was
consistent with the measured curve trend and could maximize the retention of data details
and remove high-frequency signals. Compared with the denoising effect on the driving
speed and angular velocity curves, the noise reduction effect on turning was more obvious,
but it was still possible to determine specific conditions based on the parameter curves in
straight-line driving scenarios. Comprehensively analysis of the data after denoising can
be used by neural network for tractor condition recognition.

3.3. K-Means Clustering Algorithm Results

Using the SPSS STATISTIC27 tool, cluster analysis was conducted on the input param-
eters. After multiple analyses, the effect was better when k was set to 4.

As shown in Tables 6 and 7, convergence was achieved due to the absence of or only
slight variation in the clustering centers. The maximum absolute coordinate variation for
any center was 0.000, the number of clustering iterations was 4, the minimum distance be-
tween initial centers was 55.172, and the quality of cluster cohesion and separation contour
measurement was good. The clustering centers, clustering categories (KM-K-Means), and
the distance between sample points and clustering centers (KMD-K-Means) were output.
The four categories of conditions obtained via K-means clustering algorithm analysis were
used to form a data set of conditions, completing the processing of conditions data.

Table 6. Initial clustering centers.

Parameter 1 2 3 4

V −0.3864 −0.1987 0.1896 −0.1608
W 0.103 −0.0132 −0.022 0.0029
a 9.4604 −0.3662 0.8545 0.4272

Angle (x) 1.6479 −0.0165 −0.2142 0.6262
Angle (y) 0.8899 −1.0822 −1.0217 0.0604
Angle (z) 117.8723 −11.7554 −66.9122 −129.4519

Table 7. Final clustering centers.

Parameter 1 2 3 4

V 0.075 0.0416 0.0557 −0.0572
W 0.0234 0.0469 0.0305 −0.0151
a 0.0075 0.0072 0.0074 0.0086

Angle (x) 0.1372 0.1085 0.0608 0.5237
Angle (y) 2.2767 −1.047 −1.1339 −0.6124
Angle (z) 98.9165 −9.7197 −73.2525 −125.6808

4. Tractor Condition Recognition Model

Neural network recognition models are based on classified samples, and the classified
condition data samples need to be inserted into a prepared model. Therefore, the process
of pre-processing data is crucial. According to the data pre-processing process, the existing
recognition model methods can be summarized into two categories: recognition models based
on measured data and recognition models based on known working conditions. This article
selects the former for use constructing tractor working-condition recognition models.

4.1. Parameter Selection and Training Results of CNN VGG-16 Model
4.1.1. CNN VGG-16 Parameter Selection

In combination with the forementioned content, this article constructed a data set
based on the use of tractor driving speed and acceleration information to describe the data
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expression of changes in tractor conditions. After K-means clustering analysis and wavelet
soft-threshold denoising, the four types of condition data were input into VGG-16 CNN for
training model classification. The CNN VGG-16 parameter settings are shown in Table 8,
and convolutional neural networks are applied on this basis to achieve the continuous
recognition of tractor conditions.

Table 8. Parameter setting of CNN VGG-16.

Parameter Name Parameter Value

Number of convolutional layers 8
Number of pooling layers N
Convolution kernel size 7 × 1

Pooling size 2
Optimization unit SGD

Learner rate of optimizer 0.1
Number of neurons in convolutional layer (978,083)

Number of time steps 106
Number of batches 12

Maximum iteration times 50

We selected a data set consisting of 16 samples with a total of 4883 sample data points.
Overall, 60% of the data were used as the training set, 25% were employed as the validation
set for verifying the model, and the remaining 15% were used as the test set for evaluating
the model. The computer configuration used for the tests was an AMD Ryzen 7 CPU with
16 GB of running memory. The PyTorch framework of PyCharm 2023 1.4 software was
used to build the selected CNN VGG-16 model. The parameters were tuned on the training
set with an iteration count of 50 and a learning rate of 0.1. The model dynamically adjusted
the learning rate as training progressed, which better allowed for better control of the
convergence speed and quality of the model and avoided overfitting and other issues. The
initial weight coefficients and biases were set to random values that conformed to a normal
distribution in order to improve the model’s training efficiency.

Overfitting refers to the phenomenon where machine learning models perform well
on training data but perform poorly on new unseen samples. In neural network models,
overfitting problems often occur. When the model overfits, this problem can be alleviated
by adjusting the learning rate. In the initial stage of training, as the weights belong to a
randomly initialized state, the loss function is more prone to convergence, and so a larger
learning rate can be set. In the later stage of training, due to the weight approaching the
optimal value, a larger learning rate cannot enable further research into the optimal value,
and so a smaller learning rate is needed. The commonly used learning rate adjustment
strategies include Poly, StepLR, MultiStepLR, ExponentialLR, LambdaLR, OneCycleLR,
and CosineAnealingLR. CosineAnealingLR does not require hyperparameter adjustment
and has high robustness, making it the preferred strategy for use improving model accuracy.
Therefore, this article chooses CosineAnnexingLR as the learning rate adjustment strategy.

The VGG-16 model has the following advantages compared to other CNN models:

1. Depth and simplicity. VGG16 is a convolutional neural network with a depth of
16 layers, consisting of multiple convolutional layers and fully connected layers,
which helps to learn more abstract features. Its structure is relatively simple, being
both easy-to-understand and implement.

2. Smaller convolution kernels. VGG16 uses a small 3 × 3 convolutional kernel for
feature extraction. This helps to increase the depth and non-linear expression ability
of the network, while reducing the number of parameters and improving the efficiency
and training speed of the model.

3. Effective parameter sharing. Due to the use of convolutional kernels of the same size
in the convolutional layer, VGG16 achieves parameter sharing, further reducing the
number of parameters.
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4.1.2. CNN VGG-16 Model Training Results

Figure 14 depicts the trend of loss values in the training and validation sets. It can
be observed that, as the number of iterations increased, the model’s recognition accuracy
gradually improved and stabilized at 94%. At the same time, the loss value decreased
monotonically with the increase in the number of iterations, gradually approaching 0.
The above analysis indicated that the model had good training performances on both the
training and validation sets.
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To further verify the reliability of the recognition model, the test set was applied to the
trained model, and three indicators, including precision, recall, and F1 value (H-mean) [22],
were introduced to evaluate the recognition results of the validation set and test set. The
results are shown in Table 9. For the constant speed condition, all three evaluation indicators
were close to 1, and the precision rate was 90.25% for the four conditions, indicating that
the recognition model had high recognition accuracy and good classification performance.
At the same time, by increasing the data sample size of the training set and validation set,
the recognition accuracy of the model could be further improved.

Table 9. Precision, recall, and F1 value of VGG-16 model under different conditions.

Conditions Precision Recall F1 Value

Accelerating start 0.85 0.91 0.95
Constant speed 0.97 0.99 0.98

Decelerating stop 0.86 0.81 0.82
Turning 0.93 0.95 0.89

4.2. LVQ Neural Network
4.2.1. LVQ1 Neural Network Steps

The basic LVQ1 neural network steps are as follows:
Initialize the weight ωij between the input layer, the competition layer, and the learning

rate η (η > 0).
Send the input vector x = (x1, x2, . . . , xR)

T to the input layer and calculate the distance
between the neurons in the competitive layer and the input vector using Equation (4):

di =

√
∑R

j=1 (xj −ωij)
2 (

i = 1, 2, . . . , S1
)

, (4)

Select the neuron in the competitive layer closest to the input vector. If di is the
smallest, then the class label of the linear output-layer neuron connected to it is Ci.
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Record the class label corresponding to the input vector as Cx. If Ci = Cx, adjust the
weights according to Equation (5); otherwise, update the weights according to Equation (6).

ωij_new = ωij_old + η
(

x −ωij_old

)
, (5)

ωij_new = ωij_old − η
(
x −ωijold

)
, (6)

4.2.2. LVQ 1 Operation and Analysis

Based on the above analysis, six characteristic parameters were selected, and so the
input layer of the LVQ1 neural network structure used in this study had six nodes. The
competition layer classified the input vector through a competitive learning algorithm. The
classes processed by the learning algorithm were called sub-classes, which were divided
into clearly defined target classes. The four neurons in the linear output layer represented
four tractor conditions. After 50 generations of training, the recognition error dropped to
0.01. When the recognition error stopped decreasing, the training process of the neural
network algorithm was considered complete. If the samples of the prediction test set were
clustered, this showed that the recognition-type judgment of the conditions established by
LVQ1 neural network was correct; if the samples were dispersed, it represented that the
recognition-type judgment of the conditions was incorrect. As shown in Figure 15, after
training, the accuracy rate of the LVQ1 neural network model for condition recognition
was 79.7%. Except for turning conditions, the LVQ1 neural network’s condition recognition
model could basically assess conditions that differed in various different ways, indicating
that it was feasible to use neural network techniques to recognize tractor conditions.
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4.3. Discussion on the Limitations of LVQ1 Compared to CNN

LVQ neural networks, as special types of neural networks, inherit some of the advan-
tages of neural networks, but have slow convergence speeds. LVQ1 usually requires more
training cycles to converge because its learning rules are simpler and more direct than those
of some other algorithms. However, it has the following drawbacks. The first is poor ro-
bustness. LVQ1 has poor robustness and may fall into local minima, especially when facing
noise or nonlinear data. Further, it is difficult to effectively jump out of this local minimum.
Another is insufficient accuracy. LVQ1’s classification accuracy may not be high enough,
especially when dealing with non-linear, separable data sets. In fact, its performance is
often inferior to that of other complex algorithms such as the BP neural network and CNN.
Thirdly, the learning rate needs to be predetermined. LVQ1 requires a pre-set learning
rate, and improper setting of this learning rate may lead to training failure. Unsuitable
for complex pattern recognition, LVQ1 has relatively weak pattern recognition abilities
and requires a high degree of quantization of input patterns. Therefore, its performance
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is not as good as that of some more complex neural network models when dealing with
high-dimensional and complex patterns. Unable to perform continuous learning, LVQ1
does not support online learning or continuous learning, and the mode of each learning
must be determined during each training period. The pattern of LVQ1 is fixed, and so
it is not adapted to dynamic, changing environments or changes in data distribution. A
large amount of memory is required. LVQ1 must store a weight vector for each input mode
and each output mode, and so the demand for memory may be significant. In summary,
although LVQ1 has the advantages of simplicity and ease of implementation, it also has
obvious limitations. For complex pattern recognition tasks, more complex and powerful
neural network models may be needed to replace it.

4.4. Comparison of Recognition Effects of Other Neural Networks for Conditions

The VGG-16 model has the best recognition performance among the three evaluation
indicators of accuracy, recall, and F1 value, and its training time is relatively short compared
to other algorithms, confirming the superiority of the CNN VGG-16 model in the field of
tractor condition recognition, as shown in Table 10.

Table 10. Comparison results.

Model Name Average
Accuracy

Average Recall
Rate

Average F1
Value

Average
Training Time

Bp 0.863 0.867 0.901 712
Alexnet 0.872 0.871 0.881 651
Vgg-16 0.902 0.915 0.910 503
Vgg-19 0.895 0.901 0.908 604
LVQ1 0.797 N/A N/A 409

5. Conclusions

This article used neural networks to recognize tractor conditions and employed the
K-means clustering algorithm to divide the collected raw condition data samples into sets.
We performed clustering analysis on the samples to obtain well-classified samples for use
establishing a training set and validation set for neural networks. A condition recognition
model was constructed based on the CNN algorithm and LVQ neural network, and the
accuracy of the model was statistically analyzed and verified. A one-dimensional data
sample was constructed using information such as tractor speed and angular velocity, and
a convolutional neural network algorithm structure based on the CNN VGG-16 model
was used. The data sample was iteratively optimized using the relu algorithm for up
to 50 iterations, and a tractor condition recognition model was established. The model
was evaluated using a test set, and it was found that the recognition accuracy of the
model reached 90.25%, and the three indicators of precision, recall, and F1 value under
four conditions in the test set all reached over 80%. Using the LVQ1 neural network
to recognize the data sample, the accuracy reached 79.7%, indicating that both models
could effectively recognize tractor conditions. However, the recognition effect of the
CNN algorithm was more significant. The above condition recognition methods provide
new ideas for establishing a tractor condition recognition model and provide a basis
for subsequently establishing a relationship model between the tractor condition and
ploughing depth detection compensation. This study uses convolutional neural network
algorithms and LVQ neural network algorithms for tractor condition recognition. However,
due to limitations such as data size, the structure of the condition recognition model
established can be further optimized to improve recognition accuracy. Due to the limitation
of sample size in the data set, there is still significant room for improvement in the accuracy
of neural network models after training. In future research, we will increase the sample size
to improve the accuracy of condition recognition and establish the relationship between
tractor conditions and tillage depth.
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