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Abstract: Feeding rates serve as a vital indicator for adjusting the working parameters of the combine
harvester. A non-invasive diagnostic approach to predicting the feed rates of combine harvesters by
collecting vibration signals of the inclined conveyor was introduced in this study. To establish a feed
rate prediction model, the correlation between feeding rates and vibration signal characteristics was
investigated. Vibration signal characteristics in both the time domain and frequency domain were
also analyzed in detail. The RMS (root mean square) value and the total RMS value of the one-third
octave extracted from the vibration signal were utilized to establish a feed rate prediction model, and
field tests were conducted to verify the model performance. The experimental results indicated that
the relative errors of the established model range from 3.1% to 4.9% when harvesting rice. With the
developed feed rate prediction system, the control system of the combine harvester can acquire feed
rate information in real time, and the working parameters can be adjusted in advance, thereby, it can
be expected to greatly enhance the working performance of the combine harvesters.

Keywords: combine harvester; vibration characteristics; feeding rate; prediction model; field test

1. Introduction

Combine harvesters, renowned as one of the most intricate agricultural machinery
types, seamlessly integrate a multitude of functions encompassing cutting, conveying,
threshing, cleaning, and collecting [1,2]. Their pivotal role in crop production is indis-
putable, significantly elevating agricultural productivity. Research indicates that feed rates
exert a profound influence on harvesting performance, underscoring the importance of
the timely adjustment of pertinent parameters to optimize efficiency [3,4], and feeding
rates also serve as one of the important reference parameters for designing crucial work-
ing components of combine harvesters, including threshing rotors, cleaning devices, and
grain conveying systems [5]. Nonetheless, variations in crop height, density, and forward
speed can induce fluctuations in feeding rates to some extent, consequently affecting the
vibration characteristics of these components [6]. Harnessing cutting-edge information
technologies such as sensors and real-time data analysis facilitates the precise monitoring of
fluctuations in feed rates, thereby enabling swift adjustments to the operational parameters
of the threshing device and forward speed. This proactive approach not only amplifies
operational efficiency but also effectively mitigates grain losses attributable to feed rate
variations. Current research on feeding rate monitoring in combine harvesters often relies
on monitoring the torque of the header feeder auger, inclined conveyor, threshing rotors,
or grain flow to characterize the overall feeding rate [7–11]. Although these methods
often exhibit significant lag behind, as the cut crop enters the inclined conveyor before
it enters into the threshing rotors, the feed rate information predicted from the inclined
conveyor can be collected by the control system in advance, and the information lag behind
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can be overcome. Vibration, as a manifestation of mechanical motion, encapsulates vital
information regarding the operational state of equipment, making it a valuable diagnostic
tool in mechanical engineering. Vibration analysis, a widely adopted diagnostic method,
unveils both the operational status and potential structural issues of mechanical equip-
ment [12–14]. The external inputs excite the vibration system, causing vibration responses
to manifest at measurement points through various transmission paths. These responses
essentially constitute the aggregate of modal responses generated at measurement points
under the influence of working loads [15]. When a structural system experiences external
excitation, it exhibits natural vibrations at specific frequencies [16,17]. These vibration
signals harbor distinct characteristics reflective of the equipment’s operational status. By
collecting and analyzing vibration signals, it becomes feasible to effectively predict and
monitor the equipment’s condition and feeding rates.

Currently, research progress has been made in vibration research, and the performance
of the combine harvester has improved significantly. Most of the relevant efforts have
focused on establishing vibration models [18–21] and utilizing finite element analysis to
analyze working components such as headers, cleaning sieves, and threshing rotors [22–24].
Simultaneously, scholars have proposed that differences in feeding rates can affect the
intensity of vibrations in the working components of combine harvesters. Ebrahimi et al.
identified and alleviated vibration issues in the combine harvester cutting platform through
experimental assessment and finite element model updates, further validating the accuracy
of frequency domain decomposition technique in vibration characteristics research and
reducing vibration levels through structural modifications [25]. Gao et al. conducted
vibration tests under varying feeding rates and found differing vibration intensity patterns
with increasing feeding rates, particularly observing increased loads on the drive shaft
and a positive correlation between total vibrations and feeding rates at certain points [26].
Ding et al. investigated the effects of feeding rate disturbances on combine harvester
vibration characteristics and found that vibrations in the cutter and conveyor increased
gradually with higher feeding rates during field trials [27]. Yao et al. studied vibration
characteristics in corn harvesters, highlighting the influence of factors such as operating
conditions and mass changes on vibration behavior [28]. These studies not only deepen
the understanding of the vibration characteristics of combine harvesters but also provide
important theoretical and practical foundations for optimizing the design and enhancing
the reliability of agricultural machinery. However, they primarily focus on investigating
the vibration characteristics of combine harvesters and their correlation with factors such
as feed rate or operating conditions, without further utilizing vibration characteristics
to reflect the working status of combine harvesters. To date, there has been no research
capable of analyzing corresponding fluctuations in feed rates by analyzing the vibration
signal characteristics of working components in combine harvesters. This work proposes a
novel application of vibration signal analysis for the real-time monitoring of feed rates.

The aim of this research is to develop a non-invasive diagnostic approach, which
refers to a technique or approach that does not require direct contact or alteration of
the surface or interior of an object, to monitor the feed rates of combine harvesters by
collecting vibration signals of the inclined conveyor and investigate the correlation between
feeding rate fluctuations and the characteristics of the vibration signals. Utilizing the
selected vibration signal characteristics, the feed rate monitoring model was established
and verified by a field experiment. With the developed feed rate monitoring system, the
control system of the combine harvester can acquire feed rate information in time as the
cut crop passes through the inclined conveyor before it enters the threshing device, and
the working performance can be improved greatly as the working parameters of combine
harvesters can be adjusted in advance.
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2. Materials and Methods
2.1. Sensor Installation Position

This study focuses on the impact of feeding rate on the vibration characteristics of the in-
clined conveyor in a rice combine harvester (type, 4LZ-6.0EK, World Group, Zhenjiang, China).
Acceleration sensors were selected as the vibration signal measurement device, and the
DH5902 Dynamic signal acquisition instrument was used to collect and analyze the vi-
bration signal. The sensor installation positions in the inclined conveyor are illustrated
in Figure 1, with Sensor 1 located on the left side of the bottom of the inclined conveyor,
closer to the header, designated as measurement point 1. Sensor 2 is positioned on the
right side, closer to the threshing device, designated as measurement point 2. This layout
effectively captures the vibration signals of crop flow within the inclined conveyor, aiding
in a more comprehensive understanding of crop movement within the inclined conveyor
and providing accurate input data for the control system. Although these two sensors
are installed in close proximity to each other, considering the working environment of the
inclined conveyor and the constraints of the machine’s structure, this is the best installation
solution we can adopt. During field harvesting operations, various working components
of the combine harvester typically operate at rated speeds, especially while maintaining
the feed rate. The vibration frequencies generated by the header and threshing device are
relatively stable. Based on this, reasonable data processing and vibration feature extraction
can be conducted to extract stable characteristic parameters from the vibration signals.
Table 1 lists the main parameters of the accelerometer and the dynamic signal analyzer. The
DH5902 dynamic signal analyzer used in this study not only reliably captures and stores
vibration signals but also provides extensive signal data processing capabilities.
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Figure 1. Installation location of vibration accelerator sensors. (a) The position of the inclined
conveyor in the combine harvester. (b) The position of the sensors on the inclined conveyor.

Table 1. Main performance parameters of sensors and the signal-acquiring device.

Equipment Name Performance Index Parameter Values Unit

Universal
piezoelectric

accelerometer

Sensitivity 5 mV·(m·s−2)−1

Range 1000 m·s−2

Frequency 0.5~7000 (±10%) Hz

DH5902 Dynamic
signal acquisition

instrument

Number of channels 32
Full scale value ±20~±20,000 mV

Distortion ≤0.5 %
Maximum sampling

Frequency 100 KHz

Although installing multiple sensors on the inclined conveyor can provide more
comprehensive data and enable a more detailed analysis of its vibration characteristics, this
poses challenges in data processing. The large volume of data requires more complex data
processing and analysis techniques to handle, and the complexity of the feed rate prediction
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model will also increase exponentially. Furthermore, field validation experiments have
shown that the vibration signals collected by two sensors can accurately reflect the feed rate
of crops in the inclined conveyor. Therefore, after weighing the pros and cons in practical
applications, it was determined to use only two sensors to meet the research requirements.

To avoid aliasing, the sampling frequency should be at least twice the highest frequency
component in the signal, while the analyzed frequency range should not exceed half
of the sampling frequency according to the Nyquist theorem. It is indicated that the
vibration signals collected on the combine harvester are mainly composed of low-frequency
components [29]. During the experiment, the sampling method of the test system was set
to continuous sampling, with a sampling frequency of 2.56 kHz. The analysis frequency is
equal to the sampling frequency divided by 2.56, resulting in 1000 Hz. Additionally, in the
frequency-domain analysis, the number of analysis points is 4096, the number of spectral
lines is 1600, and the averaging time of the average spectrum is 10 times. Given the known
sampling frequency and number of spectral lines, the length of the time-domain data for
each FFT transformation, denoted as T0, can be calculated using the following formula:

T0 =
1

Frequency Resolution
=

Number o f Spectral Lines
Analysis Frequency

(1)

It can be concluded that T0 is equal to 1.6 s, which means the time-domain data length
for each FFT transformation is 1.6 s. Therefore, the minimum length for an average of
10 transformations is 16 s.

2.2. Vibration Signal Analysis Methods

To obtain the characteristic information required for feed rate prediction, necessary
signal processing techniques such as time-domain analysis, frequency-domain analysis,
and wavelet analysis are employed [30–32]. Time-domain analysis elucidates how signal
parameters evolve over time, offering an intuitive depiction of signal amplitude. This
can be leveraged in vibration signal analysis by computing metrics such as the mean
value, RMS (root mean square) value, peak value, and peak-to-peak value. Notably, the
time-domain characteristics of non-stationary stochastic signals with different periodicities
exhibit discernible disparities [33,34]. Suppose there exists a signal denoted as X, with a
length of N and the value of the nth sample point represented as x(n). Among these, the
mean value (µ), also known as the mathematical expectation, reflects the signal average
amplitude in the time domain, expressed as:

µ = E(X) =
1
N

N

∑
n=1

x(n) (2)

The mean square root value (RMS), known as the average power, is expressed as:

RMS(X) =

√√√√ 1
N

N

∑
n=1

x2(n) (3)

The mean square root value represents the signal strength. Its positive square root,
known as the effective value, is another representation of the signal’s average energy. The
advantage of using the effective value to characterize the magnitude of vibration lies in
considering both the time course of vibration and the magnitude of vibration energy.

The peak-to-peak value (PP), defined as the difference between the maximum and
minimum values of the signal, describes the size of the variation range of signal values. It
is expressed as:

PP(X) = max(X)− min(X) (4)

The vibration signal induced by feeding rates is an external disturbance that needs
to be distinguished from the excitation signal of the combine harvester. Vibration signal
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correlation analysis includes auto-correlation analysis and cross-correlation analysis, both
of which are time-domain analysis methods. The auto-correlation function reflects the
similarity in signal values at different instants and represents the self-correlation of the
signal. It provides an average measure of the numerical dependence obtained by comparing
two observations of the same signal, revealing useful information in noisy signals, and
identifying repeated information or fundamental frequencies. This method can detect
periodic vibrations and diagnose the causes of external disturbances [35].

The mathematical definition of the auto-correlation function is as follows:

RXX(τ) = lim
T→∞

1
T

∫ T

0
X(T)X(t + τ) dt (5)

The auto-correlation function is the average of the product of the signal X(t) and its
time-shifted version X(t + τ), where τ represents the time-shift variable.

The cross-correlation function describes the general dependency between two sets of
random signals, illustrating the waveform similarity between the signal X(t) and Y(t) after
a time shift of τ, denoted as Y(t + τ). The computational formula is given by:

RXY(τ) = lim
T→∞

1
T

∫ T

0
X(T)Y(t + τ) dt (6)

Time-domain signals offer significant advantages in temporal resolution, allowing
for the precise depiction of signal variations over time. However, their limitation lies
in zero frequency resolution, meaning they cannot provide detailed information about
which frequency components the signal contains and how these components affect the
signal. To address this limitation, frequency-domain analysis has become an important
signal processing technique, revealing the frequency characteristics of a signal by decom-
posing it into multiple sinusoidal waves [36]. The Fourier transform is the core tool of
frequency-domain analysis, where clarity on the frequency components of a signal and their
contributions to the overall signal can be gained through Fourier transformation. By com-
bining time-domain and frequency-domain analyses, a more comprehensive understanding
of the dynamic changes in signals can be achieved, providing a more scientific basis for
machinery condition monitoring and fault diagnosis. The Discrete Fourier Transform (DFT)
formula exists in various forms; one common representation is the exponential form, which
is given as [37–40]:

F(k) =
N−1

∑
n=0

x(n) e
−j2πnk

N (7)

where:
F(k) represents the kth frequency component in the frequency domain;
x(n) represents the discrete signal in the time domain;
N is the total number of samples in the signal;
j is the imaginary unit;
k ranges from 0 to N − 1.
The fast Fourier transform (FFT), commonly used in modern computing, is a fast

algorithm for computing the Discrete Fourier Transform (DFT).

2.3. Field Test Arrangement and Model Establishment

Feeding rate refers to the mass of crops processed continuously by the combine
harvester per unit time. Its influencing factors mainly include the forward speed, the
cutting width, and the crop yield, which can be expressed by the following equation:

Q = L · v · A(1 + θ) (8)
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where Q is the feeding rate of the combine harvester, kg·s−1; L is the cutting width, m;
v is the forward speed, m·s−1; A is the crop yield per unit area, kg·m−2, θ is ratio of
material-other-than-grain (MOG) to grain.

To explore the effect of feeding rates on the vibration characteristics of the inclined
conveyor during field harvesting, in this study, we selected a field with more even crop
density as the test area, and a test was conducted in Dantu District, Zhenjiang City, Jiangsu
Province, China. The basic characteristics of the experimental rice are shown in Table 2.
Maintaining the maximum cutting width for harvesting and keeping the header height
unchanged, vibration signals were collected at the inclined conveyor by varying the forward
speed to change the feed rate. The test arrangements are shown in Table 3.

Table 2. Basic characteristics of the rice used in the field experiments.

Items Yangnong No. 1

Grain moisture content/% 22.5
Stem moisture content/% 76.5
Crop natural height/cm 85.2

MOG/grain ratio 2.0
Thousand grain mass/g 30.0

Yield per unit area/kg·m−2 0.74

Table 3. Vibration signal acquisition arrangement.

Experiment
Arrangement Test Distance (m) Forward Speed

(m·s−1)
Feeding Rate

(kg·s−1)

Group 0 0 0 0
Group 1 25 0.3 1.47
Group 2 25 0.6 2.94
Group 3 25 0.9 4.41

In Experiment Group 0, the feeding rate of the combine harvester was set to zero, with
the engine and working components operating simultaneously, and vibration signals at
the inclined conveyor under this no-load condition were collected. Experiment Group 3
maintained a forward velocity of 0.9 m·s−1, where the feeding rate reached its maximum
at 4.41 kg·s−1. Experiment Groups 2 and 1 had progressively reduced forward veloci-
ties of 0.6 m·s−1 and 0.3 m·s−1, respectively, resulting in corresponding feeding rates of
2.94 kg·s−1 and 1.47 kg·s−1. Each test was conducted three times.

2.4. Feeding Rate Prediction Model Establishment and Field Experiment Verification

After time-domain and frequency-domain analyses of the collected vibration signals,
the proper signal characteristics and multiple linear regression method were used to estab-
lish a model to predict the feeding rate of the combine harvester. To simplify calculations,
the “Linear Regression” class of the scikit learn library in Python was used to create the
model. Then, the model validation was carried out to compare the predicted values from
the model with the theoretical values. Lastly, the field validation experiment was con-
ducted under conditions consistent with the previous experiments. Other experimental
conditions, such as the type and installation position of vibration sensors, were kept largely
consistent, except for the forward velocity to minimize the influence of external factors. In
the field validation experiment, five validation groups were conducted, and the forward
velocity of the combine harvester was controlled between 0.2 m·s−1 and 1.0 m·s−1. The
harvesting distance was kept consistent at 25 m. After completing the experiments, the
data were imported into the analysis software, and time-domain and frequency-domain
analyses were conducted with the same setting parameters. The required feature values
were extracted and plugged into the feeding rate prediction model to achieve feeding rate
prediction. Finally, the predicted values were compared with the theoretically estimated
feeding rates to analyze the errors.
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3. Results and Analysis
3.1. Time-Domain Analysis of Each Experimental Group

Taking Experiment Groups 0 to 4 as examples, the vibration signals collected by the
vibration acceleration sensors under different working conditions are illustrated within
the time domain, as shown in Figure 2. The horizontal axis represents the sampling
time, while the vertical axis represents the acceleration. An observation of the signal
variations from Experiment Groups 0 to 4 clearly indicates a gradual increase in vibration
signals with the increase in feeding rate. To further analyze the trend in vibration signals
collected from each experimental group, certain features were extracted from the time-
domain signals, including the mean, peak-to-peak value, standard deviation, and RMS.
These features provide more detailed insights into the temporal variations in the vibration
signals. The time-domain feature parameters of the vibration signals collected by Sensor
1 and Sensor 2 are listed in Table 4. From Table 4, it is evident that in each experimental
group, the peak-to-peak value, standard deviation, and RMS of Sensor 2 are consistently
significantly greater than Sensor 1. This indicates that the intensity of the vibration signal
measured at Sensor 2 is always greater than that at Sensor 1 under the same conditions. This
discrepancy is attributed to Sensor 2 being closer to the active axis of the conveyor, resulting
in larger vibration displacements and consequently higher vibration signal intensities. Such
differences need to be taken into account in data analysis to ensure that the specific sensor
installation positions are considered when interpreting changes.
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Figure 2. Time-domain signals of each experimental group.

It is also observed in Table 4 that the peak-to-peak values gradually increase from
Experiment Group 0 to Experiment Group 4. At Sensor 1, the peak-to-peak value rises
from 303.92 m·s−2 to 554.01 m·s−2, while at Sensor 2, it increases from 317.05 m·s−2 to
573.32 m·s−2. Since the peak-to-peak value represents the amplitude range of the waveform,



Agriculture 2024, 14, 589 8 of 15

this indicates that the amplitude range of the vibration signal increases with the feeding
rate. However, this increase is not linear, which is particularly evident when the feeding
rate increases from 1.47 kg·s−1 to 2.94 kg·s−1, where the peak-to-peak values remain nearly
the same. Furthermore, even as the feeding rate escalates to 4.41 kg·s−1, there is only a
slight increase in the peak-to-peak values. This suggests that the peak-to-peak value may
not provide favorable insight into changes in the feeding rate.

Table 4. Time-domain characteristic parameters of each experimental group (m·s−2).

Experiment
Scheme

Measurement
Point Mean Peak-to-

Peak
Standard
Deviation

Root Mean
Square

Group 0 1 −1.39 303.92 31.88 31.91
2 −1.14 317.05 37.29 37.31

Group 1 1 −1.19 513.69 49.49 49.50
2 4.60 525.79 50.28 50.31

Group 2 1 −1.16 504.02 58.60 58.61
2 −2.47 532.21 62.82 62.84

Group 3 1 −1.16 554.01 64.03 64.04
2 −1.36 573.32 68.07 68.09

The peak-to-peak value only provides the extreme amplitude range of the vibration
waveform and is insensitive to changes in the overall shape of the waveform. While RMS
values consider the direction of the signal, they can more comprehensively reflect the mag-
nitude of the vibration waveform. For complex waveforms, RMS values more accurately
represent the effective amplitude of the signal and are more sensitive to changes in the
waveform. An increase in an RMS value indicates a gradual increase in the vibration ampli-
tude. This increase may result from increased force in the mechanical system, changes in
excitation sources, or other external stimuli. Moreover, for vibration signals, the RMS value
can be considered as the average vibration energy of the signal, reflecting the distribution of
signal energy. Therefore, a gradual increase in the RMS value indicates a gradual increase
in vibration signal energy.

In Table 4, it is evident that as the feeding rate gradually increases, the RMS val-
ues of the signals also increase gradually. At Sensor 1, the RMS value increases from
31.91 m·s−2 to 64.04 m·s−2, while at Sensor 2, it increases from 37.31 m·s−2 to 68.09 m·s−2.
This experiment demonstrates that the vibration energy of the signals collected by both
sensors gradually increases with the increase in feeding rate.

3.2. Frequency-Domain Analysis of Each Experimental Group

Time-domain analysis is suitable for observing the changes in vibration signals over
time, while frequency-domain analysis provides important information about the frequency
characteristics of the signals. To analyze the different frequency components and their
relative strengths contained in the signal, the fast Fourier transform (FFT) is used to convert
the time-domain signal into the frequency-domain signal, generating a spectrum plot that
displays the amplitudes of various frequency components in the signal. As shown in
Figure 3, the spectrum plot typically has frequency on the horizontal axis and acceleration
magnitude on the vertical axis. From the spectrum plots of each experimental group, the
first four peak amplitudes and their corresponding vibration frequencies are extracted and
presented in Table 5.
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Table 5. Amplitude frequency and peak value of each experimental group.

Experiment
Scheme

Measurement
Point

Peak 1 Peak 2 Peak 3 Peak 4

Frequency
(Hz)

Amplitude
(m·s−2)

Frequency
(Hz)

Amplitude
(m·s−2)

Frequency
(Hz)

Amplitude
(m·s−2)

Frequency
(Hz)

Amplitude
(m·s−2)

Group 0 1 195.00 6.34 193.75 4.91 121.25 4.02 288.125 4.01
2 62.50 11.25 60.00 8.47 195.00 6.92 58.125 6.16

Group 1 1 326.25 9.77 325.00 9.30 193.75 6.98 191.875 6.78
2 57.50 8.20 193.75 7.47 191.875 7.30 305.00 6.06

Group 2 1 121.25 15.97 288.75 8.76 325.625 8.67 326.875 7.31
2 57.50 20.41 60.625 19.21 192.5 7.80 193.75 7.63

Group 3 1 196.875 14.85 323.75 10.71 121.25 10.23 194.375 9.03
2 65.625 22.56 196.875 15.49 57.50 14.65 194.375 10.00

To provide a clearer and more insightful analysis of the frequency characteristics of
vibration signals under varying feeding rate conditions, a one-third octave band analysis
of the frequency range from 2 to 1000 Hz was conducted on each spectrum plot to obtain
one-third octave bands. The specific data for each experimental group were exported from
the dynamic signal testing and analysis software and plotted as histograms, as shown in
Figure 4. It is worth noting that the plots represent RMS values, with frequency on the
horizontal axis and RMS on the vertical axis. Table 6 illustrates the one-third octave bands
of the spectrum for Sensor 1 in Experiment Group 0 within the frequency range of 2 to
1000 Hz, displaying the center frequencies and amplitudes of each sub-band. Next, the
data were processed to calculate the average, maximum, and total RMS values for both
sensors in each experimental group, as detailed in Table 7. The total RMS reflects the overall
vibration intensity across the entire frequency range, while the RMS of each sub-band
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provides more detailed frequency-domain information, reflecting the energy distribution
across different sub-bands.

RMSALL =

√√√√ M

∑
j=1

(
RMSj

)2 (9)

where M is the number of sub-bands in the one-third octave band analysis, dividing the
frequency range from 2 Hz to 1000 Hz into a total of 28 sub-bands, and RMSj represents
the RMS value of the j-th sub-band.
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Table 6. One-third octave bands of measurement point 1 in Experiment Group 0.

Center
Frequency

(Hz)

RMS
(m·s−2)

Center
Frequency

(Hz)

RMS
(m·s−2)

Center
Frequency

(Hz)

RMS
(m·s−2)

Center
Frequency

(Hz)

RMS
(m·s−2)

2 0.05 10 0.08 50 0.84 250 7.43
2.5 0.12 12.5 0.19 63 2.56 315 17.93

3.15 0.08 16 0.41 80 1.03 400 9.14
4 0.12 20 0.17 100 1.69 500 8.64
5 0.08 25 0.31 125 7.1 630 8.36

6.3 0.2 31.5 0.55 160 6.3 800 6.97
8 0.35 40 0.39 200 14.51 1000 5.27
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Table 7. Octave band analysis statistical values for each experimental group.

Experiment
Scheme

Measurement
Point No. Mean Maximum RMSAll

Group 0 1 3.60 17.93 31.52
2 4.66 18.33 37.19

Group 1 1 4.89 27.19 45.81
2 5.54 19.72 44.48

Group 2 1 6.13 30.57 55.41
2 7.42 26.84 60.15

Group 3 1 6.88 35.58 62.46
2 8.14 25.93 64.94

In Figure 4, the height of each bar represents the RMS value of each one-third octave
band, which can be used to indicate the energy intensity of all frequency components
within that band. Observing Figure 4, from Experiment Group 0 to Experiment Group
3, it is visually evident that the area under the curve for both Measurement Point 1 and
Measurement Point 2 gradually increases. Table 7 indicates that the average energy in the
frequency range of 2 Hz to 1000 Hz at both measurement points gradually increases as the
feeding rate increases. Moreover, the average energy at Measurement Point 2 is consistently
greater than that at Measurement Point 1. On the other hand, considering the analysis from
the perspective of the maximum RMS value, in octave band analyses, if the RMS value
of a particular band remains the maximum among all bands, it indicates that this band is
the most concentrated energy part of the signal, implying that the signal has the strongest
vibration intensity or the highest energy level in this frequency range. In summary, the
significance of the RMS value of a particular band in octave band analyses indicates the
importance of that band in the entire signal.

In Figure 4, it is evident that the height of the octave band centered at 315 Hz for
Measurement Point 1 remains consistently maximal across all experimental groups, while
for Measurement Point 2, the heights of the octave bands centered at 63 Hz and 315 Hz are
notably prominent. This indicates that the octave band centered at 315 Hz dominated, con-
sistently providing higher vibration intensity within its frequency components. Focusing
on the amplitude of the octave band at 315 Hz, from Experiment Group 0 to Experiment
Group 4, at Measurement Point 1, the amplitude gradually increased from 17.93 m·s−2 to
35.58 m·s−2, and at Measurement Point 2, it increased from 13.49 m·s−2 to 25.93 m·s−2.
This implies that the vibration intensity of the dominant octave band within the octave
band analysis increases with the increase in feeding rate.

Finally, the changes in the overall RMS values were analyzed, which calculate the
square root of the sum of squares of the amplitudes of all octave bands, reflecting the
overall vibration intensity across the entire frequency range. The increase in the overall
RMS values indicates an increase in the overall vibration energy. Looking at the changes in
the overall RMS values in the last column of Table 7, at Measurement Point 1, it gradually
increased from 31.52 m·s−2 to 62.46 m·s−2, while at Measurement Point 2, it gradually
increased from 37.19 m·s−2 to 64.94 m·s−2. This again confirms that an increase in the
feeding rate leads to an increase in the vibration intensity, consistent with the time-domain
analysis results, and the magnitude of the increase trend decreases gradually. Additionally,
it is worth noting that the average vibration intensity at Measurement Point 1 is lower than
at Measurement Point 2 in Group 1, but the overall vibration intensity is slightly higher.
This is because the RMS value is more sensitive to extreme values in the data; the presence
of greater variability or extreme values in the data at Measurement Point 1 leads to a higher
RMS value, which may not significantly affect the average value.

3.3. Feeding Rate Prediction Model Establishment

After time-domain and frequency-domain analyses of the collected signals, the time-
domain RMS value and the total RMS value of the one-third octave are used to predict the
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feeding rate. We set the RMS of Measurement Point 1 in the time domain as Y1, the RMS in
the time domain of Measurement Point 2 as Y2, the total RMS of the octave of Measurement
Point 1 as Y3, the total RMS of the octave of Measurement Point 2 as Y4, and the feeding
rate as W. The calculated relationships are shown in Table 8.

Table 8. Mapping of feeding rate to feature values.

Feature Values
Feeding Rate (kg·s−1) (W)

0 1.47 2.94 4.41

Time-domain
RMS

Measure Point 1 (Y1) 31.91 49.50 58.61 64.04
Measure Point 2 (Y2) 37.31 50.31 62.84 68.09

Total RMS of
octave band

Measure Point 1 (Y3) 31.52 45.81 55.41 62.46
Measure Point 2 (Y4) 37.19 44.48 60.15 64.94

The multiple linear regression method was used to simultaneously consider the values
of Y1, Y2, Y3, and Y4 to predict the feeding rate W. Firstly, a predictive model equation was
established and constructed, as shown in the following equation, where W is the dependent
variable and Y1, Y2, Y3, and Y4 are independent variables:

W = β0 + β1Y1 + β2Y2 + β3Y3 + β4Y4 (10)

where β0 is the intercept and β1, β2, β3, and β4 are the coefficients.
To simplify calculations, the “Linear Regression” class of the scikit learn library in

Python was used to create the model. The calculation results are shown in Table 9. After
substituting into Equation (10), Equation (11) is obtained.

W = −4.3809 − 0.1876Y1 − 0.0872Y2 + 0.3987Y3 + 0.0283Y4 (11)

Table 9. Specific values of the intercept and coefficients.

Category β0 β1 β2 β3 β4

Value −4.3809 −0.1876 −0.0872 0.3987 0.0283

Then, the feature value and feeding rate correlation were validated by back-substituting
the initial condition data into Equation (11) and comparing the predicted values from the
model with the theoretical values. The results are presented in Table 10. These results
demonstrate that the theoretical feeding rate and the model-predicted feeding rate are
almost identical, with only minimal numerical discrepancies, which indicates that the
multiple linear regression model performs exceptionally well on the dataset.

Table 10. Comparison of the theoretical and predicted feeding rate.

Category Y1 Y2 Y3 Y4
Theoretical

W
Modeling

W
Relative

Error

Group 0 31.91 37.31 31.52 37.19 0 0.0034 /
Group 1 49.50 50.31 45.81 44.48 1.47 1.4747 0.32%
Group 2 58.61 62.84 55.41 60.15 2.94 2.9405 0.02%
Group 3 64.04 68.09 62.46 64.94 4.41 4.4084 0.04%

3.4. Field Test Verification

To validate the accuracy of this feeding rate prediction model, a field test was carried
out, and the corresponding field results are shown in Table 11. In Table 11, the theoretical
estimated feeding rate for validation group 1 is 0.98 kg/s, while the predicted feed rate
calculated by the model is 1.01 kg/s, resulting in a relative error of 3.1%. For validation
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group 5, the theoretical value is 5.88 kg/s, and the predicted value is 5.59 kg/s, resulting
in a relative error of 4.9%. It is observed that the maximum error occurs in the fifth test,
indicating a negative impact of forward velocity on the relative error. With increasing
forward velocity, the relative error also increases. The possible reason for this phenomenon
could be that as the forward velocity increases, the unevenness of the experimental field
has a greater impact on the machine’s vibration. Moreover, larger feed rates introduce more
uncertainty factors, posing a greater challenge to the stability of the prediction model’s
performance, and thereby increasing the error in the prediction model. The results of these
five validation trials strongly demonstrate that the prediction model established based on
time-domain- and harmonic analysis-derived features accurately predicts the feeding rate,
with only minimal relative errors compared to the theoretical estimated feeding rate.

Table 11. Summary of the field validation experimental data and analysis.

Verification
Group No.

Harvesting
Distance

(m)

Forward
Speed

(m·s−1)

Predicted
Feeding Rate

(kg·s−1)

Theoretical
Feeding Rate

(kg·s−1)

Relative
Error (%)

Group 1 25 0.2 1.01 0.98 3.1
Group 2 25 0.4 2.03 1.96 3.6
Group 3 25 0.8 3.75 3.92 4.3
Group 4 25 1.0 4.68 4.90 4.5
Group 5 25 1.2 5.59 5.88 4.9

4. Conclusions

The feeding rate is one of the important factors that affect the performance of com-
bine harvesters. By installing vibration acceleration sensors at the bottom of the inclined
conveyor, the influence of feeding rate on the vibration characteristics of the combined
harvester inclined conveyor was investigated. By analyzing the vibration signals variation
under the time domain, it was found that the vibration energy gradually increased as the
feeding rate increased, and the peak-to-peak value, standard deviation, and RMS of Sensor
2 were consistently greater than those of Sensor 1, which was attributed to the different
installation positions of the sensors and their varying influences from vibration excita-
tion sources. The subsequent analysis of time-domain feature values across experimental
groups revealed a gradual increase in peak-to-peak values with feeding rate, albeit with
fluctuations, while RMS values increased gradually, reflecting the increase in vibration
signal energy. Although peak-to-peak values provide the amplitude range of vibration
signals, they are less sensitive to changes in overall shape; in contrast, RMS values more
comprehensively reflect the magnitude of a vibration waveform and are more sensitive to a
complex waveform.

Furthermore, sampling frequency settings and the number of spectral lines were
determined according to the Nyquist theorem in a frequency-domain analysis to ensure
accurate signal analysis, while a one-third octave analysis deepened the understanding of
the frequency domain characteristics of vibration signals. It was indicated that (1) with an
increase in the feeding rate, the average vibration signal energy within the frequency range
of 2 Hz to 1000 Hz gradually increased, and the average energy at Sensor 2 was always
greater than that at Sensor 1. (2) Sub-bands centered at 315 Hz dominated the frequency
domain, exhibiting significance in the one-third octave analysis. The frequency components
within this sub-band provided significant vibration intensity, and the amplitude of this
sub-band significantly increased at both Sensor 1 and Sensor 2, indicating that vibration
intensity within this sub-band increased with an increasing feeding rate. (3) From the
changes in total RMS values, it was observed that the total RMS values at both Sensor 1 and
Sensor 2 increased with an increasing feeding rate, further demonstrating that increasing
the feeding rate led to increased vibration intensity.

Finally, through time-domain and frequency-domain analyses of vibration signals, a
model was established considering the time-domain RMS values and total RMS values of
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Sensor 1 and Sensor 2, using multiple linear regression to explore the relationship between
these features and the feeding rate. Field validation experiments confirmed the model’s
reliability, with relative errors ranging from 3.1% to 4.9%, indicating that the model can
achieve relatively accurate feeding rate prediction results. This research provides a powerful
non-invasive diagnostic method for feeding rate control of combine harvesters, offering
important theoretical and practical support for improving the efficiency of agricultural
machinery and reducing grain losses.
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