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Abstract: Adequate bone development is imperative for maintaining the health and productivity of
laying hens. Probiotics play a pivotal role in promoting bone formation and preventing osteoporosis.
This study aimed to explore the effect of Akkermansia muciniphila (Akk) on the bone development
and eggshell quality of laying hens during the rearing period. A total of 300 1-day-old Jingfen NO. 6
commercial pullets were categorized into two groups, one of which was fed a conventional diet for
20 weeks (Control group), the other group was fed a conventional diet with lyophilized Akk powder
for 20 weeks (Akk group). During the first two weeks, pullets in the Akk group received live Akk
inoculation, while birds in the Control group received normal saline administration. Micro-computed
tomography analysis was employed to evaluate three bone microarchitectures: cortical bone (Cb),
trabecular bone (Tb), and medullary bone (Mb). Our findings revealed that supplementation with
Akk powder increased the thickness and bone mineral content of Cb and Tb, while simultaneously
reducing the volume and bone surface area of Mb. The increased activity of alkaline phosphatase, a
marker of osteogenesis, and the decreased activity of tartrate-resistant acid phosphatase, a marker
of osteoclastic activity, were observed in the Akk group. Dietary supplementation of Akk pow-
der improved the immune microenvironment in the bone marrow by increasing osteogenic-related
CD8+ T cells and decreasing osteoclastogenesis-related CD4+ T cells. Additionally, Akk powder
supplementation significantly enriched the Lactobacillaceae family in cecum. The enhancement of
bone development by Akk contributed to increased eggshell strength and thickness. These find-
ings demonstrate the osteomodulatory effects of Akk in laying hens and the connections between
bone physiology and eggshell quality, highlighting the importance of gut–bone communications in
laying hens.
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1. Introduction

Eggs are a valuable and cost-effective source of animal protein. With growing demand
for human consumption, the concept of “long-life laying hens”, capable of producing
500 eggs within a laying cycle of 100 weeks, was initially proposed in Europe to enhance
persistency in egg production [1]. Extending laying cycles could significantly decrease
the number of hens raised and reduce feed consumption, consequently lowering breeding
costs, enhancing animal welfare, and alleviating environmental pressures associated with
chicken farming [1].

The commercial poultry industry encounters several challenges as longer laying cycles
necessitate sustainable egg quality and the long-term maintenance of health, particularly
of the tissues and organs involved in egg production [1,2]. The bones of laying hens are
among the organs closely associated with egg production, and osteoporosis has long been
a significant welfare challenge in the egg industry [3]. Caged laying hens with high daily
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production are particularly susceptible to osteoporosis due to their unique bone microarchi-
tecture [4]. Unlike mammals, the long bones of laying hens comprise three distinct types of
microarchitectures: cortical bone (Cb), trabecular bone (Tb), and medullary bone (Mb) [5,6].
Bones undergo continuous renewal through bone remodeling, a process regulated by
the balance between osteoclast-mediated bone resorption and osteoblast-mediated bone
formation [7]. In most vertebrates, the growth plates close at puberty, halting long bone
growth [8]. In young pullets, the growth of Cb and Tb persists until the onset of sexual
maturity [9]. Following sexual maturity and under the influence of estrogen, osteoblasts
form Mb rather than Cb or Tb [10–13]. During eggshell formation, calcium is absorbed
from the blood at a higher rate than the average absorption rate from the diet, necessitating
osteoclasts to mobilize calcium reserves from the Mb to maintain balance [1,14]. Studies
have reported rapid changes in the microarchitecture of Mb and serum concentrations of
bone resorption markers throughout the daily oviposition cycle [14,15]. Laying hens have
a particularly high demand for calcium to support eggshell formation. However, during
the early stages of egg production, the insufficient development of the Mb can lead to the
resorption of Cb and Tb by osteoclasts to fulfill calcium requirements [4,16]. The traditional
cage system further suppresses bone development by restricting movement and keeping
hens standing for prolonged periods [17]. This inadequate development can ultimately
lead to bone loss and increased fracture risk in laying hens [3,16,18]. Therefore, promoting
proper bone development during the rearing period becomes crucial for ensuring the
overall well-being and productivity of laying hens [19].

Bone development is regulated by a variety of factors, including nutrition, exercise,
hormones, and immune cells [20–24]. In recent years, an increasing body of research has
illuminated the pivotal role of gut microbiota and their metabolites in bone remodeling,
which ultimately affects bone metabolism through gut–bone communication [25,26]. Some
probiotics, such as Lactobacillus reuteri, Lactobacillus rhamnosus GG, Bifidobacterium longum,
Bifidobacterium adolescentis, and Akkermansia muciniphila (Akk), have been shown to be
beneficial for bone health [21,27–30]. Akk is a symbiotic bacterium in the gut of animals,
utilizing mucus as a single nutrient source [31,32]. Given its safety in host health and
its pivotal contributions to mitigating disease, Akk is increasingly recognized as a next-
generation probiotic [32–38]. Studies have indicated that the abundance of Akkermansia
in children’s gut microbiota surpasses that in older individuals, and fecal microbiota
transplantation (FMT) from children offers superior protection against ovariectomized
(OVX)-induced osteoporosis [30]. Akk also has a direct correlation with bone formation.
For example, exposure to warmth (34 ◦C), as opposed to room temperature (RT), enhanced
tibial bone volume and the abundance of Akkermansia in female mice [7]. Conversely, OVX
mice exhibited a lower abundance of Akkermansia compared to mice undergoing sham
operations [30]. Warm-exposed FMT augmented tibial breaking strength and bone volume
in OVX mice compared with RT-exposed FMT [7]. Akk directly prevents OVX-induced
osteoporosis by increasing osteogenic activity and inhibiting osteoclastogenesis through the
secretion of extracellular vesicles [30]. Moreover, Akk has also been reported to promote
the healing of bone fractures and mitigate Porphyromonas gingivalis-induced alveolar bone
destruction [39–41]. Nevertheless, there is a dearth of research on the effects of Akk on
bone development in laying hens.

Building upon the recognized benefits of Akk on bone physiology, the purpose of
this study was to assess the impact of Akk on bone development in laying hens during
the rearing period, along with investigating the underlying mechanisms. Furthermore,
the study aimed to explore whether the alterations in bone physiology following Akk
treatment affect eggshell quality. This study provides new perspectives for microbial-based
interventions for enhancing the bone health of laying hens.
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2. Materials and Methods
2.1. Preparation of Akkermansia muciniphila Suspensions and Lyophilized Powder

Akkermansia muciniphila ATCC BAA-835 (Akk) was cultured in modified Gifu Anaero-
bic Medium broth (GAM, HB8518, Hope bio Co., Ltd., Tsingtao, China) at 37 ◦C under anaer-
obic conditions (10% H2, 10% CO2, 80% N2; Don Whitley Scientific DG250, West Yorkshire,
UK). The identity of Akk was confirmed by amplifying the 16S rRNA gene using primers
27F (5′-AGA GTT TGA TCA TGG CTC A-3′) and 1492R (5′-TAC GGT TAC CTT GTT ACG
ACT T-3′). After 48 h, Akk were harvested by centrifugation at 8000 rpm for 10 min at
4 ◦C, resuspended in sterile PBS containing 20% glycerol, and finally stored at −80 ◦C
until use. Bacterial suspensions were diluted with sterile PBS to 3.5 × 108 CFU/mL (final
glycerol concentration: 2%) and activated in a water bath at 37 ◦C for 10 min before use. For
lyophilized powder preparation and Akk fermentation broth were centrifuged at 8000 rpm
for 10 min and the supernatant was discarded. A solution containing 10% skimmed milk
powder was then added to the precipitate, followed by mixing and vacuum freeze-drying
for 24 h. The obtained lyophilized powder was stored at −20 ◦C.

2.2. Ethics Statement

All the work using animals was approved by the Animal Care and Use Committee
of China Agricultural University (statement no. AW10204202-1-3). All procedures were
conducted in accordance with the institutional animal ethics guidelines set by the Ministry
of Agriculture and Rural Affairs of the People’s Republic of China.

2.3. Animals

A cohort of 300 1-day-old Jingfen NO. 6 commercial pullets were categorized into
two groups based on body weight, with each group comprising 10 replicates of 15 birds
each. Before reaching 10 weeks of age, groups of 15 pullets were accommodated in a
140 × 70 × 40 cm cage. Subsequently, after 10 weeks, groups of 3 pullets were housed
in stainless-steel ladder cages (45 × 45 × 45 cm). All birds in this study had ad libitum
access to feed and water. The environmental conditions, including room temperature and
humidity, were automatically regulated in accordance with Jingfen NO. 6 Commercial
Pullets Feeding Management protocol. The experiment spanned 20 weeks. The diet
comprised a conventional diet for the Control group and a conventional diet supplemented
with 107 CFU Akk powder per gram of feed (approximately 1 × 109 CFU per bird per day)
for the Akk group throughout the trial period (weeks 1–20). During the initial two weeks,
birds in the Akk group received live Akk inoculation (1 mL/bird/day) at a concentration of
3.5 × 108 CFU/mL every other day. Birds in the control groups were administered normal
saline. The average feed intake was counted at weeks 6, 12, and 18, respectively. The
average body weight and shank length of the flock were quantified at week 20. Hens with
similar body weight and shank length from each group were selected for tissue collection.
All the hens were euthanized by exsanguination. The liver and abdominal fat were weighed.
The femur and cecal contents were immediately frozen in liquid nitrogen and stored at
−80 ◦C for further analysis (Table 1).

Table 1. Composition and nutrient levels of the experimental basal diets in laying hens.

Items Content, %

Week 1–2 3–6 7–10 11–14 15–20

Corn (CP 7.8%) 60.307 63.893 66.446 67.878 66.370
Soybean meal (CP 44%) 34.104 31.386 26.298 18.179 22.543
Soybean oil 1.200 0.339 0.000 0.000 0.000
Corn gluten meal (60%) 0.000 0.000 0.000 1.606 1.393
Wheat bran (15.7%) 0.000 0.000 2.931 7.575 1.475
Calcium hydrogen phosphate 1.900 2.131 2.180 2.096 1.906
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Table 1. Cont.

Items Content, %

Week 1–2 3–6 7–10 11–14 15–20

Limestone 1.300 1.165 1.182 1.865 5.150
Sodium chloride 0.389 0.388 0.256 0.218 0.352
Mineral premix a 0.300 0.300 0.300 0.300 0.300
DL-Methionine, 98% 0.220 0.219 0.179 0.103 0.228
L-Lysine sulphate, 78% 0.100 0.000 0.047 0.000 0.104
Choline chloride, 50% 0.100 0.100 0.100 0.100 0.100
Vitamin premix b 0.040 0.040 0.040 0.040 0.040
Ethoxyquinoline, 33% 0.020 0.020 0.020 0.020 0.020
Phytase 10,000 c 0.020 0.020 0.020 0.020 0.020
Total 100 100 100 100 100
Nutrient levels
Metabolizable energy, Mcal/kg 2.887 2.860 2.830 2.800 2.750
Lysine, % 1.236 1.086 1.000 0.776 0.840
Methionine, % 0.541 0.529 0.470 0.384 0.490
Methionine + cystine, % 0.877 0.855 0.780 0.686 0.760
Crude protein, % 20.000 19.000 17.500 15.800 16.200
Nonphytate phosphorus, % 0.405 0.440 0.450 0.440 0.500
Calcium, % 1.010 1.000 1.000 1.200 2.500
Phosphorus, % 0.671 0.699 0.703 0.678 0.770

a: Mineral premix provided per kilogram of complete diet: iron 80 mg; copper 8 mg; manganese 60 mg; zinc
80 mg; iodine 1.2 mg; selenium 0.15 mg. b: Vitamin premix provided per kilogram of complete diet: vitamin A
12,000 IU; vitamin D3 2500 IU; vitamin E 30 IU; vitamin K3 2.65 mg; vitamin B12 0.025 mg; biotin 0.15 mg; folic
acid 1.25 mg; nicotinic acid 50 mg. c: Phytase 10,000: enzymes of feed grade with the specification of 10,000 U/g.

2.4. Micro-Computed Tomography Analysis

The right femurs of laying hens at 20 weeks were scanned using micro-computed
tomography (micro-CT, NEMO, PINGSENG Healthcare Inc., Kunshan, China). Samples
were scanned at 90 kV, 0.065 mA, in 3 cm-diameter holders. The CT reconstruction al-
gorithm was FDK, the CT field of view was 15 mm, the pixel size was 0.0146 mm, and
the slice thickness was 0.025 mm. Three-diameter reconstruction and analyses were con-
ducted with the software Avatar (2.0.12.0, PINGSHENG Healthcare). For the femoral
microarchitecture region, we analyzed 3 mm beginning with 3 mm below the landmark, as
shown in Figure S1A. Three-dimensional images were reconstructed for visualization using
the provided software. Image segmentation employed an adaptive-iterative threshold
approach to differentiate between cortical bone (Cb), trabecular bone (Tb), and medullary
bone (Mb). The different variables were measured and are described in Table 2 as defined
by the previous study [42].

Table 2. Definition and description of the microarchitecture of the femur from micro-CT.

Abbreviation Description of Variables Unit

BV Bone volume of the bone segment mm3

TV Total volume of the entire region of interest mm3

BV/TV The ratio of bone volume to total volume %
BS Bone surface area of the bone segment mm2

BS/TV The ratio of bone surface area to total volume %
BMC Bone mineral content mg
BMD Bone mineral density g/cm3

Th Thickness of the microarchitecture mm
Tb. Sp Mean distance between trabeculae mm
Tb. N Trabecular bone number mm−1

BM. CV/TV The volume of the medullary cavity versus total femur volume ratio %
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2.5. Determination of Alkaline Phosphatase Activity

Before alkaline phosphatase (ALP) activity assays, femurs were placed in ceramic
crucibles and ground in liquid nitrogen. After grinding thoroughly, 0.1 g powders were col-
lected in 2 mL tubes containing 1 mL cell lysis buffer (P0013J, Beyotime Biotechnology Co.,
Ltd., Shanghai, China). After a brief vortex lysis, samples were centrifuged at 12,000 rpm
for 15 min at 4 ◦C. A total of 100 µL of the supernatant was collected for the determination
of ALP activity. According to the manufacturer’s instructions (P0321S, Beyotime Biotechnol-
ogy Co., Ltd., Shanghai, China), 50 µL of the reactive solution (para-nitrophenyl phosphate,
pNPP) was mixed with 50 µL of sample and incubated at 37 ◦C for 30 min. The reaction
was stopped with 100 µL stop solution. The absorbance of the sample was measured at
405 nm. The concentration of the total protein was measured using the BCA Protein assay
kit (P0009, Beyotime Biotechnology Co., Ltd., Shanghai, China). The ALP activity was
normalized to total protein, which was expressed as µM p-nitrophenol/g protein/min.

2.6. Determination of Tartrate-Resistant Acid Phosphatase Activity

Tissue lysis was performed as described above. According to the manufacturer’s
instructions (P0321S, Beyotime Biotechnology Co., Ltd., Shanghai, China), 40 µL of the
pNPP plus 5 µL tartaric acid solution was mixed with 40 µL sample and incubated at 37 ◦C
for 30 min. The reaction was stopped with 160 µL stop solution. The absorbance of the
sample was measured at 405 nm. The tartrate-resistant acid phosphatase (TRAP) activity
was normalized to total protein, which was expressed as µM p-nitrophenol/g protein/min.

2.7. 16S rRNA Gene Sequencing and Analysis

The cecal contents of chickens were collected for microbiome analysis. 16S rRNA gene
sequencing was conducted by Biomarker Technologies Co., Ltd. (Beijing, China). Shannon
index, Simpson index, ACE index, and Chao1 index were used to measure community
diversity. Beta diversity was evaluated by principal coordinate analysis to classify multiple
samples and further demonstrate the differences in species diversity between samples.
Relative abundances at the genus levels were statistically compared between the groups.
Linear discriminant analysis (LDA) effect size (LEfSe) was used to identify the differences
in microbial composition and to search for biomarkers with statistical differences between
different groups. The Circos plot describes the correspondence between groups and genera,
which not only reflects the proportion of dominant genera in each group but also reflects
the distribution proportion of dominant genera in different groups. All the analysis was
performed using BMKCloud (https://international.biocloud.net/zh/dashboard (accessed
on 26 September 2023)).

2.8. Preparation of Lymphocytes and Flow Cytometry

Single-cell suspensions of bone marrow were prepared as previously described [21].
Briefly, following the separation of the hen’s tibia and femur and the removal of muscles,
the epiphysis was excised, and the bone marrow was flushed with RPMI 1640 medium
(31800, Solarbio Technology Co., Ltd., Beijing, China) supplemented with 10% fetal bovine
serum (v/v, NEWZERUM Ltd., Christchurch, New Zealand) until the bone became hollow.
Subsequently, the bone marrow suspension was filtered through a 70-mesh cell sieve into
a centrifuge tube. The bone marrow within the cell sieve was gently crushed using the
syringe plunger. The bone marrow was further rinsed with RPMI medium and filtered
in a centrifuge tube. The cell suspension was centrifuged at 600× g, 4 ◦C for 4 min, after
which the supernatant was discarded, and approximately 6 mL of red blood cell lysis buffer
(R1010, Solarbio Technology Co., Ltd., Beijing, China) was added to the tube. After 5 min
of lysis, 40 mL of PBS was added to the tube, and the cell suspension was centrifuged at
600× g, 4 ◦C for 4 min. The cell suspension was then re-filtered through a 70-mesh sieve
and stored in a centrifuge tube, resulting in single-cell suspensions of bone marrow. The
concentration was adjusted to 2 × 106 cells/mL using PBS before staining. Staining was
performed for 30 min on ice in PBS containing 1% FBS. The antibodies used are listed in

https://international.biocloud.net/zh/dashboard
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Table S1. Cells were acquired with a Coulter XL (Beckman Coulter, Brea, CA, USA), and
analysis was performed with FlowJo (10.7.2) and FCS Express 6 Flow software.

2.9. Measurement of Egg Quality

At the conclusion of week 20, 5 eggs from each replicate (totaling 50 eggs per group)
were randomly chosen for egg quality assessment. Egg quality was determined on three
consecutive days, with egg collection conducted each day. Eggshell thickness, egg width,
and egg length were assessed using a vernier caliper. The value of the egg shape index
is defined as the egg’s width to length ratio. Egg weight, eggshell breaking strength,
Haugh unit, and yolk color were determined using the Nabel DET-6000 egg analyzer
(Kyoto, Japan). Eggshell strength was determined by measuring the maximum horizontal
mechanical force experienced by the egg’s long axis when laid flat.

2.10. Statistical Analysis

Statistical analyses were conducted using SPSS version 20.0. Data are presented as
means ± standard deviations (SD) unless indicated otherwise. Differences between the
two groups were evaluated using a Two-tailed unpaired Student’s t-test. p < 0.05 was
considered statistically significant.

3. Results
3.1. Effect of Akkermansia muciniphila Powder on Growth Performance of Laying Hens

Throughout the experiment, spanning weeks 0–6, 0–12, and 0–18, the introduction
of Akkermansia muciniphila (Akk) powder into the diet did not yield significant alterations
in the average daily feed intake (ADFI) among the experimental groups (Table 3). By the
20-week mark, comparisons between the groups revealed no notable changes in body
weight, shank length, abdominal fat percentage, or hepatosomatic index (Figure 1A–D).
These findings collectively suggest that Akk did not affect the growth performance of
laying hens.
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Table 3. Effect of Akk supplementation on average daily feed intake of laying hens.

Items Control Akk SEM p Value

0–6 weeks, g 19.95 19.42 0.35 0.15
0–12 weeks, g 36.23 35.55 0.32 0.05
0–18 weeks, g 45.85 45.00 0.55 0.11

3.2. Dietary Supplementation of Akk Powder Promotes Bone Development

Ensuring sufficient bone development before sexual maturity is crucial for laying hens.
The microarchitectures of cortical bone (Cb), trabecular bone (Tb), and medullary bone (Mb)
were assessed and quantified using micro-CT (Figure 2A). As for Cb microarchitecture, Akk
supplementation resulted in significant enhancements in cortical bone thickness (Cb. Th)
and cortical bone mineral content (Cb. BMC) (Figure 2C,D), without significant effects on
cortical bone volume (Cb. BV) and cortical bone mineral density (Cb. BMD) (Figure 2B,E).
Regarding Tb parameters, the trabecular bone thickness (Tb. Th) exhibited a significant
increase following Akk powder supplementation (Figure 3F). Significant differences were
not observed in the ratio of trabecular bone volume to total femur volume (Tb. BV/TV),
the ratio of trabecular bone surface area to total femur volume (Tb. BS/TV), trabecular
bone mineral density (Tb. BMD), trabecular bone mineral content (Tb. BMC), trabecular
bone spacing (Tb. Sp), and trabecular bone number (Tb. N) (Figure 3A–E,G). The ratio of
the bone marrow cavity volume to the total femur volume (BM. CV/TV) did not differ
significantly between the Control and Akk groups (Figure 3H). The quantitative analysis
of Mb parameters revealed that hens in the Akk group exhibited lower medullary bone
volume (Mb. BV) and medullary bone surface area (Mb. BS) compared to the Control group
(Figure 4A,C). Both the ratio of Mb. BV to total femur volume (Mb. BV/TV) and the ratio
of Mb. BS to total femur volume (Mb. BS/TV) showed no significant difference in the two
groups (Figure 4B,D). Neither medullary bone mineral density (Mb. BMD) nor medullary
bone mineral content (Mb. BMC) appeared to be affected by Akk powder supplementation
(Figure 4E,F).
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the ratio of trabecular bone volume to total femur volume (Tb. BV/TV) (A), the ratio of trabecular
bone surface area (BS) to total femur volume (Tb. BS/TV) (B), trabecular bone mineral density (Tb.
BMD) (C), trabecular bone mineral content (Tb. BMC) (D), trabecular bone spacing (Tb. Sp) (E),
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the volume of the medullary cavity versus total femur volume ratio (BM. CV/TV). Data are shown as
mean ± SD (n = 10 per group). * p < 0.05.

In the femur, the activities of alkaline phosphatase (ALP), indicative of osteoblast
differentiation, and tartrate-resistant acid phosphatase (TRAP), a marker of osteoclastic ac-
tivity, were evaluated. Dietary supplementation with Akk powder resulted in a significant
increase in ALP activity, but the suppression of TRAP activity (Figure 4G,H), suggesting
enhanced bone formation during bone remodeling, thereby facilitating the accumulation of
bone mass.
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To explore the impact of Akk treatment on immune cells, the proportions of immune 
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Figure 4. Effect of Akk powder supplementation on medullary bone development, alkaline phos-
phatase activity, and tartrate resistant acid phosphatase activity. Quantification of medullary bone
volume (Mb. BV) (A), the ratio of medullary bone volume to total femur volume (Mb. BV/TV)
(B), medullary bone surface area (Mb. BS) (C), the ratio of medullary bone surface area to total
femur volume (Mb. BS/TV) (D), medullary bone density (Mb. BMD) (E), and medullary bone
mineral content (Mb. BMC) (F). (G) Measurement of alkaline phosphatase (ALP) activity in the femur.
(H) Measurement of tartrate-resistant acid phosphatase (TRAP) activity in the femur. Data are shown
as mean ± SD (n = 10 per group). * p < 0.05, *** p < 0.001.

3.3. Effect of Akk on Immune Cells Associated with Bone Remodeling in Bone Marrow

To explore the impact of Akk treatment on immune cells, the proportions of immune
cells in the bone marrow were analyzed using flow cytometry, with the gating strategy
outlined in Figure S1B. Regarding bone marrow immune cells, Akk led to a reduction in
the proportion of CD4+ T cells (Figure 5A). Conversely, the number of CD8+ T cells notably
increased following Akk supplementation (Figure 5B), while CD25+ T cells remained
unchanged post-Akk powder supplementation (Figure 5C). Additionally, KuL01+ cells,
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representing osteoclast precursor cells in the bone marrow, exhibited a significant increase
in the Akk powder-treated group (Figure 5D).
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3.4. Effect of Akk on the Abundance and Diversity of Cecal Microbiota

To evaluate the influence of Akk supplementation on the cecal microbial communities,
we conducted the 16S rRNA sequencing of cecal contents. No significant alterations were
observed in the Shannon, Simpson, ACE, and Chao1 indices, suggesting that the diversity of
cecal microbial communities remained stable (Figure 6A–D). Principal coordinate analysis
(PCoA) also confirmed similar microbial diversity across the groups (Figure 6E). At the
genus level, the top fifteen communities exhibited comparability between Control and Akk
groups (Figure 7A,B). Linear discriminant analysis (LDA) effect size (LEfSe) analysis at the
family level revealed that the uncultured_Firmicutes_bacterium predominated in the Control
group, whereas Lactobacillaceae was enriched in the Akk group (Figure 7C).
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the bacterial communities at the family level were tested by linear discriminant analysis effect size,
with linear discriminant analysis (LDA) score > 2 and p < 0.05. n = 10 per group.



Agriculture 2024, 14, 598 12 of 18

3.5. Dietary Supplementation of Akk Powder Increases Eggshell Quality

Egg weight showed no significant difference between the Control and Akk groups
(Figure 8A). The egg shape index in the Akk group was significantly higher than that of the
Control group (Figure 8B). The supplementation with Akk powder resulted in a consider-
able increase in eggshell strength and a trend towards thicker eggshells (Figure 8C,D). A
stronger eggshell can help reduce the risk of breakage during transportation. Regarding
internal quality, there were no changes observed in the Haugh unit or egg yolk color
following Akk powder treatment (Figure 8E,F).
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4. Discussion

The gut microbiota represents a key regulator of bone metabolism [43]. As a distin-
guished next-generation probiotic, Akk plays a significant role in modulating host bone
remodeling and mitigating osteoporosis. Ensuring optimal bone development in laying
hens is not only vital for the health of the host, but also for sustaining a productive laying
cycle. This study provides novel insights into the gut-bone axis in laying hens. Dietary
supplementation with lyophilized Akk powder facilitated postnatal bone development by
enhancing bone formation, ultimately leading to improvements in eggshell quality.

The period preceding sexual maturity is critical for the skeletal development of laying
hens. Previous studies have consistently demonstrated that neither live nor pasteurized
Akk adversely affects host physiology [30,44]. Our findings further validate these results,
indicating that Akk supplementation does not hinder the growth of laying hens. Notably,
Akk supplementation significantly enhanced the development of Cb, characterized by
increased volume and thickness, potentially conferring resistance to physical impacts.
During the early stages of egg production, a higher mineral content in the Cb may contribute
to enhanced eggshell formation. Tb serves as a crucial indicator of bone health in mammals,
with degradation of Tb microarchitecture, manifested by reduced thickness and volume
along with increased spacing, being a hallmark feature of osteoporosis onset [42,45]. Akk
exhibited the most pronounced effects on Tb. Th, with greater thickness potentially offering
mechanical protection. A previous study reported that Akk directly increases the bone
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mass of Cb and Tb by increasing osteogenic activity and inhibiting osteoclastogenesis [30].
The observed increase in ALP activity and decrease in TRAP activity in the Akk group were
consistent with this, indicating that bone formation outweighs bone resorption following
Akk powder supplementation, leading to bone mass accumulation.

Research on the development of Mb in birds remains relatively limited. Previous
studies have indicated that the Mb of elderly laying hens gradually fills the bone marrow
cavity, displaces the Tb, and ultimately increases the BMD and bone strength [46,47].
Additionally, within the daily egg-laying cycle, a negative correlation has been observed
between the surface area of Mb and Tb [15]. Our findings suggest that lower Mb. BV and
Mb. BS in the Akk group are correlated with higher bone formation and eggshell quality.
Therefore, we speculate that the excessive formation of Mb during the sexual maturation
of laying hens may compromise Cb and Tb development, adversely affecting eggshell
formation. Further research is warranted to investigate the effects of medullary bone
volume during sexual maturity on the subsequent oviposition performance of laying hens.

One of the mechanisms by which gut microbiota regulate bone remodeling is through
the immune system. An imbalance in gut microbiota has been associated with bacte-
rial translocation and chronic inflammation [21,48]. The inflammation often leads to an
increased immune response and bone resorption in the bone marrow, consequently reduc-
ing bone formation, as observed in Eimeria-challenged or lipopolysaccharide-challenged
broilers [49,50]. Significant bone loss has been noted in various models of intestinal in-
flammation, including dextran sulfate sodium-induced chemical injury, adoptive T cell
transfer of colitis, and Salmonella enterica infection [51]. The skeletal and immune systems
are intricately intertwined, sharing numerous cytokines, receptors, and transcription fac-
tors [23,24]. The receptor activator of NF-κB ligand (RANKL) plays an important role in
osteoclastogenesis, primarily sourced from osteoblasts and activated T cells, effectively
bridging these two systems [52]. The term “osteoimmunology” underscores the reciprocal
interactions between the skeletal and immune systems [23,24,53]. Specifically, CD4+ T cells
serve as one of the sources of RANKL in the bone marrow, and an increase in CD4+ T
cells has been observed in osteoporosis associated with inflammatory bowel disease [54].
Following Akk supplementation, the lower CD4+ T cells in the bone marrow were associ-
ated with attenuated osteoclastogenesis, as evidenced by reduced TRAP activity. KuL01+

cells, representing monocytes (osteoclast precursor cells) in the bone marrow, exhibited
a significant increase in the Akk powder-treated group, which may suggest that fewer
osteoclast precursor cells differentiated into osteoclasts, thereby mitigating excessive bone
resorption in the femur. Previous studies have indicated that butyrate stimulation can
increase the expression of the Wnt ligand Wnt10b in CD8+ T cells, thereby promoting
bone formation through the activation of Wnt signaling in osteoblasts [55]. Remarkably,
Akk supplementation significantly upregulated the proportion of CD8+ T cells in the bone
marrow. Collectively, dietary supplementation with Akk powder can improve the immune
microenvironment in the bone marrow, leading to improved bone formation and reduced
bone resorption in laying hens.

Feeding with Akk powder for 20 weeks did not induce any alterations in the diversity
and abundance of cecal microbial communities, consistent with our previous findings [44].
However, Akk supplementation significantly enriched Lactobacillaceae, a family comprising
numerous probiotic species, including Lactobacillus plantarum, Lactobacillus rhamnosus, Lac-
tobacillus reuteri, and Lactobacillus ultunensis [56]. As conventional probiotics, Lactobacillus
strains have a long history of use. Lactobacillus-fermented products, such as milk, soy skim
milk, and Kefir, have been shown to have beneficial effects on bone health [57–61]. The
administration of Lactobacillus rhamnosus GG has been reported to alter microbial diversity
and increase the proportion of short-chain fatty acid-producing Clostridia in conventionally
raised mice, thereby increasing bone volume and bone formation [55]. Lactobacillus reuteri
could reduce bone loss in older women with low BMD [62]. Additionally, a mixture of
Lactobacillus paracasei, Lactobacillus plantarum DSM 15312, and DSM 15313 increases femoral
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volume and BMC in OVX mice [63]. Collectively, Akk supplementation contributed to
improving the cecal microenvironment by enriching Lactobacillaceae.

The decline in egg quality, particularly eggshell quality, presents a significant challenge
for the egg industry. The physiological condition of bones during the early stages of the
laying period may be closely linked to egg quality [64]. Therefore, we assessed egg quality
at 20 weeks to investigate the relationship between bone physiology and eggshell quality. It
has been reported that the egg shape index exhibited a positive correlation with the eggshell
strength [65,66]. Our findings reveal that eggs in the Akk group exhibited improved egg
shape index and eggshell strength. The high egg shape index means the eggs tend to be
round [64]. The increased eggshell strength potentially mitigates physical damage during
handling and transportation. Previous studies from our research group have demonstrated
that Akk supplementation contributes to increased eggshell thickness and Haugh unit in
older hens [44]. However, in this study, Akk had no significant effect on Haugh unit and
yolk color, which could be attributed to the age of the laying hens.

5. Conclusions

This study elucidates the significant effects of Akk on bone physiology in laying hens,
as well as the interplay between various bone microarchitectures and eggshell quality. Our
findings show that the continuous dietary supplementation of Akk powder promoted
bone formation and bone development by improving the bone marrow and intestinal
microenvironment of laying hens, thereby improving eggshell quality. This study lays the
groundwork for microbial-based interventions targeting bone-related diseases in laying
hens. As a next-generation probiotic, lyophilized Akk powder holds promise as a potential
additive in the poultry industry.
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Abbreviations

Akk Akkermansia muciniphila
Cb Cortical bone
Tb Trabecular bone
Mb Medullary bone
OVX Ovariectomized
GAM Gifu Anaerobic Medium
ALP Alkaline phosphatase
TRAP Tartrate-resistant acid phosphatase

https://www.mdpi.com/article/10.3390/agriculture14040598/s1
https://www.mdpi.com/article/10.3390/agriculture14040598/s1


Agriculture 2024, 14, 598 15 of 18

LEfSe Linear discriminant analysis effect size
ADFI Average daily feed intake
RANKL Receptor activator of NF-κB ligand
PCoA Principal coordinate analysis
Cb. BV Cortical bone volume
Cb. Th Cortical bone thickness
Cb. BMC Cortical bone mineral content
Cb. BMD Cortical bone mineral density
FMT Fecal microbiota transplantation
RT Room temperature
Tb. BMC Trabecular bone mineral content
Tb. Th Trabecular bone thickness
Tb. BV/TV The ratio of trabecular bone volume to total femur volume
Tb. BS/TV The ratio of trabecular bone surface area to total femur volume
Tb. BMD Trabecular bone mineral density
Tb. Sp Trabecular bone spacing
Tb. N Trabecular bone number
BM. CV/TV The bone marrow cavity volume to the total femur volume
Mb. BV Medullary bone volume
Mb. BV/TV The ratio of medullary bone volume to total femur volume
Mb. BS The medullary bone surface area
Mb. BS/TV The ratio of Mb. BS to total femur volume
Mb. BMD Medullary bone mineral density
Mb. BMC Medullary bone mineral content
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