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Abstract: The classification of silkworm cocoons is essential prior to silk reeling and serves as a key step
in improving the quality of raw silk. At present, cocoon classification mainly relies on manual sorting,
which is labor-intensive and inefficient. In this paper, a cocoon detection algorithm S-YOLOv8_c
based on the cooperation of MobileSAM and YOLOv8 for the mountage cocoons was proposed. The
MobileSAM with a designed area thresholding algorithm was used for the semantic segmentation
of mountage cocoon images, which could mitigate the effect of complex backgrounds and maximize
the discriminability of cocoon features. Subsequently, the BiFPN was added to the neck of YOLOv8
to improve the multiscale feature fusion capability. The loss function was replaced with the WIoU,
and a dynamic non-monotonic focusing mechanism was introduced to improve the generalization
ability. In addition, the GAM was incorporated into the head to focus on detailed cocoon information.
Finally, the S-YOLOv8_c achieved a good detection accuracy on the test set, with a mAP of 95.8%.
Furthermore, to experimentally validate the sorting ability, we deployed the proposed model onto
the self-developed Cartesian coordinate automatic cocoon harvester, which indicated that it would
effectively meet the requirements of accurate and efficient cocoon sorting.

Keywords: mountage cocoons; MobileSAM; YOLOv8; cocoon sorting

1. Introduction

Sericulture is a traditional industry in China with a long history and significant
economic value. In 2022, China’s silkworm cocoon production reached 802,400 t. The
production of cocoons and raw silk accounted for more than 70% of the global production,
ranking first in the world [1].

The quality of silkworm cocoons is one of the decisive factors for the quality of silk. It is
necessary to sort silkworm cocoons before reeling. According to production needs, silkworm
cocoons are classified into reelable cocoons, double cocoons, and waste cocoons. Reelable cocoons
are used for reeling certified silk, which has a normal cocoon shape, color, folds, and cocoon
layer thickness. Double cocoons contain two or more silkworm chrysalises, usually with larger
volumes and abnormal wrinkles. They cannot be used for reeling but are a high-quality
raw material used to make silk quilts. Waste cocoons, including yellow spotted cocoons, cocoons
pressed by a cocooning frame, cocoons contaminated by oil, perforated cocoons, etc. [2], are not
suitable for silk reeling or silk quilt production. Traditional silkworm cocoon sorting relies on
manual screening, which is labor-intensive, affected by subjective factors, and results in
low sorting efficiency [3].
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Grid mountage is widely used for cocooning, with a popularity rate of more than
45% in China [4] (Figure 1). In China and Japan, some grid mountage silk reeling devices
have been developed. However, due to the lack of efficient silkworm cocoon classification
algorithms, the current technology can only achieve indiscriminate cocoon harvesting. The
sorting of cocoons still relies on subsequent manuals. In recent years, the widespread adop-
tion of artificial intelligence in agriculture has led to the exploration and implementation of
machine vision technology for cocoon detection [5].
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Figure 1. The grid mountage image. (a) The grid mountage without silkworm cocoons. (b) The grid
mountage in the cocoon spinning room.

Prasobhkumar et al. [6,7] presented a novel cocoon quality assessment system consist-
ing of a conditioned illumination unit, an image acquisition unit, and a processing unit.
The camera first acquired the images of cocoons, and then quantitative statistics on cocoon
size, shape, and color were performed using morphological operations and ellipse fitting.
Furthermore, the cocoons were automatically classified into good cocoons and four defective
categories of waste cocoons. The method was validated using 137 silkworm cocoon samples
with 100% accuracy.

Wang et al. [8] developed the algorithms for silkworm cocoon counting and classification.
For cocoon counting, the K-means method was used to segment cocoon images first. Then,
the separated cocoon images were obtained by distance transformation and morphological
operations. Finally, the algorithm counted the number of cocoons by traversing the con-
nected component. For cocoon classification, an improved AlexNet neural network was
employed to classify the cocoons. By replacing local response normalization with batch
normalization in conv1 and conv2, the generalization ability of the network was improved,
and an accuracy of 95.93% was achieved.

Zhou et al. [9] proposed a silkworm cocoon recognition model based on convolutional
neural network and image processing. By using principal component analysis and color
space conversion, the issue of surface texture blurring caused by cocoon garments is ad-
dressed. The recognition accuracy of the cocoon pressed by the cocooning frame and spotted
cocoon was effectively improved, and the accuracy of the model was 96%.

Sun et al. [10] implemented the intelligent identification of group cocoon species based
on multi-scale retinex with color restoration and convolution block attention module. They
used the MSRCR to obtain multi-scale high-frequency detail images, and a convolution
block attention module was incorporated into the YOLOv3 model to increase the weight of
effective features. The mean average accuracy was 85.52%, which was 4.85% better than
the original algorithm.

The aforementioned studies focus on the detection and classification of harvested
silkworm cocoons. In the classification of mountage cocoons, Liu et al. [11,12] proposed a
waste cocoon detection method based on Fuzzy C-means clustering (FCM) and HSV color
model. Firstly, FCM segmentation was applied to the original image of the mountage
cocoons to eliminate the mountage. And the individual cocoon was extracted using the
masked operation. According to the proportion of specific color components in the color
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histogram, which was obtained by accumulating the color of HSV, the yellow spotted
cocoon was judged one by one. The correct proportion of waste cocoon detection was 81.2%.
However, using image processing algorithms for feature extraction requires engineers to
fine-tune parameters according to different batches of images, so its ability to generalize
across different image sets is quite limited. Therefore, they proposed to use FCN instead of
FCM for image segmentation and constructed a cocoon classification model based on the
interpretability of CNN. After being pruned, the model was deployed on Jetson Nano, with
an average accuracy of 88.7%. The error rate for detecting double cocoons was relatively high.

The above studies have all paid attention to the fine-grained nature of cocoon features.
They used algorithms to highlight the fine-grained features of cocoons and combined them
with deep learning models for cocoon detection. This provides significant inspiration for
our research. For silkworm cocoons within the grid mountage, we develop a robust, efficient,
and accurate visual classification model and validate it on an automatic cocoon harvestor.
The main contributions of this paper are as follows.

(1) To address the issue of inaccurate detection of double cocoons and waste cocoons with
minor defects, a cooperation detection approach is employed, integrating image
segmentation and target detection methodologies. By extracting the cocoon image
from the entire image of the mountage, the complexity of the image is reduced, and
the target feature difference is maximized.

(2) MobileSAM (Mobile segment anything model) [13] is used for the semantic segmenta-
tion of mountage cocoons. Based on the characteristics of the segmented images, we
design an area threshold algorithm at the output end of SAM, which achieves the
unsupervised learning of cocoon image extraction. This approach significantly reduces
the workload associated with pixel-level labeling and training, which is essential for
the segmentation network.

(3) In order to detect fine-grained features of cocoons, the BiFPN (Bi-directional Feature
Pyramid Network) [14] is utilized for multi-scale feature fusion. Similarly, the Global
Attention Module (GAM) [15] is introduced to enhance network performance by
reducing information diffusion and amplifying global interactions. In addition, the
CIoU [16] loss function is replaced with the WIoU (Wise-IoU) [17], which alleviates
the impact of low-quality images on model detection and improves detection speed.

2. Materials and Methods
2.1. Materials
2.1.1. Dataset

The mountage cocoons used in the experiments were sourced from Yunkang NO. 1,
provided by HaiTong Cocoon Silk Co., Ltd. in Rizhao City, Shandong Province, China, and
the photographs were taken around May 2023. The specifications of the grid mountage
were 585 mm × 390 mm, with a single grid size of 45 mm × 30 mm. The outer frame was
made of 3 mm thick cardboard, while the internal grid consisted of 0.5 mm thick and thin
cardboard. Each mountage encompassed 13 × 13 (169) grids. Image data were captured
using an industrial camera (JIERUIWEITONG Co. Ltd., Shanghai, China) equipped with
adjustable resolution and variable focus.

The camera was fixed above the mountage at a distance of 50 cm. Vertical photographs
of both sides of the mountage cocoons were taken under different lighting conditions. A total
of 210 mountage cocoon images were acquired. To enhance the generalization of the network,
data augmentation operations such as translation, horizontal flipping, gauss noise addition,
and brightness adjustment were applied to the original images. The dataset was expanded
to 1050 images, with each mountage cocoon image containing 96 to 161 silkworm cocoons. The
expanded dataset was randomly divided into a training set, a validation set, and a test
set in a ratio of 8:1:1, i.e., 80% for the training set, 10% for the validation set, and 10% for
the testing set, respectively. The training set consisted of 840 images, the validation set
consisted of 105 images, and the test set consisted of 105 images, as shown in Table 1.



Agriculture 2024, 14, 599 4 of 22

Table 1. Dataset image grouping information.

Dataset Classification Image Classification Number of Images

Training set
reelable cocoon 70,761
waste cocoon 6551
double cocoon 3246

Validation set
reelable cocoon 7510
waste cocoon 986
double cocoon 632

Test set
reelable cocoon 7327
waste cocoon 1067
double cocoon 681

2.1.2. Cartesian Coordinate Automatic Cocoon Harvestor Setup

The structure diagram of the cartesian coordinate automatic cocoon harvestor (Figure 2)
primarily consists of a picking mechanism, a visual acquisition device, and a control system.
The picking mechanism includes x-axis guide rails, y-axis guide rails, and an electro-
magnetic picker. The x-axis guide rails consist of two synchronized guides connected
by a transmission shaft, each with 1 m. The y-axis guide rail, equipped with an elec-
tromagnetic picker, is 1 m and moves along the x-axis guide rails. The electromagnetic
picker comprises an electromagnet with a 60 mm trip and a one-way travel time of 0.5 s,
along with a cocoon-picking head used for picking silkworm cocoons. The length of the
silkworm cocoon is 33.5 mm ± 4.1 mm, and the diameter (long axis of the elliptical inci-
sion) is 18.4 mm ± 4.8 mm. The cartesian coordinate automatic cocoon harvestor achieves
accurate positioning of the silkworm cocoons, with a maximum positioning deviation of
3.0 mm. The cocoon positioning is based on the central coordinates, and the positioning
deviation does not affect the electromagnetic picker’s ability to pick cocoons, which meets
precision requirements.
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Figure 2. The structure diagram of cartesian coordinate automatic cocoon harvestor. 1. Frame 2.
WorkTable 3. x-axis guide rail 4. x-axis stepper motor 5. Transmission shaft 6. Top camera 7. y-axis
guide rail 8. y-axis stepper motor 9. Electromagnetic picker 10. Mountage cocoons 11. Mountage
clamping device 12. Bottom camera.

The vision system uses two cameras positioned above and below the work table. The
control system is managed by a host computer, which controls the cameras for mountage
cocoon image acquisition. The central coordinates of the silkworm cocoons are transmitted
to the STM32 controller via the RS232 serial port. The STM32 controller, in turn, regulates
the x-axis and y-axis stepper motors to position the electromagnetic picker precisely at
the cocoon location. Activating the power supply allows the electromagnetic picker to
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perform the picking of silkworm cocoons. After successful picking, the picker places the
corresponding classification box according to the quality of the cocoons, and the STM32
controller deactivates the power, releasing the electromagnetic picker and preparing it for
the subsequent cocoon retrieval. This process continues iteratively until all mountage cocoons
are picked, completing the sorting task.

2.1.3. Experimental Platform

The hardware platform for model training and testing is the HP Z820 workstation,
with the key configurations shown in Table 2.

Table 2. Key configurations of the hardware platform.

Configuration Parameter

CPU Intel Xeon Gold 5218R
Memory 128G

GPU GeForce RTX 3090
Accelerated environment CUDA 11.1 cuDNN 8.0.5

Operating system Windows 10.0
Development environment Python 3.9 Pytorch 1.9.1

2.1.4. Evaluation Indicators

To evaluate the performance of the model, several metrics are used as evaluation
indicators, including precision (P), recall (R), F1 score, average precision (AP), and mean
average precision (mAP) for all categories with a confidence threshold of 0.5. The calcula-
tions are performed according to the following formulas.

P =
TP

TP + FP
× 100% (1)

R =
TP

TP + FN
× 100% (2)

F1 =
2PR

P + R
(3)

AP =
∫ 1

0
P(R)dR (4)

mAP =

c
∑

i=0
APi

C
(5)

where TP is true positives, FN is false negatives, FP is false positives, and C is the total
number of target categories detected.

2.2. Methods

The silkworm cocoons are similar in shape, color, and size, with variation limited
to details such as texture and local color. This falls within the scope of fine-grained
image classification. To minimize interference from background factors and emphasize
the algorithm’s focus on silkworm cocoons, a two-step strategy was employed: Initially,
MobileSAM was used for semantic segmentation, complemented by area threshold filtering
to extract silkworm cocoons from mountage images. Following this, the YOLOv8 target
detection model was developed for cocoon classification. Based on the attributes specific
to the silkworm cocoon, enhancements such as feature fusion, attention mechanisms, and
optimizations to the loss function were integrated into the YOLOv8 framework. Finally,
to validate the effectiveness of the algorithm, a classification and picking experiment was
performed on mountage cocoons using the cartesian coordinate automatic cocoon harvestor.
The specific algorithm flow is shown in Figure 3.
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2.2.1. Segmentation Model Based on MobileSAM and Area Threshold

Segment Anything Model (SAM) [18] is a segmentation model proposed by Meta in
April 2023. It is trained by using the Segment Anything 1-Billion (SA-1B) mask dataset,
which contains over 11 million images and more than a billion masks. SAM demonstrates
the capability to automatically identify potential objects within an image and generate
unlabeled masks without the need for additional training. However, SAM’s backbone
uses a Vision Transformer (ViT) [19], characterized by a large number of parameters and
imposing high hardware requirements. Consequently, we opted for a more lightweight
model, MobileSAM, for the semantic segmentation of mountage cocoon images.

The architecture of MobileSAM comprises two parts: the Image Encoder and the Mask
Decoder. For the Image Encoder, MobileSAM replaces the original ViT in SAM with a
lightweight ViT [20]. This lightweight ViT achieves a reduction in parameters from 632 M to
5.78 M via the implementation of knowledge distillation. In particular, the lightweight ViT
incorporates a non-overlapping window attention structure, mitigating the computational
load associated with high-resolution inputs and thereby achieving model lightweightness.
Via the Image Encoder, the image is transformed into image embeddings.

The Mask Decoder employs two decoder layers, each of which includes both self-
attention and cross-attention mechanisms in two directions for updating all image embed-
dings. Following the execution of two decoder layers, image embedding is upsampled.
Subsequently, a multi-layer perceptron (MLP) maps the output token to a dynamic linear
classifier, which computes the mask foreground probability at each image location.

The masks generated by MobileSAM retain semantic information for various objects
such as silkworm cocoons, mountage, background, etc. However, we only need silkworm
cocoon masks. Therefore, we designed an adaptive area threshold filtering algorithm.
Initially, the algorithm identifies the mountage mask and background mask based on the
area of the mask color. Subsequently, the color values for these two masks are set to 0,
while the colors corresponding to silkworm cocoon masks are set to 1. This process results in
a binary segmentation image for silkworm cocoons. This segmented image is then masked to
the original color image, resulting in a final-colored image that exclusively preserves the
silkworm cocoons (Figure 4).
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2.2.2. Establishment and Improvement in YOLOv8 Model

(1) YOLOv8 model structure.

The detection and classification of extracted silkworm cocoons are based on the cur-
rent classical one-stage algorithm YOLOv8 [21]. Compared with other models in the
YOLO [22,23], it exhibits faster speed and higher accuracy.

YOLOv8 mainly consists of a backbone feature extractor, a feature fusion network,
and an end-to-end decoupled prediction head. The input employs adaptive image scaling
to adjust the input size, coupled with mosaic data augmentation to enhance the model’s
robustness. The backbone comprises CBS modules, C2f modules, and SPPF modules. The
CBS module includes convolutional layers, batch normalization, and the SiLU activation
function. The C2f module draws inspiration from the C3 module for feature extraction. It
introduces skip connections and additional split operations to ensure lightweight while
obtaining richer gradient flow information. SPPF module performs feature fusion via
convolution and three max-pooling operations. It adaptively integrates features from
various scales, thereby enhancing the model’s feature extraction capability.

The neck processes features extracted by the backbone. It employs the PANet structure
with top-down and down-top cross-layer connections, achieving comprehensive feature
fusion. The head adopts a decoupled head structure, separating detection and classification.
By using score-weighted classification and regression, it effectively determines positive
and negative samples. This approach enhances the model’s performance.

(2) Multiscale feature fusion.
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Due to the varying scales in the feature extraction network, shallow-layer networks
often show better detection results for smaller-scale targets due to their larger-scale high-
resolution feature maps. On the other hand, deep-layer networks contain more semantic
information and larger receptive fields for small-scale feature maps. Via lateral connections
and a pyramid-like hierarchical structure, the PANet [24] in the YOLOv8’s neck integrates
features from different scales to enhance positional information. However, the accuracy of
small-scale target detection is low because of the lack of raw feature information extracted
by the backbone. The differences between cocoons are mostly subtle local details, requiring
more accurate target detection. We replaced the YOLOv8 feature fusion network with the
BiFPN (Bidirectional Feature Pyramid Network).

The BiFPN structure is shown in Figure 5b. It removes some nodes with only one
input edge and adds the skip connections from the original input to the output node,
which reduces the computational complexity. As the skip connections in the BiFPN can
greatly preserve the original information in the feature maps, it improves the information
exchange between different scales and levels in silkworm cocoon images. In addition, the p3in

large-scale feature map has a better effect on detecting small targets, such as the surface of
the cocoon, thus improving the network’s ability to detect subtle features in cocoon images.
The model’s generalization is further improved. The feature fusion formula of the BiFPN is
as follows.

O = ∑
i

Wi
e + ∑

i
Wj

Ii (6)

where O stands for output, Ii stands for input, and e is the minimal learning rate used to
constrain numerical oscillations. Wi and Wj stand for weights.
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Figure 5. Feature fusion network structure diagram. (a) PAN structure diagram. A top-down
pathway has been introduced for the fusion of multi-scale features from levels 3 to 7 (P3–P7), and an
additional bottom-up pathway has been added. (b) BiFPN structure diagram. The nodes that have
only one input edge are removed, and an additional edge is added from the original input to the
output node if they are at the same level.

Taking the p6 as an example, the corresponding formula describes the situation of the
two fused features illustrated in Figure 5b at the p6.

Ptd
6 = Conv(

w1 · Pin
6 + w2 · Resize(Pin

7 )

w1 + w2 + ε
) (7)
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Pout
6 = Conv(

w1
′ · Pin

6 + w2
′ · Ptd

6 + w3
′ · Resize(Pout

5 )

w1
′ + w2′ + w3′ + ε

) (8)

where Conv represents the convolution, and Resize stands for downsampling. w is the
weight of each layer, used to describe the importance of each feature in the feature fusion, ε
is a minimal non-zero constant to prevent the denominator from being 0.

The BiFPN improves the feature map scale via upsampling and convolution operations
to achieve top-down fusion. A weighted feature fusion mechanism is used to achieve skip
connections, thus introducing large-scale feature maps into the neck. Simultaneously, the
feature map scale is reduced via downsampling and convolution operations to achieve
bottom-up fusion. It ensures the comprehensive fusion of feature maps at different scales,
preserving the original features and further improving the accuracy of the network in
detecting cocoon defects.

(3) Add an attention mechanism for double cocoon recognition.

The surface color of both the reelable cocoon and the double cocoon is uniformly white,
and their RGB images are shown in Figure 6. The most reliable feature for detecting them
is surface texture. The texture of the reelable cocoon is more regular and smoother, while
the texture of the double cocoon is complex and rough. However, a mountage cocoon image
contains about 100 cocoon images. The pixel of a single cocoon image is too small, making it
difficult for the model to effectively focus on the cocoon texture. The attention mechanism
can quickly scan the image, identify areas of interest, and perform more operations on
specific areas, which is an effective method to improve detection efficiency. In this paper,
the Global Attention Mechanism (GAM) is introduced in the YOLOv8 to improve the
detection performance. Its structure is shown in Figure 7.
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The input feature map F1 ∈ RC×H×W , middle feature map F2, and output feature map
F3 are defined. The expressions are

F2 = Mc(F1)⊗ F1 (9)

F3 = Ms(F2)⊗ F2 (10)

where Mc and Ms are the channel and spatial attention feature maps, respectively; ⊗
denotes element-wise multiplication.

After F1 input, 1D convolution is performed by the channel attention submodule.
The obtained convolution result is multiplied element-wise by the F1 to obtain the F2.
Subsequently, 2D convolution is applied to F2 in the spatial attention submodule, and
the result is element-wise multiplied with F2 to obtain the F3. The channel attention
submodule uses 3D permutation to retain information across three dimensions. It then
magnifies cross-dimension channel–spatial dependencies with a two-layer MLP. Finally,
a 1D convolutional feature map is obtained via reverse permutation. To focus on spatial
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information, two convolutional layers are used for spatial information fusion after F2 input
in the spatial attention submodule. Meanwhile, max-pooling reduces the information and
contributes negatively.
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The GAM can improve the performance of the model by reducing the information
reduction and magnifying global dimension-interactive features. In this paper, we integrate
the GAM into the Head of the YOLOv8 for network optimization. By combining channel
attention and spatial attention, the network effectively focuses on feature information,
improving the accuracy of double cocoon detection at a lower computational cost.

(4) Optimization of the loss function for the waste cocoon recognition.

The waste cocoon contains many types, and defects are expressed in various forms. As
shown in Figure 8, perforated cocoons are characterized by the presence of holes in the cocoon
layer, with relatively small hole areas, while decayed cocoons exhibit surface contamination
areas larger than 1 cm2. Minor surface defects may easily be ignored by the model and
misidentified as reelable cocoons. On the contrary, with serious surface defects, the features of
the cocoon will not be obvious, and the outline will be blurred, resulting in false negatives.

During the training, blindly reinforcing the bounding-box regression for low-quality
samples will cause the model to optimize similarity unreasonably, which will reduce the
detection accuracy. The loss of the YOLOv8 model consists of loss_iou (location loss) and
loss_cls (classification loss). In this paper, to address issues with low-quality data during
model training, we improve the loss_iou in the YOLOv8 by replacing the original CIoU
with WIoU.

Wise-IoU (WIoU) is an IoU-based loss with a dynamic non-monotonic focusing mech-
anism. This focusing mechanism uses the outlier degree instead of IoU to evaluate the
quality of anchor boxes and provides a wise gradient gain allocation strategy. The strategy
reduces the harmful gradients produced by allocating small-quality gradient gain to low-
quality examples while enhancing the focusing ability of ordinary-quality anchor boxes to
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improve model detection performance for waste cocoons. Assuming that the corresponding
position of (x, y) in the target box is (xgt, ygt), its formula is

LWIoU =

L∗
IoU

LIoU

δαβ−δ
exp

(
x − xgt

)2 − (y − ygt)
2(

W2
g + H2

g

)
LIoU (11)

LIoU = 1 − IoU (12)

where IoU stands for Intersection over Union; Wg and Hg are the width and height of the
overlap between the predicted box and the real box; α and δ are learning parameters. LIoU
is the dynamic average Intersection over Union with momentum m; L∗

IoU is the constant to
which the variable LIoU is transformed.

WIoU can effectively address the issue of low-quality samples in the detection of waste
cocoons. Moreover, since the calculation of the aspect ratio scale of the CIoU bounding
box is eliminated and replaced with a dynamic non-monotonic focusing mechanism that
requires less calculation, the model inference speed has been improved.

At this point, this paper completed improvements to the YOLOv8 neck and loss
function, as well as the addition of attention mechanisms. The improved model structure is
shown in Figure 9. In the neck, the BiFPN was integrated for feature fusion, and the WIoU
loss function was employed to reduce the negative effects of low-quality samples. Finally,
the GAM was added to the head to enhance its feature extraction capability.
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Figure 9. Improved YOLOv8 structure diagram. The model added the GAM to all three decoupling
head branches in the target detection head. Conv2d represents a convolution, and the CBS module
consists of a Conv2d, a Batch Normalization (BN) structure, and a SILU activation function. The C2f
module consists of CBS, split, and bottleneck structures.
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3. Experimental Results and Discussions
3.1. Silkworm Cocoon Sorting Experiment
3.1.1. Silkworm Cocoon Segmentation Experiment

MobileSAM is used for image segmentation on the dataset, with the weight file
selected as mobile_sam.pt. The segmentation mode is set to automatic segmentation
without prompting. The segmentation process and results using MobileSAM and the area
threshold are shown in Figure 10.
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Figure 10. Segmentation process and results of mountage silkworm cocoon image. (a) Original image. (b)
Original segmented image with the two largest different green areas corresponding to the mountage
and background and the colored elliptical area as cocoons. (c) Binary-segmented image with the
background and mountage removed based on area threshold algorithm. (d) RGB image of the
extracted cocoons. Different colors in (b) represent different masks.

To comparatively demonstrate the segmentation accuracy of MobileSAM, cocoon im-
ages are segmented using MobileSAM, FCM, and FCN, respectively. The comparison
results are shown in Figure 11.
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Figure 11. Comparison of segmentation results with different algorithms. (a) Original image. (b)
Segmented image with MobileSAM and the area threshold. (c) Segmented image with FCM. (d)
Segmented image with FCN.

Comparing the three segmentation methods, it can be seen that MobileSAM eliminates
the mountage image accurately, segments the cocoon mask with clear boundaries, and
retains all the features of the cocoon images. FCM also successfully segments the cocoon
masks but does not completely eliminate the mountage image. In addition, the segmented
cocoon masks are affected by surface defects, resulting in incomplete feature preservation.
FCN successfully eliminates the mountage image, but the segmented image has more noise,
and the outline of the cocoon masks is unclear.

3.1.2. Silkworm Cocoon Detection Experiment

With respect to the cocoon images segmented with MobileSAM, the improved YOLOv8,
named YOLOXv8_c, is further used for cocoon detection. The proposed method combining
MobileSAM and the improved YOLOv8 is named S-YOLOv8_c.

To verify the effectiveness of the proposed model, a qualitative comparison of the
detection performance is carried out between S-YOLOv8_c and other commonly used
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target detection models, including Faster RCNN [25], YOLOv7, and YOLOv8. For the
comparison, Faster RCNN uses ResNet50 as the backbone network. Additionally, the
proposed model is compared with YOLOXs [26], YOLOv7-tiny, and YOLOv5s in terms of
lightweight performance. The comparison results and training curves are shown in Table 3
and Figure 12.

Table 3. Comparison of detection performance of different models.

Model mAP/% F1/%
Reelable cocoon

F1/%
Waste cocoon

F1/%
Double cocoon Avg (FTime)/ms

YOLOv8 85.4 89.8 63.0 60.4 22.1
YOLOv8_c 90.8 93.7 86.3 82.3 17.5

S-YOLOv8_c 95.8 98.6 93.9 91.9 35.1
YOLOv7 83.1 90.3 61.4 56.5 25.5

S-YOLOv7 88.5 91.2 86.9 75.1 47.1
Fester RCNN 82.1 85.0 75.6 71.2 65.7

YOLOXs 68.3 74.1 41.7 40.4 15.4
YOLOv7-tiny 70.2 76.6 46.1 52.6 14.9

YOLOv5s 65.7 71.5 57.2 45.8 16.3
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As shown in Table 3, the cooperation detection models, S-YOLOv8_c and S-YOLOv7,
show a significant improvement in detection accuracy compared to independent detection
models YOLOv8_c and S-YOLOv7. The mAP is increased by 5% and 5.4%, respectively.
Among the three cooperation models, S-YOLOv8_c achieved the highest mAP with 95.8%.
However, due to the addition of the image segmentation module, the time required for
model inference inevitably increased by 17.6 ms, 21.6 ms, and 23.6 ms, respectively.

In terms of lightweight performance, S-YOLOv8_c has the fastest inference speed
among the cooperation detection models. Although YOLOXs, YOLOv7-tiny, and YOLOv5s
have faster inference speeds than S-YOLOv8_c, these three models have much lower detec-
tion accuracy, with mAP of 68.3%, 70.2%, and 65.7%, respectively, showing a significant
gap compared to S-YOLOv8_c which has mAP of 95.8%.

Therefore, taking detection accuracy and inference speed into account, the proposed
S-YOLOv8_c exhibits the best performance for cocoon detection.

3.2. Ablation Study

In order to verify the improvement effects of different improvement measures on the
performance of the cocoon detection algorithm, an ablation experiment is performed in this
section. The improvement measures are sequentially added to the S-YOLOv8 network, and
the comparison results are shown in Table 4.
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Table 4. Ablation study of different improvement measures for the S-YOLOv8 network.
√

means
adding the improvement. A~F represents models incorporating the respective improvements.".

Measure BiFPN WIoU GAM mAP/% F1/%
Reelable cocoon

F1/%
Waste cocoon

F1/%
Double cocoon

Avg
(FTime)/ms

S-YOLOv8 90.2 92.7 85.1 83.2 43.2
A

√
× × 93.5 95.1 88.7 83.4 45.6

B ×
√

× 92.7 94.3 91.6 83.7 31.5
C × ×

√
92.3 93.6 86.9 89.6 44.1

D
√ √

× 95.4 97.7 92.6 91.1 33.6
E

√
×

√
94.7 96.4 90.1 89.9 47.1

F ×
√ √

93.9 95.4 89.5 88.2 33.1
Ours

√ √ √
95.8 98.6 93.9 91.9 35.1

Table 4 shows that all three measures have a positive impact on the model’s detection
accuracy. The BiFPN shows the most significant improvement effect, increasing the mAP by
3.3%. Improving the loss function increases the sensitivity of the model to cocoon features
and improves the ability to detect poor-quality samples. Benefitting from the loss function
improvement, the waste cocoon missed in Figure 13e was successfully detected, which was
labeled with a red box in Figure 13f. As a whole, the F1 score for the detection of waste
cocoons is increased by 6.5%. When GAM is added, the model pays more attention to the
surface texture of the cocoon, improving the detection accuracy of the double cocoon. With
the help of the GAM, two reelable cocoons, which were misclassified as a double cocoon with
yellow labeled boxes in Figure 14e, have been correctly classified with green labeled boxes
in Figure 14f. These three measures could significantly improve the detection performance
of the model with a mAP of 95.8%, 5.6% higher than the original model.
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Figure 13. The detection results with and without the loss of function improvement. (a) Original 
image. (b) Detection results without improvement. (c) Detection results with improvement. (d) The 
zoomed view of the blue box in (a). (e) The zoomed view of the blue box in (b). (f) The zoomed view 
of the blue box in (c). The green, red, and yellow boxes in (b,c,e,f) are the detected reelable cocoons, 
waste cocoons, and double cocoons, respectively. 

Figure 13. The detection results with and without the loss of function improvement. (a) Original
image. (b) Detection results without improvement. (c) Detection results with improvement. (d) The
zoomed view of the blue box in (a). (e) The zoomed view of the blue box in (b). (f) The zoomed view
of the blue box in (c). The green, red, and yellow boxes in (b,c,e,f) are the detected reelable cocoons,
waste cocoons, and double cocoons, respectively.
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Figure 14. The detection results with and without the GAM. (a) Original image. (b) Detection results
without the GAM. (c) Detection results with the GAM. (d) The zoomed view of the blue box in (a).
(e) The zoomed view of the blue box in (b). (f) The zoomed view of the blue box in (c). The green,
red, and yellow boxes in (b,c,e,f) are the detected reelable cocoons, waste cocoons, and double cocoons,
respectively.

In terms of inference speed, because WIoU has a simpler structure and fewer parame-
ters than CIoU, the inference speed is improved. After simultaneous improvement with
three measures, the model’s inference speed reached 35.1 ms per image, which was an
increase of 18.75% from the original.

Based on the above analysis, S-YOLOv8_c is not only more accurate than S-YOLOv8
but also has a faster inference speed, striking a balance between accuracy and light weight.
This makes it well suited for deployment on low-cost and low-processing-power devices
with limited computing resources.

3.3. Experiments in Different Brightness

The variability in lighting leads to variations in the brightness of the captured images.
To test the impact of lighting conditions on detection accuracy, we selected
10 high-brightness and low-brightness images, respectively, from the test set to evalu-
ate the robustness of the model. The confusion matrix and the comparison images are
shown in Figures 15 and 16, respectively.

In conditions of high brightness, there are a total of 812 cocoons, comprising 754 reelable
cocoons, 36 waste cocoons, and 22 double cocoons. The model detected 808 cocoons successfully.
There are four reelable cocoons missed and two waste cocoons misclassified as reelable cocoons,
while all double cocoons were accurately detected. Under low brightness conditions, there
are a total of 851 cocoons, comprising 790 reelable cocoons, 42 waste cocoons, and 19 double
cocoons. The model successfully detected 849 cocoons and missed only 2 cocoons. The number
of true positives for waste cocoons is 40, with a detection accuracy of 95.2%. However, due
to the difficulty in identifying the surface textures of double cocoons, four double cocoons were
not recognized, with an identification accuracy of 78.9%.

Figure 16a shows a high-brightness image of the mountage cocoons image containing
two waste cocoons and two double cocoons. The model accurately detects both waste and
double cocoons with no false positives. Figure 16b is a low-brightness image containing
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five waste cocoons and two double cocoons. The model correctly detects waste cocoons but
misidentifies one double cocoon as a reelable cocoon. The experimental results showed that
our method is more suitable for detecting brighter images. During practical applications,
we will install additional lighting devices to ensure the brightness of the images.

Agriculture 2024, 14, x FOR PEER REVIEW 17 of 23 
 

 

  

(a) (b) 

Figure 15. Confusion matrix. (a) High brightness. (b) Low brightness. The numbers in (a,b) 
represent the quantity of silkworm cocoons. 

  
(a) (b) 

  
(c) (d) 

Figure 16. Detection results of different brightnesses. (a) Mountage cocoons image in high brightness. 
(b) Mountage cocoons image in low brightness. (c) Detection results in high brightness. (d) Detection 
results in low brightness. Note: The red and yellow boxes in (a,b) are manually marked waste cocoons 
and double cocoons, respectively. The green, red, and yellow boxes in (c,d) are the detected reelable 
cocoons, waste cocoons, and double cocoons, respectively. The numbers representing waste cocoons and 
double cocoons are determined through manual classification. 

In conditions of high brightness, there are a total of 812 cocoons, comprising 754 
reelable cocoons, 36 waste cocoons, and 22 double cocoons. The model detected 808 cocoons 
successfully. There are four reelable cocoons missed and two waste cocoons misclassified as 
reelable cocoons, while all double cocoons were accurately detected. Under low brightness 
conditions, there are a total of 851 cocoons, comprising 790 reelable cocoons, 42 waste cocoons, 
and 19 double cocoons. The model successfully detected 849 cocoons and missed only 2 cocoons. 
The number of true positives for waste cocoons is 40, with a detection accuracy of 95.2%. 

Figure 15. Confusion matrix. (a) High brightness. (b) Low brightness. The numbers in (a,b) represent
the quantity of silkworm cocoons.

Agriculture 2024, 14, x FOR PEER REVIEW 17 of 23 
 

 

  

(a) (b) 

Figure 15. Confusion matrix. (a) High brightness. (b) Low brightness. The numbers in (a,b) 
represent the quantity of silkworm cocoons. 

  
(a) (b) 

  
(c) (d) 

Figure 16. Detection results of different brightnesses. (a) Mountage cocoons image in high brightness. 
(b) Mountage cocoons image in low brightness. (c) Detection results in high brightness. (d) Detection 
results in low brightness. Note: The red and yellow boxes in (a,b) are manually marked waste cocoons 
and double cocoons, respectively. The green, red, and yellow boxes in (c,d) are the detected reelable 
cocoons, waste cocoons, and double cocoons, respectively. The numbers representing waste cocoons and 
double cocoons are determined through manual classification. 

In conditions of high brightness, there are a total of 812 cocoons, comprising 754 
reelable cocoons, 36 waste cocoons, and 22 double cocoons. The model detected 808 cocoons 
successfully. There are four reelable cocoons missed and two waste cocoons misclassified as 
reelable cocoons, while all double cocoons were accurately detected. Under low brightness 
conditions, there are a total of 851 cocoons, comprising 790 reelable cocoons, 42 waste cocoons, 
and 19 double cocoons. The model successfully detected 849 cocoons and missed only 2 cocoons. 
The number of true positives for waste cocoons is 40, with a detection accuracy of 95.2%. 

Figure 16. Detection results of different brightnesses. (a) Mountage cocoons image in high brightness.
(b) Mountage cocoons image in low brightness. (c) Detection results in high brightness. (d) Detection
results in low brightness. Note: The red and yellow boxes in (a,b) are manually marked waste cocoons
and double cocoons, respectively. The green, red, and yellow boxes in (c,d) are the detected reelable
cocoons, waste cocoons, and double cocoons, respectively. The numbers representing waste cocoons and
double cocoons are determined through manual classification.
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3.4. Algorithm Validation Experiment Based on Cartesian Coordinate Automatic Cocoon Harvestor

The mountage was fixed on the test bench. Two cameras are placed 50 cm above and
below the mountage, both facing the center of the mountage. The images are collected
under natural light. The image collected by the camera above is the original frontal image
of the mountage cocoons, as shown in Figure 17a. The image collected by the camera below
is the original rear image of the cocoons, as shown in Figure 17b. In order to ensure the same
position of a cocoon in the image from both sides, the image collected by the camera below
is vertically mirrored to obtain the rear image of the mountage, as shown in Figure 17c.
After vertical mirroring, the position of the same cocoon in the front and back images is
one-to-one. The collected cocoon images are fed into the S-YOLOv8_c to detect reelable
cocoons, double cocoons, and waste cocoons. In addition, visual measurement and localization
are performed to calculate the center point coordinates of the cocoons. Then, the PC host
computer transmits the center point coordinates of the cocoons to the STM32 controller
via the RS232 serial port. After receiving the cocoon coordinates, the STM32 controller
processes the stepper motors of the X-axis and Y-axis to position the electromagnetic
picker at the location of the cocoon. The electromagnetic relay is then controlled to power
the electromagnetic picker, allowing the electromagnetic picker to pick the cocoon. The
detection process is illustrated in Figure 18.
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(c) Vertically mirrored image from the reverse side.

To intuitively demonstrate the detection performance of the proposed algorithm, pick-
ing experiments are performed with 10 randomly selected mountages under various light-
ing conditions. The detection results are compared between YOLOv8, YOLOv7, and our
model. The confusion matrix and the comparison images are shown in Figures 19 and 20,
respectively.

In the picking experiment with 10 mountage cocoons, there are a total of 947 cocoons,
including 851 reelable cocoons, 34 double cocoons, and 62 waste cocoons. The confusion matrix
shows that S-YOLOv8_c has a significantly higher number of true positives for cocoons
compared to YOLOv8 and YOLOv7. This is especially true for the detection of double
cocoons and waste cocoons. S-YOLOv8_c detected 941 cocoons and missed only 6 cocoons. The
number of true positives for waste and double cocoons is 57 and 31, with detection accuracies
of 91.9% and 91.2%, respectively. YOLOv8 detected 819 cocoons and missed 33 cocoons. The
detection accuracies for waste and double cocoons are 64.5% and 64.7%, correctly detecting
40 and 22 cocoons, respectively. YOLOv7 detected 812 cocoons and missed 39 cocoons. The
detection accuracies for waste and double cocoons are lower, at 59.6% and 58.8%, correctly
detecting 37 and 20 cocoons, respectively. During manual sorting, double cocoons and reelable
cocoons are easily confused because of their similar appearance and color. S-YOLOv8_c has
only 5 such misclassifications, while YOLOv8 and YOLOv7 have 22 and 25, respectively.
This indicates that S-YOLOv8_c is more accurate in distinguishing fine-grained features of
cocoons. S-YOLOv8_c exhibits superior recall and precision rates compared to other models.
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It indicates that the cooperation detection strategy is more effective in highlighting the
feature differences in mountage cocoons. The method proposed in this paper is suitable for
the sorting of mountage cocoons.
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Figure 19. Confusion matrix. (a) S_YOLOv8-c. (b) YOLOv8. (c) YOLOv7. The numbers in (a,b)
represent the quantity of silkworm cocoons.
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Figure 20. Detection results of YOLOv8, YOLOv7, and our model. (a,b) are two randomly selected
images from the set of 10 test images. (c,d) are the detection results of S_YOLOv8-c. (e,f) are the
detection results of YOLOv8. (g,h) are the detection results of YOLOv7. Note: The red and yellow
boxes in (a,b) are manually marked waste cocoons and double cocoons, respectively. The green, red, and
yellow boxes in (c,h) are the detected reelable cocoons, waste cocoons, and double cocoons, respectively. The
numbers representing waste cocoons and double cocoons are determined through manual classification.

Based on the manual classification, there are two double cocoons and three waste cocoons
in Figure 20a. S-YOLOv8_c correctly detects waste and double cocoons but misidentifies
one reelable cocoon as a double cocoon. YOLOv8 correctly detects waste cocoons but fails to
detect double cocoons. YOLOv7 has trouble recognizing cocoon features. It detects two waste
cocoons and no double cocoons. It also misidentifies one waste cocoon as a double cocoon. There
are two waste cocoons and five double cocoons in Figure 20b. Both waste cocoons have minor
surface defects. S-YOLOv8_c accurately detects both waste and double cocoons without any
false positives. YOLOv8 successfully detects two waste cocoons and two double cocoons but
incorrectly detects three reelable cocoons and one double cocoon as waste cocoons and incorrectly
detects one reelable cocoon as a double cocoon. YOLOv7 also detects two waste cocoons and two
double cocoons but has a higher false positive rate. It falsely detects seven reelable cocoons and
one double cocoon as waste cocoons and falsely detects one double cocoon as a reelable cocoon.
Via the comparison of the detection results, it can be observed that the improved algorithm
achieves a higher detection accuracy and shows a significant improvement compared to
the original YOLOv8 and YOLOv7.

4. Conclusions

In this study, a model combining segmentation and target detection is proposed for
the sorting of mountage cocoons. By using the constructed MobileSAM to extract cocoon
images, the influence of mounting and background on the detection accuracy can be
effectively filtered out. This allows the target detection model to focus more on the cocoon,
resulting in a significant improvement in cocoon detection accuracy. Experimental results
showed that the cooperative detection model S-YOLOv8_c had a significant improvement
in detection accuracy compared to the independent detection model YOLOv8_c, with the
mAP increased by 5%.

Ablation experiments indicated that BiFPN enhanced the feature extraction capability
of the model, thereby improving the detection accuracy. The addition of GAM significantly
improved the detection ability of double cocoons. The WIoU mitigated the impact of low-
quality images on model detection and improved detection speed. The combination of the
three leads to the maximum performance improvement with a mAP of 95.8%, an increase
of 5.6% increase. Furthermore, the average detection time is 35.1 ms per frame, showing an
increase of 18.75% in detection speed.
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Due to insufficient experience and limited capabilities, the cooperative detection model
still exhibits high computational complexity and slow detection speed compared to the
independent detection models. In the future, we will focus on network pruning to enhance
the detection speed of the model while maintaining accuracy.
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