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Abstract: Reducing greenhouse gas (GHG) emissions and increasing the size of carbon sinks are
closely related to food security in agricultural systems. This study conducted an in-depth data
analysis of previous studies to explore the dynamic causal relationships among the reduction of
emissions, carbon sink increases, and food security in agricultural systems. The fixed-effect regression
model, causality tests, PVAR model, impulse response functions, and variance decomposition were
used to explore correlations among the three variables. The results show that the national average
carbon sinks surged from 2662.194 Mg in 2000 to 4010.613 Mg in 2020, with the food security index
concurrently climbing from 0.198 to 0.308. Moreover, GHG emissions exhibited a negative growth
rate from 2016 onwards, yet the 2020 mean remained 142.625 Mg above the 2000 baseline. The
agricultural “three subsidies” reform has not directly promoted food security, but significantly
inhibited GHG emissions. However, conflicts exist between emissions reduction and carbon sinks
increase in agricultural systems and food security. At the whole level, changes in carbon sinks only
have a positive effect on the increase in GHG emissions, whereas changes in GHG emissions have
a positive effect on both carbon sinks and food security. Changes in food security strongly inhibit
the increase in carbon sinks. This relationship varies among distinct grain functional zones. Policy
objectives should be coordinated, target thresholds set, and policies classified according to different
functional orientations, to achieve a win–win situation for food supply and low-carbon development.

Keywords: GHG emissions; carbon sinks; food security; panel vector autoregression model;
agricultural system

1. Introduction

Amid the impacts of global climate change, the pandemic, and geopolitical conflicts,
food security has again become a pressing concern [1–3]. The 2022 report The State of Food
Security and Nutrition in the World highlighted that, in 2021, 29.3% of the global population
faced moderate to severe food insecurity, representing an increase of 350 million people
since the outbreak. China has recorded 19 years of increased grain production and is
therefore prioritizing food security. However, agriculture and food production accounted
for 31% of the global anthropogenic greenhouse gas (GHG) emissions in 2019, with China’s
agricultural GHG emissions ranking the highest globally, accounting for 14% of the total
emissions [4]. Among the three agricultural sources, the proportion of GHG emissions
from agricultural production activity is consistently higher than that from livestock [5].

Agriculture, a major contributor to carbon sources and sinks, is the most vulnerable
sector affected by climate change [6,7]; therefore, it is an integral part of climate change
mitigation [8]. However, implementing mitigation programs in the agricultural sector may
limit food availability and sustainable rural livelihoods in the coming decades [9–11]. For
instance, implementing agricultural emission reductions in densely populated countries,
such as China, may result in significant food heat loss but may not significantly contribute
to emission reduction. However, increasing carbon sinks in agricultural soil can mitigate
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implicit heat loss [8]. A previous study has demonstrated that the increase in atmospheric
CO2 concentration enhances the carbon sink capacity of terrestrial ecosystems while causing
global warming through the greenhouse effect [12]. However, the “fertilization effect”
displayed by CO2 has different or even opposing effects on yields for different countries
and food crops [13]. Furthermore, the nutritional quality of food crops deteriorates when
the CO2 concentration reaches a certain level [14], potentially leading to severe public
health problems [15]. The agricultural system is a significant carbon pool. It has been
estimated that China’s farmland has a total carbon pool of 16.32 ± 0.41 Pg C, with the soil
carbon pool accounting for >96% of the total carbon pool [16]. Increasing soil carbon sinks
can improve the soil quality and crop yield [17]. However, excessive fertilization can reduce
the soil absorption of CH4 and N2O [18]. High CO2 concentrations can increase the net
primary productivity of terrestrial ecosystems [19,20], i.e., the “fertilization effect” of CO2,
which has increased global annual photosynthesis by 11.85%, equivalent to approximately
13.98 Pg C per year [21]. However, this fertilization effect is limited [22], since as the CO2
concentration continues to increase, the effect on plant growth promotion will weaken [23].
These findings indicate that conflicts and synergies between food security and agricultural
dual-carbon goals exist, with trade-offs in the short term. Despite this, in the long term,
ecological security largely controls sustainable food security [24,25].

To achieve reductions in emissions and an increase in sinks while ensuring food
security, a comprehensive balance is required [26,27]. Previous studies have reported
correlations between agricultural production and carbon emissions [28,29]; however, the
correlations among the three variables have not been investigated, which could lead
to a deviation from the dual-carbon goals of agriculture and food security. Therefore,
determining the correlations among GHG emissions, carbon sink capacity, and food security
is necessary to achieve sustainable agricultural development.

This study aimed to explore the correlations among emissions reduction, carbon sinks
increase, and food security in agricultural systems using China as a case study, analyze
the differences in the correlations, and propose different implementation paths based on
functional positioning differences of main grain production areas (PA), balance areas (BA),
and main consumption areas (CA) in the three regions. For this purpose, a fixed-effect
regression model, a causality test, panel vector autoregression (PVAR) model, impulse
response function, and variance decomposition were used to examine the correlations and
mechanisms affecting agricultural systems.

2. Materials and Methods
2.1. Variable Definition
2.1.1. Calculation of GHG Emissions from Agricultural Systems

The agricultural system provides a critical foundation for ensuring food security and
has significant effects on GHG emissions [30]. Reducing emissions and increasing carbon
sinks in farmland play crucial roles in mitigating climate change [17]. There are three
primary sources of GHG emissions from farmland. First, crop planting and the use of
agricultural inputs, such as fertilizers, pesticides, plastic films, machinery, and irrigation,
all contribute to CO2 emissions during the planting process. The second source is that of
CH4 emissions produced during crop growth, as paddy fields are major sources of CH4
due to anaerobic fermentation during long-term flooding [31]. The warming potential
of 1 kg CH4 is 25 times that of 1 kg CO2 over 100 years [32]. However, CH4 emissions
from dryland crops are negligible. Therefore, this study mainly focused on the emission
of CH4 from paddy fields. CH4 emissions vary regionally due to climate, temperature,
and other factors [33,34]. In Chinese provinces, the coefficient already includes the effect
of fertilization on CH4 emissions from paddy fields, including early rice, late rice, and
in-season rice. The third source is that of N2O emissions from farmland soils. Due to
external N input, N2O emissions from agricultural sources account for ~60% [35], and the
warming potential of 1 kg N2O is 298 times that of 1 kg CO2 over 100 years [32] and its
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greenhouse effect cannot be ignored. Nitrogen fertilizer application and crop uptake have
the most prominent effect on N [36].

This work refers to nitrous oxide emission factors provided by [33] to calculate soil
background N2O emissions and N2O emissions caused by fertilization. As statistical data
only provide the total amount of fertilizer application, the proportion of different crop
planting areas and amount of fertilizer applied to crops were calculated in this study.

GHG emissions (104 Mg) were calculated based on the warming potential of three GHGs:

GHG = fCO2 + fCH4 × 25 + fN2O × 298

=
l

∑
i=1

Ci × δi +
m
∑

j=1
Hj × σj × 10−7 × 25+

n
∑

k=1
(Sk × αk + Nk × βk + Fk × γk)× 298 (1)

where fCO2 , fCH4 , and fN2O denote farmland carbon, CH4, and N2O emissions (104 Mg),
respectively; i, j and k denote the type of carbon, CH4, and N2O emissions source, respec-
tively; Ci (104 Mg) is the amount of the carbon emission source; δi is the emission factor of
the carbon emission source; Hj (hm2) is the sown area of paddy fields; σj (kg/hm2) is the
emission factor of CH4 emissions; Sk (hm2) is the sown area of crops; Nk (104 Mg) is the
amount of nitrogen fertilizer applied to crops; Fk (104 Mg) is the amount of compound fertil-
izer applied to crops; αk (kg/hm2) is the emission coefficient of crop cultivation; βk (kg/kg)
is the emission coefficient of nitrogen fertilizer; γk (kg/kg) is the emission coefficient of
compound fertilizer.

2.1.2. Calculation of Carbon Sinks in Agricultural Systems

The amount of carbon sinks (sink) in agricultural systems includes the amount of CO2
absorbed by the aboveground part of the crops and the carbon content of the underground
part. It can be calculated by referring to [37]:

sink =
CP × (1 − δ) · CA

Ce
× (1 + r) (2)

where CP represents the crop yield in 104 Mg; δ is the water content of the crop yield as
a percentage [38]; CA represents the carbon sinks rate as a percentage; Ce indicates the
economic coefficient of the crop, which is the ratio between crop output and economic
output [39]; r is the ratio of the carbon content in the underground part of the crop to the
carbon content of the aboveground part. Specific parameters were defined by [40].

2.1.3. Calculation of Food Security Index

Based on the perspective of ensuring grain production security and protecting pro-
ductive farmland, a comprehensive evaluation of China’s provincial grain security was
conducted in this study from three aspects: per capita grain availability, grain yield per
unit area, and cultivated land pressure. Per capita grain availability and grain output per
unit area are important indicators for measuring food security, whereas the cultivated land
pressure index reflects the relationship between grain production and demand [41,42] and
is widely used in regional food security assessments. The equation for calculating the food
security index (food) is:

f ood =
n

∑
i=1

Fiωi (3)

Fk = Smin/Sa = β
Gr

p · q · k · Sa
(4)

where Fi represents the i-th food security sub-indicator, n = 3; ωi is the weight of the sub-
indicator, calculated according to the entropy method; Fk is the cultivated land pressure
index; Smin (hm2) is the minimum per capita cultivated land area; β is the grain self-
sufficiency rate; Gr is the per capita grain demand; p represents the grain yield per unit
area; q is the ratio of the grain sown area to the total sown area; k is the multiple cropping
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index; and Sa (hm2) is the actual per capita cultivated land area. National-level data were
used in this study due to the lack of provincial-level data on the per capita grain demand
and grain self-sufficiency rate. The Gr value is 437 kg, representing the goal of achieving
an all-round well-off society in 2020, as put forward by the National Food and Nutrition
Advisory Committee. According to the white book on China’s grain problem (Information
Office of the State Council of the People’s Republic of China 1996) and 2008 Outline of the
National Food Security Medium and Long-term Plan, the baseline grain self-sufficiency
rate in China is 95%, therefore the value of β was calculated according to this.

2.1.4. Agricultural Policy Dummy Variable

During the study period, China implemented two crucial policies pertaining to food
security and agricultural emission reduction: the grain direct subsidy policy and the
agricultural “three subsidies” reform. To assess the impact of these policies on agricultural
emissions reduction, carbon sinks, and food security, we established two dummy variables
specific to agricultural policies. The first dummy variable, designated as fsp, represents
the grain direct subsidy policy. This policy was initially piloted in major grain-producing
regions in 2002; a value of 1 was assigned to these regions and 0 to others. Since its
nationwide rollout in 2004, the fsp has maintained a value of 1 in all subsequent years.
The second dummy variable, tsp, corresponds to the agricultural “three subsidies” reform
policy. In 2015, China embarked on a fertilizer “zero growth” initiative in five provinces:
Anhui, Shandong, Hunan, Sichuan, and Zhejiang, to pilot the reform, which merged
various agricultural subsidies into a unified agricultural support and protection subsidy.
Therefore, the tsp variable was assigned a value of 1 for the pilot provinces in 2015 and 0
for other regions. Subsequently, in 2016, the reform was expanded nationwide, resulting in
a value of 1 for the tsp in all subsequent years. The objective of this policy is to encourage
farmers to adopt comprehensive measures, such as straw recycling, soil loosening, reduced
usage of chemical fertilizers and pesticides, and increased application of organic fertilizers.

2.1.5. Control Variables

Based on the available data and relevant literature [5,6,30] on the factors that influence
food security and agricultural carbon emissions, we identified three types of influencing factors
as control variables: first, population factors, including population density and population
urbanization rate; second, economic factors, including Engel’s coefficient, agricultural industry
structure, agricultural economic development level, and agricultural mechanization level; and
finally, climatic factors, including precipitation and agricultural disaster rate.

The definitions of the variables are presented in Table 1. To effectively prevent potential
errors arising from extreme values during regression, we selected the logarithm of certain
variables, particularly in cases where the variables have a wide range of variation.

Table 1. Statistical description of variables.

Variable Definition Obs. Mean Std. Min Max

CO2 Carbon dioxide emissions (104 Mg) 651 253.996 193.427 3.467 870.981
CH4 Methane emissions (104 Mg) 651 30.498 42.650 0.000 145.773
N2O Nitrous oxide emissions (104 Mg) 651 1.513 1.277 0.012 5.566
sink Carbon sinks (104 Mg) 651 3411.399 3000.900 46.837 12,537.790
GHG Greenhouse gas emissions (104 Mg) 651 1467.379 1296.201 8.599 4438.733
food Food security index 651 0.256 0.119 0.068 0.874
fsp Food subsidy policy (Yes = 1, no = 0) 651 0.849 0.358 0.000 1.000
tsp Agricultural “three subsidies” reform (Yes = 1, no = 0) 651 0.246 0.431 0.000 1.000
pop Population density (Person/hm2) 651 4.262 6.276 0.021 39.492
szl Disaster-affected rate 651 0.228 0.161 0.000 0.936
stru Value added of the primary industry/GDP 651 0.120 0.065 0.003 0.364
lnmac Logarithm of total power of agricultural machinery 651 7.431 1.104 4.543 9.499
urban Urbanization rate of population 651 0.488 0.181 0.131 0.896
lnae Logarithm of agricultural output value/population 651 7.672 0.697 6.147 9.454
ec Engel’s coefficient 651 0.347 0.051 0.197 0.490
rain Logarithm of precipitation 651 6.722 0.513 4.954 7.711
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2.2. Research Methods
2.2.1. Baseline Regression Model

We used a fixed-effect regression model for baseline regression. The basic model is
expressed as follows:

Y = λ + cX +
n

∑
j=1

ηjCj + vi + δt + εit (5)

where i is the individual, representing different regions; t is the time, representing different
years; X constitutes any two of the following three variables: greenhouse gas emissions,
carbon sinks, and food security; c is the core explanatory variable’s estimated coefficient; Cj
is the control variable j; n is the number of control variables; vi and δt denote the provincial
fixed effect and time fixed effect, respectively; and εit is the random disturbance item.

2.2.2. Panel-VAR Model

The PVAR model combines the advantages of the panel data model and the VAR
model, hence treating all variables in the system as endogenous [43,44], and contains
short time measurement estimated using the generalized method of moments (GMM)
process [45]. Moreover, the orthogonalized impulse response function (IRF) of the model
provides a convenient means to articulate the dynamic interplay among variables [46]. To
comprehensively investigate the correlation among GHG emissions, carbon sinks, and food
security in agricultural systems, the PVAR estimation method was employed in this study
to construct the panel autoregressive model:

yit = β0 +
k

∑
j=1

β jyi,k−j + αi + ηt + εit (6)

where i is the individual, representing different regions; t is the time, representing different
years; yit is the m × 1 vector of individual observable random variables i at time t; β0 is the
intercept items vector; β j is the m × m coefficient of the lag variable matrix; yi,k−j is the j
order lag item of endogenous variables; αi is the individual fixed effect item; ηt is the time
effect item; and εit is the random disturbance item.

2.3. Data Source

In this study, we utilized panel data from 31 provinces in China (excluding Hong
Kong, Macau, and Taiwan) from 2000 to 2020. Primary data sources for this study include
the National Bureau of Statistics (https://data.stats.gov.cn), the China Rural Statistical
Yearbook, and Provincial Statistical Yearbook. The precipitation data are sourced from
the Daily Dataset of China’s Ground-based Climatic Data (V3.0) provided by the National
Meteorological Science Data Sharing Service Platform.

3. Results
3.1. The Trend and Correlation between GHGs, Carbon Sinks, and Food Security
3.1.1. GHGs, Carbon Sinks, and Food Security Trends

Figure 1 illustrates the change rates of the GHG emissions, carbon sinks, and food
security index in China from 2001 to 2020. Except for several years, including 2003, 2009,
and 2016, both food security and carbon sinks demonstrate a growth trend. In 2003, China
experienced its largest decline in grain output of 5.77% due to accelerated agricultural
structural adjustments in the early 20th century, urban expansion taking up considerable
areas of cultivated land, and a severe natural disaster. Subsequently, in 2004, the Central
Committee of the Communist Party of China introduced a series of policies, such as
direct subsidies for grain, improved seed subsidies, and agricultural tax reductions and
exemptions, which augmented farmers’ income and increased their willingness to cultivate
grain. In 2009, China’s grain output continued to grow, and the sown area increased further,
resulting in a 3.54% decrease in the grain output per unit area and, ultimately, a decline

https://data.stats.gov.cn
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in the food security index. Similarly, the food security index dropped in 2016 due to the
decline in per capita grain production. GHG emissions demonstrated a growth rate of
5.50% in 2004 and did not display a downward trend until 2016. Following the Ministry of
Agriculture and Rural Affairs of China’s implementation of the zero-growth campaign for
chemical fertilizers and pesticides in 2015, their use in the entire country has shown a steady
decrease. Therefore, the warming potential has exhibited negative growth since 2016.
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Figure 1. Change rates of GHGs, carbon sinks, and food security.

The spatiotemporal differences of GHGs, carbon sinks, and food security were ana-
lyzed by region using 2000 and 2020 as examples (Table 2). Based on the division of grain
functional areas, the food security and carbon sink capacity of PA have significantly im-
proved from 2000 to 2020, but the GHG of this area has also slightly increased. Heilongjiang
had the highest food security capacity in the country in 2020, but its warming potential is
at a medium level. Major rice-producing areas in the Yangtze River Basin, such as Hunan,
Jiangsu, and Anhui, have high GHG emissions but low-carbon sinks and food security
maintenance capabilities. Agricultural systems in Hebei, Jiangsu, Shandong, and Sichuan
exhibit reduced emissions, increased sinks, and improved food security capacities. The
highest number of carbon sinks was obtained for Henan. The change trend of BA and PA
is consistent, but the gap between PA and BA’s GHG and the average value is widening,
whereas the gap in carbon sinks is narrowing. Guangxi maintains high GHG emissions
and a high carbon sink capacity, ranking second in the country, but with a relatively weak
ability to guarantee food security. Tibet, Qinghai, and Ningxia’s GHG and sink rankings
have remained stable, whereas Ningxia’s food security index has significantly improved.
Shanxi, Guangxi, and Chongqing have realized reduced emissions, increased sinks, and
improved food security in agricultural systems. The food security index of Xinjiang is the
highest in BA but still lower than the PA mean. Although the GHG emission mean has
decreased in the main grain sales area, it remains higher than that in the BA area. The
carbon sinks have also declined. Beijing’s GHG emissions, carbon sinks, and food security
index are at low levels, whereas Guangdong has the highest GHG emissions and carbon
sinks in CA, but its food ranks third from the bottom and has declined. Tianjin is the only
region in CA that has achieved GHG emissions reduction, carbon sinks increase, and food
security index growth.
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Table 2. Spatiotemporal distribution of GHGs, carbon sinks, and food security in 2000 and 2020.

Area
GHG (104 Mg) Sink (104 Mg) Food

2000 2020 2000 2020 2000 2020
Hebei 1465 1261 4451 6435 0.187 0.322
Inner Mongolia 533 1107 2081 6350 0.193 0.614
Liaoning 722 772 1676 3745 0.165 0.365
Jilin 751 989 2534 5998 0.283 0.690
Heilongjiang 1351 2534 4067 11,515 0.257 0.874
Jiangsu 4188 4138 4934 5662 0.292 0.342
Anhui 3387 4104 4143 6430 0.207 0.351
Jiangxi 2887 3868 2456 3108 0.239 0.304
Shandong 2119 1800 7077 9527 0.266 0.358
Henan 2077 2560 7574 12,178 0.239 0.396
Hubei 3176 4093 3749 4406 0.260 0.309
Hunan 3554 4408 4056 4457 0.276 0.322
Sichuan 2279 2243 5015 5445 0.246 0.280
PA mean 2192 2606 4140 6558 0.239 0.425
Shanxi 428 425 1252 2138 0.106 0.231
Guangxi 2404 2208 5982 11,704 0.189 0.203
Chongqing 827 826 1493 1494 0.201 0.245
Guizhou 768 884 1782 1539 0.164 0.159
Yunnan 669 1013 3868 4914 0.166 0.229
Tibet 9 15 67 47 0.230 0.238
Shaanxi 678 774 1726 2052 0.125 0.192
Gansu 300 449 1095 1859 0.107 0.254
Qinghai 26 31 130 166 0.068 0.124
Ningxia 105 145 376 569 0.186 0.314
Xinjiang 377 852 2528 6479 0.270 0.404
BA mean 599 693 1845 2997 0.165 0.236
Beijing 103 26 243 50 0.141 0.165
Tianjin 113 76 215 362 0.101 0.239
Shanghai 325 182 268 124 0.229 0.258
Zhejiang 1941 1186 1802 930 0.217 0.198
Fujian 1456 990 1201 703 0.187 0.203
Guangdong 2725 2278 3984 3607 0.200 0.185
Hainan 393 321 703 336 0.146 0.183
CA mean 1008 723 1202 873 0.174 0.204
ALL mean 1359.226 1501.871 2662.194 4010.613 0.198 0.308

Notes: Color gradient legend displayed by column across three distinct regions. PA is the main grain production
areas. BA is the balance areas. CA is the main consumption areas. Food represents food security index.
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3.1.2. Emissions and Trends of Three GHGs

Figure 2 displays the emissions and change rates of the three GHGs, which were
converted into the warming potential. CH4 emissions from the cropland system contribute
the most to the warming potential, whereas CO2, which has the highest concentration
among the main GHGs, contributes the least. Therefore, CH4 and N2O emissions should
be considered in evaluations of the greenhouse effect caused by the cropland system,
rather than just CO2 emissions. From 2000 to 2003, methane emissions decreased annually,
whereas CO2 and N2O emissions maintained a growth trend. This is related to the reduction
of the grain crop area and increase in the economic crop area during the same period. After
the implementation of the grain protection policy in 2004, CH4 emissions increased rapidly
to 229.07 million t. In 2016, the growth rates of the three GHGs significantly decreased,
with CO2 and N2O having notable emission reduction effects. However, the reductions of
the three GHGs were smaller in 2019.
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Figure 2. Emissions and change rates of CO2, CH4, and N2O. Cr, hr, and nr represent the change
rates of CO2, CH4, and N2O, respectively.

3.1.3. Correlation Analysis of GHGs, Carbon Sinks, and Food Security

As a whole, there is a high correlation between GHGs, carbon sinks, and food security
(Figure 3). The correlation coefficient between carbon sinks and GHGs is 0.772 (Table 3),
which indicates a relatively strong positive correlation between carbon sinks and GHGs.
The result suggests an association between the capacity of ecosystems to absorb GHGs and
the emissions of these gases; however, a more in-depth investigation and data analysis
remain warranted to determine the specific mechanisms. Among the three GHGs, CO2
shows the highest correlation with food, whereas N2O exhibits the strongest correlation
with carbon sinks.
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Table 3. Spearman correlation coefficient.

Areas Variables CO2 CH4 N2O Sink GHG Areas CO2 CH4 N2O Sink GHG

PA

CH4 −0.064

BA

0.509 *
N2O 0.811 * −0.319 * 0.864 * 0.615 *
sink 0.772 * −0.200 * 0.866 * 0.929 * 0.606 * 0.837 *
GHG 0.323 * 0.888 * 0.013 0.102 * 0.778 * 0.857 * 0.864 * 0.823 *
food 0.052 −0.104 * 0.152 * 0.433 * −0.079 0.138 * 0.108 −0.112 * 0.134 * 0.019 *

CA

CH4 0.929 *

ALL

0.527 *
N2O 0.929 * 0.851 * 0.897 * 0.398 *
sink 0.928 * 0.929 * 0.926 * 0.897 * 0.469 * 0.904 *
GHG 0.949 * 0.991 * 0.876 * 0.925 * 0.839 * 0.861 * 0.726 * 0.772 *
food 0.176 * 0.314 * 0.027 0.122 0.275 * 0.574 * 0.287 * 0.560 * 0.616 * 0.492 *

Notes: The data in the figure represent the Spearman correlation coefficient. PA is the main grain production
areas. BA is the balance areas. CA is the main consumption areas. ALL represents all areas. * significant at the
10% level.

However, significant regional differences were observed in the correlations between
variables. Sink and GHG are highly correlated in all three regions, but the correlation is
the strongest in CA, with a coefficient of 0.925 (Table 3). This illustrates the dual nature
of agriculture as a carbon source and sink, with the highest correlation between the two
observed in CA. This is associated with the land-use patterns in these regions, where
the land use in CA is more specialized and centralized. This specialization may lead to
larger-scale agricultural activities and corresponding GHG emissions while providing more
opportunities to implement carbon sink measures. Sink and food are significantly correlated
only in PA and BA and the correlation is the strongest in PA, which might be attributed
to effective land-use practices or agricultural policies promoting both carbon sinks and
food production. GHG and food are only significantly correlated in BA and CA, but the
correlation is weak. In terms of the correlations between the three GHGs and food, CO2
and food only correlate in BA and CA and do not significantly correlate in PA. In PA, CH4
and food are significantly negatively correlated, whereas they are positively correlated in
BA and CA. N2O and food are positively correlated in PA, negatively correlated in BA, and
not significantly correlated in CA, suggesting that local food security is not directly related
to the GHG warming potential and CO2 emissions, although the main grain-producing
regions contribute the most to whole GHG emissions and play a critical role in ensuring
food security.

3.2. Analysis of Fixed Effects Regression Results

Fixed effects regression can control unobserved factors that do not change over time
but vary among different units, thus more accurately estimating the relationship between
variables. Through fixed effects regression, whether there are significant statistical rela-
tionships between agricultural GHG emissions, carbon sinks, and food security, as well
as the direction and strength of these relationships, can be determined, thereby providing
a foundation and basis for subsequent deeper causal analysis. To identify the impact of
agricultural policy implementation on these three factors, we included a policy dummy
variable in the model. Additionally, considering the lagged effect of policy implementation,
we included a lagged policy dummy variable. Furthermore, we incorporated the interaction
term between individual effects and time effects.

Result in columns (1), (3), and (5) of Table 4 show the regression results without
controlling for time-fixed effects, while columns (2), (4), and (6) control for these fixed
effects. From the regression results that control for all fixed effects, the growth of GHG
emissions promotes the growth of carbon sinks, and vice versa, which may be related to
the fertilization effect of CO2 [19,21]. GHG emissions have an inhibitory effect on food
security; however, the combined effect of GHG emissions and carbon sinks can promote
food security, meaning that the impact of GHG emissions on food security may vary
depending on changes in carbon sinks.
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Table 4. Regression results.

Variable
(1) (2) (3) (4) (5) (6)

lnsink lnsink lnGHG lnGHG lnfood lnfood

lnsink 0.381 *** 0.361 *** −0.197 −0.117
(3.901) (3.810) (−1.608) (−0.899)

lnfood 0.276 0.352 0.052 0.063
(0.531) (0.627) (0.143) (0.179)

lnGHG 0.829 *** 0.813 *** −0.751 *** −0.559 ***
(4.194) (3.608) (−5.530) (−3.732)

c.lnfood×c.lnGHG 0.058 0.045
(0.764) (0.572)

c.lnfood×c.lnsink −0.021 −0.011
(−0.518) (−0.281)

c.lnsink×c.lnGHG 0.105 *** 0.084 ***
(7.055) (4.661)

fsp −0.009 −0.038 −0.019 0.006 0.022 0.001
(−0.557) (−1.286) (−1.276) (0.213) (1.322) (0.022)

L.fsp −0.041 −0.057 ** 0.029 ** 0.027 0.035 ** −0.003
(−1.648) (−2.161) (2.053) (1.378) (2.358) (−0.126)

tsp −0.019 0.042 0.036 * −0.053 *** 0.015 −0.028
(−0.722) (1.442) (1.897) (−3.122) (0.696) (−1.195)

L.tsp 0.010 0.048 −0.037 *** −0.071 *** 0.002 −0.024
(0.653) (1.215) (−3.957) (−2.839) (0.144) (−0.941)

pop 0.004 0.007 −0.018 * 0.000 0.001 −0.021 ***
(0.592) (0.323) (−1.985) (0.015) (0.213) (−2.800)

szl 0.015 0.012 0.057 * 0.065 ** −0.194 *** −0.191 ***
(0.353) (0.284) (1.790) (2.068) (−5.276) (−5.652)

stru 0.501 0.554 0.027 −0.602 0.044 0.781
(0.890) (0.582) (0.069) (−1.257) (0.085) (1.196)

lnmac −0.079 −0.085 0.221 *** 0.203 *** −0.075 −0.073
(−1.220) (−1.288) (3.164) (2.946) (−1.242) (−1.310)

urban 0.280 0.265 −0.451 *** −0.382 *** −0.089 −0.267
(1.034) (0.823) (−4.707) (−3.163) (−0.611) (−1.433)

lnae 0.005 0.024 0.079 0.170 ** 0.114 ** −0.001
(0.075) (0.160) (1.359) (2.185) (2.345) (−0.011)

ec 0.994 * 1.082 * 0.148 0.444 −0.163 0.056
(2.033) (1.724) (0.538) (1.093) (−0.633) (0.134)

lnrain −0.021 −0.021 0.004 0.006 0.042 * 0.052 **
(−0.754) (−0.682) (0.212) (0.254) (1.834) (2.117)

cons 3.126 ** 3.102 ** 1.575 * 1.129 −0.939 ** −0.842 *
(2.315) (2.149) (1.707) (1.235) (−2.102) (−1.780)

Province-fixed effects Yes Yes Yes Yes Yes Yes
Time-fixed effects No Yes No Yes No Yes

N 620 620 620 620 620 620
R2 0.995 0.995 0.997 0.998 0.967 0.970

Notes: The 1%, 5% and 10% levels of significance are indicated by ***, ** and *, respectively. × represents the
cross-multiplication of two variables.

After controlling for time-fixed and province-fixed effects, the lagged grain direct
subsidy policy has a significant inhibitory effect on carbon sinks, while its impact on
GHG emissions and food security is positive but not significant. The agricultural “three
subsidies” reform policy has significantly inhibited GHG emissions. The lagged policy
variables have reached the same conclusion. Population density reduces the level of food
security, which is related to the increased pressure on cultivated land resources and rising
agricultural production costs. Agricultural disaster rates promote GHG emissions and
have a negative impact on food security, indicating that reducing agricultural disaster
risks, improving agricultural resilience, and adopting sustainable agricultural production
methods are particularly important in addressing climate change and safeguarding food
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security. The improved level of agricultural mechanization has led to an increase in GHG
emissions, which may be attributed to the combined effects of increased energy consump-
tion by mechanical equipment, growth in chemical usage brought about by expanded
agricultural production scale and intensification, as well as changes in land utilization
methods. The urbanization rate of the population has a significant inhibitory effect on
GHG emissions, while the agricultural economic development level boosts GHG emissions.
The Engel coefficient has a positive impact on carbon sinks. In regions with a higher Engel
coefficient, agricultural production and land use may be more focused on meeting basic
food needs, further leading to more land being used for crop cultivation, thereby increasing
vegetation cover and carbon sequestration capacity. Precipitation has a positive impact on
food security.

3.3. Interactions among GHGs, Carbon Sinks, and Food Security

The results of the fixed effects regression indicate possible complex bidirectional causal
relationships among GHG, carbon sinks, and food security. Meanwhile, the PVAR model
can further capture the dynamic interactive effects among variables, which is valuable for
analyzing the mutual influence of these variables across multiple time periods. In the PVAR
model, all variables are assumed to be endogenous [43–46], meaning that the model inher-
ently considers the mutual influence and dynamic relationships among variables without
the need to add additional variables to “control” other potential factors that may affect the
outcomes. Through the orthogonalized impulse response function, the PVAR model can
directly identify the degree of impact response among different variables, revealing their
interactive relationships. Subsequently, we adopt the panel vector autoregression (PVAR)
model to directly focus on the dynamic causal relationships among GHGs, carbon sinks,
and food security.

3.3.1. Stability Test

To avoid the issue of “false regression”, we conducted a stationarity test on the panel
data before estimating the PVAR model. As short panel data with Numbers = 31 and
Time = 21 were used in this study, we utilized IPS and HT tests to analyze unit roots for
each variable. Table 5 presents the results, which show that the variable lnGHG does not
reject the null hypothesis and is non-stationary. After taking the first-order difference of all
variables, another stationarity test was conducted. The results show that all variables were
stationary at the 1% level, and they were consistent across PA, BA, and CA.

Table 5. Test results obtained for panel smoothness.

Variables
IPS Inspection HT Test
Z-t-Tilder-Bar p z p

lnfood −8.004 0.000 −9.406 0.000
lnGHG −0.206 0.419 0.499 0.691
lnsink −5.980 0.000 0.280 0.610
D_lnfood −15.228 0.000 −23.942 0.000
D_lnGHG −12.363 0.000 −13.347 0.000
D_lnsink −13.617 0.000 −14.036 0.000

3.3.2. GMM Estimation

Determining the optimal lag order of the model is necessary before performing PVAR
analysis. The three variable sequences of lnfood, lnGHG, and lnsink were analyzed using
the PVAR model. The optimal lag order was selected based on three criteria, i.e., MBIC,
MAIC, and MQIC. The lag order of all areas was determined to be 1.

Based on our previous inspection and processing of variables and panel data, we
constructed a PVAR model for empirical analysis using the first-order differences of all
original variables as new variables. In particular, D_lnfood, D_lnGHG, and D_lnsink were
used to represent the growth rates of the food security index, GHG emissions, and carbon



Agriculture 2024, 14, 703 12 of 20

sinks, respectively. To estimate the parameters of the model, we used the GMM with an
optimal lag order of 1. The results of the model estimation are presented in Table 6. The
first line displays the explained variable.

Table 6. Estimation results of GMM parameters of the PVAR model.

Variable Area D_lnfood D_lnGHG D_lnsink

L1. D_lnfood ALL −0.3448 *** −0.0959 −0.3275 ***
(0.1005) (0.0728) (0.1121)

PA −0.5040 * −0.0040 −0.4976 **
(0.3032) (0.1480) (0.2364)

BA −0.2368 * −0.0866 −0.1236
(0.0750) (0.1087) (0.0990)

CA −0.4109 *** −0.0676 −0.3415
(0.1412) (0.061) (0.2809)

L1.D_lnGHG ALL 0.1539 * 0.0505 0.2374 **
(0.0798) (0.1086) (0.0960)

PA 0.1861 0.0153 0.2554 *
(0.1709) (0.1711) (0.1487)

BA 0.1216 0.0709 0.2414 ***
(0.2120) (0.1276) (0.0880)

CA 0.1771 0.2144 −0.0272
(0.3911) (0.3702) (0.5924)

L1.D_lnsink ALL 0.0825 0.1307 * 0.2561 **
(0.1049) (0.0723) (0.1262)

PA 0.2647 0.0554 0.2893
(0.3788) (0.1886) (0.2912)

BA −0.1026 0.0362 −0.0499
(0.4690) (0.1141) (0.1350)

CA 0.1721 0.1335 *** 0.5234 ***
(0.1358) (0.0479) (0.1869)

Notes: (1) “L1.” means the lag of the first-order. (2) The 1%, 5% and 10% levels of significance are indicated by
***, ** and *, respectively. (3) The standard error values are indicated in brackets. GMM: generalized method of
moments; PVAR: panel vector autoregression.

When using D_lnfood as the dependent variable, the growth rate of the food security
index with a one-period lag likely has negative effects on the current year. Specifically, the
whole and main grain sales areas show high significance at the 1% level, whereas the main
grain production areas and BA are significant at the 10% level. Conversely, the growth rate
of the warming potential with a one-period lag only has a positive impact on the growth
rate of the whole food security index in the current year, but it is not significant after being
classified by grain production areas. Finally, the change rate of carbon sinks in the cropland
system during the previous period does not have a significant effect on food security. This
finding is consistent with the regression results of the fixed effects.

When using D_lnGHG as the dependent variable, neither the change in food security
nor GHG in the previous period has a significant effect on GHG in the current period.
However, changes in carbon sinks during the previous period can accelerate the growth
of GHG in the current period. In the fixed-effects regression results, carbon sinks can also
increase GHG emissions. Notably, the main grain sales areas have the most significant
effect, with significance at the 10% level throughout the entire country, but they are not
significant in other regions.

When using D_lnsink as the dependent variable, the change in grain security during
the previous period inhibits the growth of carbon sinks in the current period. Specifically,
the effect is significant at the provincial level at 1% and major grain-producing areas show
a significantly negative impact at the 5% level; however, it is not significant in other regions.
Conversely, the change in GHG during the previous period can significantly promote the
increase in the number of carbon sinks in the entire country, main grain production area,
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and balance area. The main grain sales area has a negative effect, which is not significant.
Finally, the change in carbon sinks of whole agricultural systems during the previous period
significantly accelerates the increase in the value of the current period, at a significant level
of 5%.

To validate the robustness of our results, we conducted additional tests. Specifically,
following the eigenvalue stationarity test previously proposed [45], we assessed the sta-
bility condition of the estimated PVAR model. A PVAR model is considered stable if all
eigenvalues are strictly smaller than one. The results indicate that all eigenvalues are inside
the unit circle at the provincial level, implying that the PVAR model satisfies the stability
condition. The test results in other regions were consistent with this finding.

3.3.3. Granger Causality Test

We conducted Granger causality tests using the PVAR model. The test comprises
two hypotheses, namely H0, which excluded variable does not Granger-cause Equation,
and Ha, which excluded variable Granger-causes Equation [45]. The original hypothesis
of the absence of causality was rejected for the variable sequences at the 1%, 5%, and
10% significance levels (Table 7). Specifically, the change in GHG at the provincial level
was determined to be mutually causal with the changes in the food security index and
carbon sinks. Furthermore, the changes in the food security index were identified as the
reasons for variation in carbon sinks. The changes in the food security index and GHG of
major grain-producing areas were identified as Granger factors of carbon sinks changes.
Additionally, the GHG of the grain balance area was determined to be the Granger cause of
carbon sinks changes. In contrast, the carbon sinks changes of the main grain sales area
were identified as the Granger cause of GHG changes.

Table 7. Granger causality test results.

Equation Excluded
All PA BA CA

chi2 df p chi2 df p chi2 df p chi2 df p

D_lnfood D_lnGHG 3.713 1 0.054 1.186 1 0.276 1.557 1 0.212 0.205 1 0.651
D_lnsink 0.618 1 0.432 0.488 1 0.485 0.524 1 0.469 1.605 1 0.205
ALL 4.405 2 0.111 3.580 2 0.167 1.660 2 0.436 1.741 2 0.419

D_lnGHG D_lnfood 1.732 1 0.188 0.001 1 0.978 0.635 1 0.426 1.226 1 0.268
D_lnsink 3.264 1 0.071 0.086 1 0.769 0.101 1 0.751 7.778 1 0.005
ALL 4.426 2 0.109 1.566 2 0.457 1.180 2 0.554 7.975 2 0.019

D_lnsink D_lnfood 8.533 1 0.003 4.430 1 0.035 1.560 1 0.212 1.478 1 0.224
D_lnGHG 6.111 1 0.013 2.949 1 0.086 7.522 1 0.006 0.002 1 0.963
ALL 11.026 2 0.004 12.963 2 0.002 8.025 2 0.018 1.579 2 0.454

3.3.4. Impulse Response Function (IRF)

The IRF reveals how variables react when subjected to a shock or innovation in other
variables, and provides information regarding the duration required for the series to return
to a stable state [47]. In this study, we utilized 200 Monte Carlo simulations based on a
Gaussian approximation to estimate the confidence intervals for IRF using Cholesky de-
composition [45]. Since not all variables in all regions exhibited Granger causality, impulse
response analysis was only conducted on variables with Granger causality (Figure 4).

When the carbon sink is affected by one standard deviation, a strong positive response
is observed in the carbon sinks of the whole country and each region, followed by a
rapid decrease (Figure 4a–c). However, this effect disappears after the fourth period.
The D_lnGHG in all areas and in major grain sales areas exhibits the maximum positive
response in the first period, followed by a sharp decline, and gradually s to zero after the
fourth period. The pulse effect of D_lnfood is not significant in all regions.

When the GHG is affected by one standard deviation, the impulse responses of
D_lnsink in the whole country, main grain production area, and balance area are positive,
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reaching the maximum and minimum values in the first and second period, respectively.
They gradually converge to zero (Figure 4d–f). Except for the GHG in the main grain
sales area, which exhibits no significant response, the positive response of the GHG itself
decreases rapidly in the first period and starts to gradually converge to zero in the second
period. The responses of D_lnfood and D_lnsink in all areas are consistent, but D_lnfood
exhibits a negative response in the second period and tends to be stable after the fourth
period. The pulse effect of D_lnfood in other regions is not significant.
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When food security is affected by one standard deviation, the impulse response of
D_lnsink in the whole country and major grain-producing areas is negative, reaching the
minimum value in the first period, and gradually converging to zero in the fourth period
(Figure 4g–i). The impulse response of D_lnGHG is not significant in all regions. In all
regions, the impulse response of D_lnfood first exhibits a positive and then a negative trend,
reaching the minimum value in the first period. The response decline speed is significantly
greater than that of D_lnsink and tends to stabilize after the fourth period.

3.3.5. Variance Decomposition

Based on the variance decomposition results, the following observations can be made.
First, the food security index in all regions are primarily influenced by their past values.
Starting from the second period, the GHG has a weak effect (<3%) on food security. This
effect stabilizes in the fourth period. Second, the GHG of all regions is mostly driven by its
past values and remains stable up to the fourth lag period. The contribution of food security
to the GHG varies from high to low across different regions, with PA (4.68%), BA (4.04%),
All regions (3%), and CA (2.85%) having the highest to lowest contributions, respectively.
In CA, carbon sinks have the most significant effect on the GHG, reaching 5.56% in the
sixth period. Finally, except for CA, food security affects > 50% of the carbon sinks in all
other regions. The impact on carbon sinks reaches 92.18% in major grain-producing areas.
Carbon sinks in the main grain sales area are primarily affected by past values, reaching
a maximum value of 45.97% in the sixth period. The GHG contributes the least to the
carbon sink.

4. Discussion
4.1. Non-CO2 Greenhouse Gases from Agricultural Systems

Carbon emissions, among the main GHG emissions, have received considerable at-
tention [48]. The agricultural system has dual functions (carbon emissions and carbon
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sinks), making it an important contributor to global emission reduction and sink increase.
However, non-CO2 greenhouse gases, including CH4 and N2O with high warming po-
tential [49], are often overlooked in agricultural production activities [50], resulting in the
greenhouse effect of the cropland system being underestimated. According to reports, the
annual increase in CH4 concentration from 2020 to 2021 was the highest on record [51].
The GHG emissions from paddy fields are more than four times those of wheat, which
is primarily driven by CH4 and not N2O [52,53]. The results of our study showed that,
after the uniform warming potential conversion, the warming potential due to CH4 and
N2O emissions from agricultural systems is much higher than that of CO2. Strengthening
regulatory mechanisms is recommended to ensure comprehensive consideration of CH4
and N2O emissions when assessing the greenhouse effect of agricultural systems. As the
ratio of N fertilizer application in China’s agriculture has decreased, the emissions of N2O
have also declined. However, CH4 mainly comes from paddy field production activities,
and emissions have slightly decreased since 2018 due to changes in the planting structure
and adjustment of the sowing area. Paddy fields are also important carbon sinks, and the
correlation results show that CH4 emissions and carbon sinks significantly correlate in all
regions. Paddy fields are a major staple food crop, the methane emissions of which must
not be ignored as they have significant implications for global climate change. Nevertheless,
high rice yields do not necessarily equate to high emissions [54]. Through improvements
in rice varieties and cultivation practices, achieving sustainable food production with high
yields and low emissions remains a viable possibility. These improvements should focus on
adjusting the planting and fertilization structure of rice paddies, which could be achieved
using direct-seeding rice instead of seedling transplantation, using cover materials, raising
water levels to reduce the use of nitrogen and chemical fertilizers, promoting the use of effi-
cient microbial agents to inhibit methane-generating bacteria in rice paddies, and increasing
the biodiversity of the rice paddy ecosystem to reduce methane emissions. Moreover, the
establishment of a monitoring system is crucial to regularly assess the effectiveness of rice
paddy ecosystem management, allowing for adjustments and improvements based on
actual conditions.

4.2. Effect of Agricultural Policies on GHGs, Carbon Sinks, and Food Security

The effect of China’s agricultural policies implemented at different stages on GHGs,
carbon sinks, and food security revealed that the direct grain subsidy policy has not
achieved the policy objective of ensuring food security, consistent with the findings by
Zang et al. [55]. On the contrary, the one-period lagged direct grain subsidy policy has
reduced carbon sinks in the agricultural system. The grain direct subsidy policy, which
has been fully implemented since 2004, aims to encourage increased planting areas and
improved grain yields, prompting farmers to use additional fertilizers, pesticides, and
other agricultural inputs. However, this subsidy approach may cause farmers to expand
grain-growing areas through over-exploitation of land, thereby destroying the original
vegetation cover and reducing the carbon sink capacity of the ecosystem. Notably, the
agricultural “three subsidies” reform policy has not directly promoted food security, which
may be due to shortcomings in the design or implementation of the policy. However, this
policy has played a significant role in suppressing GHG emissions. The policy measures
implemented in the previous year had the same effect. This is related to the adjustment
of the policy objectives to support the protection of soil fertility and the moderate scale
operation of grain production, indicating that the implementation of this policy is conducive
to emission reduction and carbon sequestration in the agricultural system. Although we
identified the role of the nationwide grain direct subsidy policy in GHGs, carbon sinks,
and food security by controlling provincial, time-fixed effects, as well as the interaction
effects between provinces and time, we did not consider the differences in subsidy methods
and amounts of grain direct subsidies in different regions owing to the availability of
data and the focus of this study. Consequently, our assessment of policy effects may be
biased and may prevent us from fully reflecting the actual role of the policy in promoting
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agricultural sustainable development and ensuring food security. To achieve a more precise
evaluation of policy impacts, future research studies should aim to gather and enhance
pertinent data, considering the multifaceted influences of regional disparities, varying
subsidy methodologies, and diverse subsidy amounts.

4.3. The Relationship among GHGs, Carbon Sinks, and Food Security

The results of previous research indicated a two-way correlation between China’s
agricultural output and GHG emissions [28]. However, in contrast to China, no causal
relationship has been identified between Japan’s agricultural output and carbon emissions,
although any imbalances between the two are likely to require approximately 116 years
to achieve long-term sustainability [56]. The results of our study show that there is only
a one-way correlation between food security and GHG emissions. From the perspective
of the long-term warming potential, an increase in food security capacity will not directly
lead to the aggravation of the greenhouse effect. In contrast, the warming potential of
GHG in agricultural systems has a “fertilization effect” on crops at the provincial level.
Unfortunately, changes in the food security index can easily reduce carbon sinks rate
of agricultural systems, which may be related to problems such as soil compaction and
acidification caused by the long-term excessive application of chemical fertilizers, consistent
with Zhang et al. [57]. This can weaken the soil’s carbon sink capacity. According to
Wang et al. [12], an increase in atmospheric CO2 concentration enhances the carbon sink
capacity of terrestrial ecosystems. We have reached the same conclusion in the field of
agriculture, which is an increase in carbon sinks in agricultural systems at the whole level
also contributes to the increase in the warming potential (Figure 5); however, the warming
potential can also have indirect adverse effects on carbon sinks by promoting food security.
Therefore, when formulating agricultural policies and strategies, it is essential to integrate
agricultural emission reduction and carbon sinks with food security within the same
framework. It is also important to globally recognize the significance of this comprehensive
approach in simultaneously promoting sustainable agriculture and ensuring global food
security. The focus should be on addressing the conflicts among these three factors.
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The conflict relationships among GHGs, carbon sinks, and food security varies across
different grain functional zones, necessitating regional classification for targeted measures.
In terms of different zones, except for CA, the warming potential of GHG in agricultural
systems increases the carbon sink capacity of crops, and simultaneously, the carbon sink
capacity will increase GHG emissions in the next period. Proper handling of the relationship
between the two is key to making full use of agricultural systems to reduce emissions and
increase sinks. In addition, our research shows that excessively pursuing the rapid growth
of the food security index will put pressure on food security in the next year. Excessive
emphasis on food security, particularly the increase in grain production, may lead to
inadequate resource allocation and alter land-use patterns, exerting significant pressure on
PA. This affects the sustainability of agricultural systems and, consequently, has adverse
implications for future food security. To alleviate this, it is advisable to consider local
economic conditions and resource-carrying capacity thoroughly when formulating food
security standards. Due to variations in the interactions among food security, GHGs, and
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carbon sinks in different regions, we recommend establishing demonstration zones for
agricultural emission reduction and carbon sinks based on representative regions classified
according to different grain functional zones, rather than implementing a uniform policy
across all regions. PAs are responsible for food production and should focus on promoting
sustainable land-use practices such as crop rotation, conservation tillage, and the use of
cover crops. The promotion of low-carbon technologies can also reduce the negative effect
of food security on carbon sinks growth. Considering the income of grain farmers, it is
recommended to pilot agricultural carbon markets where grain farmers can sell carbon
sinks to obtain corresponding economic benefits, thereby encouraging the implementation
of independent emission reduction measures. This can promote sustainable agricultural
practices and efficient resource utilization, ensuring the sustainable production of food. BA,
such as Gansu and Shaanxi provinces, located in the food balance area, are typical arid and
semi-arid regions in which heat-, drought-, and pest-resistant varieties can be promoted.
These varieties can also make full use of the increased GHG emissions to promote carbon
sinks. In CA, the focus should be placed on measures to reduce GHG emissions, such as
the use of clean energy, improving energy efficiency, promoting organic agriculture, and
the modernization of farmland water conservancy projects.

4.4. Limitations

This article provides a comprehensive analysis of the interactive dynamics among
GHG emissions reduction, carbon sinks and food security in the agricultural system.
However, it has yet to delve into the factors that underlie the formation of such interactions.
Furthermore, various nations have introduced a multitude of policy measures to curtail
carbon emissions but are also confronted with challenges concerning food security. If we
can anticipate the trends in GHG emissions, carbon sinks, and food security under different
policy scenarios in the future, this research could facilitate policy adjustments to foster a
harmonious and mutually beneficial relationship among the three components.

5. Conclusions

This study examined trends in GHGs, carbon sinks, and food security in China’s
agricultural systems from 2000 to 2020, using panel data from 31 provinces. Granger
causality tests, the PVAR model, and impulse responses were employed to analyze their
interaction. The key findings are as follows:

First, from 2001 to 2020, food security and carbon sinks increased overall, and GHGs
began declining after 2016. The PA had the highest mean GHGs, followed by CA, and then
BA, which had the lowest. Carbon sinks and food security ranked highest in PA, followed
by BA and then CA. Some provinces, like Hebei, Jiangsu, Shandong, and Sichuan, showed
improved GHGs reduction, carbon sinks, and food security in PA, while others, like Shanxi,
Guangxi, and Chongqing showed these improvements in the BA, and Tianjin in the CA.

Second, CH4 emissions contribute most to the warming potential, while CO2 con-
tributes the least. When evaluating the greenhouse effect, more attention should be placed
on reducing CH4 and N2O emissions rather than on CO2 alone. While a significant overall
correlation exists among GHGs, carbon sinks, and food security, at the grain functional
zones level, sinks–GHGs correlate in all regions, sinks–food security significantly correlate
in PA and BA, and GHGs–food security correlate weakly in BA and CA.

Finally, when integrating GHGs, carbon sinks, and food security into the same system,
changes in GHGs and carbon sinks exhibit good self-coordination, but changes in food
security has short-term positive and long-term negative effects on food security itself.
Multiple conflicting correlations exist among the three factors. Overall, carbon changes
positively affect a rise in GHGs, but food security strongly inhibits carbon sink increases. In
the grain functional zones, GHG changes positively affect carbon sinks in BA, while food
security negatively impacts carbon sinks (up to 90%) in PA.
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