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Abstract: Protecting humankind’s natural resources and soils, including forestry, represents
a top priority in agriculture. Addressing climate change should prioritize preserving and
enhancing organic carbon, specifically humus, in soils. In this paper, we examine the
impact of soil preparation on soil humus and microbial life during the reforestation of
Southern Nyírség, Hungary. We determined soil plasticity, pH in distilled water solution,
the quantity and quality of humus content, the total number of bacteria and microbial fungi,
as well as CO2 production. In addition to stump removal and plowing, the wealthiest
layer of organic matter was detached from the surface. A significant decrease in humus
content (HU%) was observed at the five experimental sites (loss of 19.20–40.14 HU% at
0–30 cm depth). Soil organic matter is concentrated in the stump depositions. According
to the results, the quantity of humus content is strongly correlated with the measured
parameters of soil life, specifically with the number of microbial fungi (r = 0.806 **) and
the total number of bacteria (r = 0.648 **). Another correlation (r = 0.607 **) was assessed
between the humus content and CO2 production. This study helps to understand the
importance of the no-tillage methods used in reforestation.

Keywords: soil fertility; soil properties; reforestation; humus content; microbial fungi;
soil bacteria

1. Introduction
There are about 900 million hectares of sandy soil on Earth, mostly in arid and semi-

arid regions. Sandy soils can be found on all continents and, according to WRB, are referred
to as arenosols [1]. About 51% of the world’s arenosols are located in Africa, 21% in
Australia, 10% in Asia, 14% in South and Central America, and a total of 4% in North
America and Europe [2]. Nyírség is the second-largest sand ridge in Hungary, occupying a
territory of 510,600 hectares, over 20.8% of which is covered by forests [3].

The afforestation of lowland sandy soils in Hungary was conducted in the first half of
the 19th and 20th centuries to reduce wind erosion [4]. Deforestation amplified from the
1980s to the 2000s and started to decline after 2007. Subsequently, Hungary experienced
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the most significant net increase in forest area in Eastern Europe, at 27%, partly because of
land conversion [5].

Economical forestlands are increasing worldwide, also due to the growing human
population and the resulting increase in demand for wood products, resulting in the
continuous transformation of primary forests into secondary forests [6].

In the Mediterranean, many native forests have been converted into agroforestry
systems, while abandoned agricultural lands have also been reforested. These land use
changes have reduced soil degradation, such as soil erosion. Reforestation on these soils
can increase the soil organic carbon (SOC) storage capacity [7].

While carbon sequestration occurs more slowly in soils than in biomass, C stored
in soils is more resistant than C stored in biomass [8]. It should be remembered that,
globally, soil C storage is decreasing [9]. Soil organic matter concentrations and stocks can
be increased through increased organic matter inputs and reduced soil disturbance [7],
which we investigated in this paper. The amount of C stored in forest soils is a significant
fraction of the world’s total C stock. One estimates that SOC stored in forest soil is more
than 70% of the global SOC [10]. Other research estimates this value to be just over 40% [11].
Forest conversion and changing human impacts on forests are likely to affect forest biomass
and soil C stocks [12]. In forest soils, trees modify microclimatic conditions (especially
soil moisture and temperature), increase organic matter (OM) uptake, and improve soil
quality [13]. In addition, the absence of tillage in these systems improves soil microbial and
faunal communities and the formation of stable aggregates [14], protecting against OM
degradation [15]; C/N ratios of afforested soils are more similar to those of arable [16] and
horticultural [17] crops than to native forest soils [18]. Forest soils have been recognized as
important reservoirs of stable carbon (C) in the biosphere and thus play a key role in the
global carbon cycle [19].

Forests are essential for biodiversity conservation and climate change mitigation [20].
According to forestry research, models show a high similarity with the drying and warming
weather in the sand ridge area between the Danube and the Tisza rivers (Hungary) [21].
Quicksand and humus sandy soils were formed here [22]. In these soils, proper man-
agement practices are required for effective plant production [23]. Kong and co-workers
examined the environmental consequences of soil management, comparing the results
obtained for Hungarian and Japanese soils. According to their research, land use sig-
nificantly impacts the cumulative production of N2O and CO2 in soil [24]. Ecological
management positively affects the quality and fertility of the sandy soils in the Nyírség
region by improving the chemical soil parameters and increasing the community size and
activity of microbes [25].

The dominant and characteristic element of the forest ecosystem is the woody vegeta-
tion [26]. The open surface is less resistant to weather events; in sandy areas, in particular,
sand erosion, deflation, and surface warming may be a problem for the survival of young
trees. Seedlings try to establish an extended cover as soon as possible; this explains why
black locusts (Robinia pseudoacacia, L.) show intensive height growth at 1–5 years of age [27].
To initiate forest regeneration growth, it may be advisable to intervene actively in soil
improvement, mainly where the topsoil is very shallow, i.e., only a few cm thick, and its
humus content is less than 1.0–1.5%, as we found in many cases after tillage in our study.

Deforestation is the most critical factor in soil degradation, as it changes the soil
environment, the availability of nutrients, and the carbon cycle [28,29]. With changes in
land use, the natural ecosystem deteriorates, and soil erosion may occur [30].

Forest management practices can positively and negatively affect forest soil, green-
house gases, and carbon balance [12,31]. Clear-cutting is the most common and impactful
deforestation practice worldwide. It usually negatively affects soil organic C content, re-
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sulting in a 10% reduction in soil OM in the overall soil profile [32]. Coniferous forest
floor C stocks decreased 30 years after clear-cutting: when at its lowest stock level, Picea
and Pinus forest floor C stocks were reduced relative to the initial stock levels by 23% and
14%, respectively [33].

Post-cutting reforestation promotes the rapid establishment of new stands. Neverthe-
less, reforestation causes additional soil disturbance (rotation), affecting soil temperature
and moisture, potentially impacting soil biological activity and respiration [34].

Following tree harvesting in the study area, forest exploitation primarily involves the
removal of stumps using rotary excavators. The stumps are then sorted into depositions.
This operation also removes the wealthiest layer of organic matter, specifically the top
0–5 cm. The relocation of organic matter is assumed to be highly detrimental to soil life
and, therefore, to the subsequent development of forest regeneration. One should protect
the soil from erosion and deflation damage. Soil organic carbon and total nitrogen content
were reduced. In contrast, soil pH, electrical conductivity, and soil nutrients (available P, K,
and Ca) were increased for at least 2 years after field burning in fallow years [35]. Dissolved
organic carbon (DOC) and soil organic carbon (SOC) react differently on sloping lands with
water erosion, where plant age and density may cause variances in nutrient loss [36]. Their
physical properties and topsoil thickness mainly determine the water-holding capacity
of soils [37].

Humus is a complex variable material consisting of several high-molecular-weight
compounds with roughly the same basic structure [38]. Seasonal fluctuations in biological
activity are more pronounced in soils with low humus content than in soils with higher
humus content [39,40]. Based on this finding, it is essential to investigate the impact of soil
cultivation on humus content and preserve the soil’s organic matter stock.

The sample plots were selected in the Nyírerdő Ltd. (Nyíregyháza, Hungary) areas
with forest end-use. Our research focused on investigating the properties of different
soil types at the sites of the planned forest renewal (afforestation). After the end-use tree
harvesting, various operations were conducted, including stump extraction, landscaping,
and deep plowing. As the sampling posed severe difficulties and was time-consuming, the
authors had to limit their investigation to collecting and processing 60 samples, which were
needed for statistical evaluation. The results presented here were obtained by exploring
five different soil profiles. On each sample, we performed 8 types of tests, so that 480 data
points were processed in the study. We examined the changes in properties across different
soil layers using physical, chemical, and microbiological methods. We aim to identify
correlations between the measured chemical and microbial parameters of soils with varying
physical and chemical properties, demonstrating the adverse effects of complete tillage on
reforestation efforts.

2. Materials and Methods
2.1. Overview of the Sampling Sites

Soil profiles were excavated after the end-use harvesting of trees at several villages
in the Hosszúpályi and Debrecen areas. Five soil profiles were explored in the examined
regions after tree harvesting at four locations. Soil samples were collected in unplowed
areas before stump removal (Figure 1).

The maximum humus content was found in the top 0–30 cm layer. At depths below
30 cm, we determined a humus content of less than 0.1% in each soil profile before plowing.
After plowing (Figure 2), samples were extracted from depths of 0–30 cm and 30–70 cm, as
well as from the rows where the stumps were deposited.
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During planting, roots are placed in the 0–30 cm layer, crucial for saplings to access 
water and nutrients. Table 1 lists the extracted tree species and species for afforestation. 

Table 1. The location of the examined forest areas, the deforested areas, and planned tree species 
for afforestation. 

Location of the Forest  Extracted Tree Species Tree Species for Afforestation 
Hosszúpályi 7 H Scotch pine (Pinus sylvestris, L.) Black locust (Robinia pseudoacacia, L.) 
Hosszúpályi 8 M Cotton wood (Populus x) Black locust (Robinia pseudoacacia, L.) 
Hosszúpályi 8 M Cotton wood (Populus x) Cottonwood (Populus x) 
Hosszúpályi 4 L Black locust (Robinia pseudoacacia, L.) Scotch pine (Pinus sylvestris, L.) 
Debrecen 369 A Scotch pine (Pinus sylvestris, L.) Black locust (Robinia pseudoacacia, L.) 

Table 2 is a summary table indicating the sampling locations, their GPS coordinates, 
cultivation methods, sampling depths, and the number of collected samples. The forests 
in the study were unmixed plantations unaffected by extraordinary events, such as storm 
damage. They were at the age recommended for end-use cutting according to Hungarian 
regulations. 
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Figure 2. Deep plowing is in progress (HP 4 L)—original photograph taken by the author István
Attila Kocsis.

During planting, roots are placed in the 0–30 cm layer, crucial for saplings to access
water and nutrients. Table 1 lists the extracted tree species and species for afforestation.

Table 1. The location of the examined forest areas, the deforested areas, and planned tree species
for afforestation.

Location of the Forest Extracted Tree Species Tree Species for Afforestation

Hosszúpályi 7 H Scotch pine (Pinus sylvestris, L.) Black locust (Robinia pseudoacacia, L.)
Hosszúpályi 8 M Cotton wood (Populus x) Black locust (Robinia pseudoacacia, L.)
Hosszúpályi 8 M Cotton wood (Populus x) Cottonwood (Populus x)
Hosszúpályi 4 L Black locust (Robinia pseudoacacia, L.) Scotch pine (Pinus sylvestris, L.)
Debrecen 369 A Scotch pine (Pinus sylvestris, L.) Black locust (Robinia pseudoacacia, L.)

Table 2 is a summary table indicating the sampling locations, their GPS coordinates,
cultivation methods, sampling depths, and the number of collected samples. The forests
in the study were unmixed plantations unaffected by extraordinary events, such as storm
damage. They were at the age recommended for end-use cutting according to Hungar-
ian regulations.

Sampling locations are shown on the map (Figure 3). These forest restorations coincided.
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Table 2. The sites of soil sampling and the applied cultivation methods.

Sampling Sites with GPS
Coordinates (GPSWGS84) Cultivation Methods Depth (cm) Sample No.

Forest I.
Hosszúpályi 7 H

47.431, 21.730

* HP 7 H: unplowed 0–30 1
HP 7 H: deep plowed upper layer 0–30 2
HP 7 H: deep plowed lower layer 30–70 3

HP 7 H: row of tree stumps with soil content 0–15 4

Forest II.
(high-altitude area)
Hosszúpályi 8 M

47.424, 21.734

HP 8 M: unplowed 0–30 5
HP 8 M: deep plowed upper layer 0–30 6
HP 8 M: deep plowed lower layer 30–70 7

HP 8 M: row of tree stumps with soil content 0–15 8

Forest II.
(deep-altitude area)

Hosszúpályi 8 M
47.427, 21.733

HP 8 M: unplowed 0–30 9
HP 8 M: deep plowed upper layer 0–30 10
HP 8 M: deep plowed lower layer 30–70 11

HP 8 M: row of tree stumps with soil content 0–15 12

Forest III.
Hosszúpályi 4 L

47.407, 21.702

HP 4 L: unplowed 0–30 13
HP 4 L: deep plowed upper layer 0–30 14
HP 4 L: deep plowed lower layer 30–70 15

HP 4 L: row of trees stumps with soil content 0–15 16

Forest IV.
Debrecen 369 A
47.503, 21.811

DB 369 A: unplowed 0–30 17
** DB 369 A: deep plowed upper layer 0–30 18

DB 369 A: deep plowed lower layer 30–70 19
DB 369 A: row of tree stumps with soil content 0–15 20

* Hosszúpályi (HP). ** Debrecen (DB).
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2.2. Soil Sampling and Analyses

In the five selected forest sections, soil profile excavations were performed according to
simple random sampling [41]. Samples were taken from 3 locations within each examined
layer to characterize the profiles. We performed physical, chemical, and microbiological
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analyses for the collected soil samples to evaluate soil fertility quality. We determined
the following soil properties: soil plasticity, pH in distilled water solution, and humus
content quantity and quality. We measured the total number of bacteria, microbial fungi,
and CO2 production among the microbiological properties. A key objective of the study
was to establish correlations among humus content, microscopic fungi, soil bacteria, CO2

production, soil pH, and humus stability parameters.
Soil samples were measured at the soil chemistry and biology laboratories of the

Institute of Agricultural Chemistry and Soil Science at the DE MÉK in Debrecen, Hungary,
during the 2022 growing season. Among the physical properties measured, the Arany-type
plasticity index (KA) was determined [42].

The humus content of the soil (HU%) was measured using the Székely colorimetric
method, according to the Hungarian standard procedure [43,44]. This method is based on
the ability of soil organic matter to be oxidized with K2Cr2O7, where the reaction proceeds
with a change in solution color from orange to green. To determine the organic carbon
content of the samples, the measurement was performed at a 580 nm wavelength using a
Philips Unicam PU 8600 UV spectrophotometer. The CO2 production was evaluated via
NaOH trapping after 10 days of incubation [45].

The “Hargitai two-solvent” method was utilized to determine the humus quality
[46,47]. The samples were treated with aqueous NaOH (0.5 wt.%) and NaF (1.0 wt.%)
solutions, respectively, and the stability of the humic substances was estimated from
the light absorption (extinction, E NaOH, E NaF) of the two extracts. Measurements
were performed by colorimetry with a Philips UPU 8600 UV spectrophotometer at the
wavelengths of 480 nm (Q4), 540 nm (Q5), and 670 nm (Q6), respectively. The stability
value Q of the humus was calculated according to Equation (1).

Q = E NaF/E NaOH. (1)

While its mean value is given by Equation (2).

Qaverage = (Q4 + Q5 + Q6)/3. (2)

The stability coefficient (K) per unit humus content was calculated according to
Equation (3).

K = E Na/(E NaOH × HU%). (3)

The higher the value of the coefficient K, the more stable the quality of the humus
is. Soil pH was measured by adding 1.0 part soil to 2.5 parts distilled water, pH (H2O)
solution (according to the Hungarian standard [48]). The pH was measured with a Jenway
570 pH Meter digital instrument [49].

Two microbiological parameters, the total number of bacteria, ×106 (g soil)−1 (colony-
forming units, CFUs), and the number of microscopic fungi, ×103 (g soil)−1, were deter-
mined by plate dilution on a bouillon plate and peptone–glucose agar, respectively [50].
To evaluate the total bacteria, incubation was conducted at 30 ± 1 ◦C for 48 h. For the
microscopic fungi, incubation was 72 h at 25 ± 1 ◦C. After incubation, colony counting was
performed on a Leica-type colony counter. The CO2 production was evaluated by NaOH
trapping from fresh soil samples after 10 days of incubation at 25 ◦C [45,51,52].

2.3. Statistical Methods

The effect of soil preparation technologies on the soil’s physical, chemical, and bio-
logical properties was assessed by one-way ANOVA (p < 0.05) analysis. The cultivation
methods at each sampling site were compared with the Tukey post hoc test. All mea-
surements were conducted in triplicate, and data analysis was performed using Microsoft
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Excel 2016 and IBM SPSS (version 29.0.0.0) to process and evaluate the results. Pearson’s
correlation was applied to explore the relationships between the examined parameters.

3. Results
The soil profile of the Hosszúpályi (HP) 7 H forest is displayed in Table 3; the mea-

surements acquired in the study are listed in Table 4.

Table 3. The soil profile of the Hosszúpályi 7 H sampling area of the forest (humous sand; WRB
Arenosols). Original photograph taken by the author István Attila Kocsis.
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Data marked with the same letter in the columns is not significantly different at p ≤ 0.05. 

Horizon
Designation Horizon Depth (cm) Description of the Soil Layer

Ah 0–5 Reddish gray (2.5YR 5/1) color,
single-grain sand, slightly humic level

AC 5–50
Light reddish gray (2.5YR 7/1) color,

single-grain sand, slightly humus-like,
roots interspersed

Bw 50–110 Light red (2.5YR 7/6) color, single-grain
sand, sparsely rooted

Cl/Bt 110–140 Reddish brown (2.5YR 5/4) color,
single-grain sand

Cl/Bt 140–170 Pinkish gray (7.5YR 6/2) color,
single-grain sand

Clr 170– Gray (7.5YR 6/1) color, single-grain
sand with reductive features

Table 4. The examined physical, chemical, and biological properties of the Hosszúpályi forest (HP)
7 H sample site.

Sample KA HU% Stability
Coefficient (K) pH (H2O) Microscopic

Fungi × 103 g−1
Soil Bacteria
× 106 g−1

mg CO2 × 100
g−1 Soil

mg CO2 × 100 g−1

× 10 Day−1

1 19.80 ± 0.79 ab 0.36 ± 0.28 a 1.26 ± 0.14 a 4.59 ± 0.20 a 31.50 ± 5.27 ab 0.95 ± 0.27 a 12.97 ± 1.85 a 13.67 ± 2.46 a
2 18.20 ± 1.42 a 0.22 ± 0.13 a 7.06 ± 1.40 b 5.41 ± 0.23 b 51.50 ± 4.36 b 0.41 ± 0.09 a 12.47 ± 1.38 a 13.27 ± 1.17 a
3 18.40 ± 1.64 a 0.10 ± 0.04 a 0.53 ± 0.13 a 5.22 ± 0.22 b 10.50 ± 1.50 a 0.68 ± 0.24 a 13.45 ± 0.47 a 16.78 ± 1.22 ab
4 21.70 ± 0.70 b 4.20 ± 0.53 b 0.07 ± 0.03 a 4.69 ± 0.12 a 121.50 ± 21.78 c 7.68 ± 0.64 b 17.88 ± 1.14 b 17.86 ± 1.11 c

Data marked with the same letter in the columns is not significantly different at p ≤ 0.05.

Our measurements found an extremely low humus content (HU% = 0.36) in the upper
soil underlying the harvested pine (Pinus sylvestris, L.) forest. In contrast, the soil’s pH
was strongly acidic, with a pH (H2O) of 4.59. Fungal activity of 31.5 × 103 (g soil)−1

was considerable. After deep plowing, the organic matter content of the upper soil layer
decreased to 0.22 HU%; however, according to our measurements, more stable humus
materials from the deeper layers moved toward the surface (K = 7.06). After plowing,
0.10 HU% was measured at a depth of 30–70 cm, while a considerable quantity of organic
matter (4.20 wt.%) accumulated in the stump row. The stability coefficient (K) was very low
(K = 0.07), indicating poor humus quality. As a result of the stump removal, the upper soil
layer containing the humus was concentrated in the stump row, having weakly decomposed
plant remains. As a result of the large amount of accumulated organic matter, the number
of microbial fungi in the stump row increased significantly to 121.5 × 103 (g soil)−1.

Table 5 displays the soil profile of the Hosszúpályi (HP) 8 M forest area, while Table 6
includes the measurements performed.
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Table 5. The soil profile of the Hosszúpályi 8 M higher-lying area is brown forest soil with alternating
thin layers of clay substance (WRB Arenosols). Original photograph taken by the author István
Attila Kocsis.
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section. 

  

Horizon
Designation

Horizon Depth
(cm) Description of the Soil Layer

Ah 0–10 Dark gray (2.5Y 4/1) color, sandy loam, strong
humus level, interwoven with roots

E1 10–15 Grayish white (2.5Y 8/1) color, single-grain sand,
slightly humus level, interwoven with roots

A/E 15–45 Gray (2.5Y 6/2) color, single-grain sand,
interspersed with roots, traces of soil mixing

E2 45–50 Light gray (2.5Y 7/1) color, single-grain sand,
root interspersed

Bw 50–55
Gray (7.5YR 6/1) color, single-grain sand,

interspersed with roots, organic matter
accumulation

C 55–85 Pinkish gray (7.5YR 7/2) color, more compacted,
single-grain sandy loam

C/Bt 85–140 Dark reddish brown (2.5YR 3/3) color,
compacted loam layer

Clr 140–150 Grayish brown (2.5Y 5/2) color, rootless sand

Clr 150– Gray (2.5Y 5/1) color single-grain sand with
reductive features

Table 6. The examined physical, chemical, and biological properties of the Hosszúpályi forest (HP)
8 M higher sample site.

Sample KA HU % Stability
Coefficient (K) pH (H2O) Microscopic

Fungi × 103 g−1
Soil Bacteria
× 106 g−1

mg CO2 × 100
g−1 Soil

mg CO2 × 100 g−1

× 10 Day−1

5 36.20 ± 1.49 c 2.84 ± 0.24 b 0.46 ± 0.14 a 6.68 ± 0.27 b 151.75 ± 36.52 b 0.70 ± 0.21 a 14.70 ± 2.39 a 15.13 ± 2.05 ab
6 22.00 ± 2.12 a 1.70 ± 0.32 a 0.99 ± 0.31 b 5.66 ± 0.32 a 28.00 ± 7.37 a 1.55 ± 0.34 b 12.56 ± 1.23 a 13.36 ± 0.94 a
7 28.60 ± 1.39 b 1.27 ± 0.26 a 0.38 ± 0.05 a 6.31 ± 0.24 ab 12.50 ± 4.92 a 1.06 ± 0.26 ab 12.05 ± 1.54 a 17.51 ± 1.07 b
8 31.50 ± 0.92 b 1.41 ± 0.16 a 1.39 ± 0.17 b 7.23 ± 0.56 b 15.00 ± 2.18 a 5.55 ± 0.34 c 13.08 ± 1.14 a 16.47 ± 1.42 ab

Data marked with the same letter in the columns is not significantly different at p ≤ 0.05.

The Hosszúpályi 8 M forest profile was diverse in terms of micro-topography. Soil
plasticity was loam in the upper soil layer and sand in the deeper layer. The soil profile of
the area located at a higher elevation is displayed in Table 5, while the results are shown
in Table 6. Historically, the area was home to poplar trees (Populus spp.). The soil layer
near the surface contained 2.84 wt.% humus with a stability coefficient of K = 0.46. After
deep plowing, these values changed to HU% = 1.70 and K = 0.99, respectively; thus, the
organic matter content decreased due to plowing. Nonetheless, the deeper soil layer’s
humus materials of better quality were repeatedly brought closer to the soil surface. The
soil was mildly acidic with high fungal activity, peaking at 151.75 × 103 g−1 soil before
plowing. The stump row’s humus content and quality were like the plowed soil layers.

Table 7 displays the second explored soil profile of the Hosszúpályi 8 M forest section.
Table 7 reveals an intense glaciation in depth. During deep plowing, the ironstone

located at 40 to 60 cm depths was loosened. These test results are listed in Table 8. The
humus accumulated extensively (4.01 HU%) in the upper layer, where a dark-colored layer
is visible to the naked eye. The pH was slightly alkaline (pH 7.79), and the bacterial activity
of the soil was substantial, equal to 10.73 × 106 (g soil)−1, which was found to be the highest
value among the samples in our study. After soil cultivation, we determined the HU% to
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be 3.24 in the upper soil layer, almost identical to the accumulated humus in the stump
row (HU% = 3.11). Meanwhile, the humus content at a 30–70 cm depth was 1.03% HU. We
found high-quality humus materials within this depth range with a K value of 2.33.

Table 7. The soil profile of the Hosszúpályi 8 M deep-lying area (meadow soil; WRB Chernic Gleysoil).
Original photograph taken by the author István Attila Kocsis.
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Horizon
Designation

Horizon Depth
(cm) Description of the Soil Layer

Ah1 0–10
Very dark gray (10YR 3/1) color, subangular

blocky structure, clay loam, heavily humic level,
heavily rooted.

Ah2 10–35
Dark grayish brown (10YR 4/21) color,

subangular blocky structure, loamy loam, highly
humic level, heavily rooted, slightly calcareous

Blo 35–55 Red (2.5YR 4/6) color, single-grain structure
loam, sparsely rooted

Ab 55–80 Dark reddish gray (2.5YR 4/1) color, grain
structure loam, less rooted

C 80–120 Grayish white (2.5Y 8/1) color, single-grain sand

Clo 120–160 Olive gray (2.5Y 5/2) color, single-grain sand

Clr 160– Bluish-gray color (GLEY2 5/5B) loam

Table 8. The examined physical, chemical, and biological properties of the Hosszúpályi forest (HP)
8 M deeper sample site.

Sample KA HU % Stability
Coefficient (K) pH (H2O) Microscopic

Fungi × 103 g−1
Soil bacteria
× 106 g−1

mg CO2 × 100
g−1 Soil

mg CO2 × 100 g−1

× 10 Day−1

9 42.60 ± 1.59 c 4.01 ± 0.16 b 2.11 ± 0.22 a 7.79 ± 0.36 a 37.00 ± 5.41 bc 10.73 ± 1.22 c 14.54 ± 0.72 a 15.81 ± 1.41 a
10 30.60 ± 1.99 a 3.24 ± 0.36 b 2.26 ± 0.18 a 7.52 ± 0.33 a 24.00 ± 6.61 ab 6.45 ± 0.28 b 13.69 ± 1.28 a 14.34 ± 1.33 a
11 34.10 ± 1.04 ab 1.03 ± 0.48 a 2.33 ± 0.21 a 7.92 ± 0.27 a 11.50 ± 2.65 a 0.73 ± 0.10 a 15.69 ± 1.45 a 17.88 ± 1.98 a
12 38.40 ± 2.38 bc 3.11 ± 1.03 b 2.07 ± 0.13 a 7.84 ± 0.28 a 43.50 ± 8.35 c 7.12 ± 0.35 b 14.26 ± 1.01 a 15.39 ± 0.92 a

Data marked with the same letter in the columns is not significantly different at p ≤ 0.05.

In the past, the area was home to black locust (Robinia pseudoacacia, L.) trees. The
upper layer consists of sandy loam, and sand is in the deeper layers (see Table 9). Before
tillage, the soil’s humus content was only 0.26 wt.%, which decreased after deep plowing
to 0.17 wt.% in the upper 0–30 cm layer. Nevertheless, close to the surface, the small
organic matter content exhibited high stability (K = 1.55), which increased in part with
depth in the 30–70 cm range after deep plowing (K = 1.87). Such an increase may be
favorable to the later development of the tree seedlings. The pH of the soil was strongly
acidic (pH 4.15), resulting in a low total bacterial count. By contrast, the number of fungi
increased considerably.

Table 10 lists the results of examining the physical, chemical, and biological properties
of the Hosszúpályi forest (HP) 4 L sample site. Standard deviations are also provided.

The Debrecen 369 A forest area (Table 11) is characterized by an old pine (Pinus
sylvestris, L.) forest, which results in a highly acidic soil pH.

The soil plasticity was sand in all layers of the profile. A high organic matter accu-
mulation was found close to the surface (HU% = 4.33, Table 12). Nevertheless, it mainly
consisted of raw humus with clearly recognizable remains of plant parts. Therefore, the
stability coefficient was very low (K = 0.07). As a result of the extremely high content of
organic matter, we found a vast number of fungi, 430.5 × 103 (g soil)−1, which indicated a
high rate of decomposition by microscopic fungi. The pH of the soil was strongly acidic
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(pH 4.08), and the pH did not increase significantly after cultivation (pH 4.63). The humus
content decreased, however, in the 0–30 cm depth range (HU% = 2.82). A significant
amount of organic matter (HU% = 3.11) appeared on the established stump row. High CO2

production was measured in all soil samples because of the large quantity of organic matter.

Table 9. The soil profile of the Hosszúpályi 4 L forest section (Blownsand; WRB: Arenosols). Original
photograph taken by the author István Attila Kocsis.
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Horizon
Designation

Horizon Depth
(cm) Description of the Soil Layer

Ah 0–20 Brown (7.5YR 5/2) color, single-grain sand,
slightly humus-like, rooted

A/C 20–40

Brown (7.5YR 4/4) color, single-grain sand,
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C/Bt 90–180 Brown (7.5YR 4/4) color, single-grain sand
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Table 10. The examined physical, chemical, and biological properties of the Hosszúpályi forest (HP)
4 L sample site.

Sample KA HU% Stability
Coefficient (K) pH (H2O) Microscopic

Fungi × 103 g−1
Soil Bacteria
× 106 g−1

mg CO2 × 100
g−1 Soil

mg CO2 × 100 g−1

× 10 Day−1
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15 21.80 ± 1.14 b 0.41 ± 0.10 a 1.87 ± 0.18 b 5.63 ± 0.34 b 4.50 ± 1.00 a 0.87 ± 0.19 a 12.68 ± 1.57 a 15.22 ± 0.75 ab
16 28.90 ± 1.14 c 0.96 ± 0.32 b 0.32 ± 0.15 a 5.02 ± 0.54 ab 73.50 ± 13.43 c 3.46 ± 0.17 b 13.82 ± 0.49 a 14.02 ± 0.27 ab
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Original photograph taken by the author István Attila Kocsis.
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Soil Bacteria × 
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mg CO2 × 
100 g−1 Soil 

mg CO2 × 100 g−1 × 
10 Day−1 

13 26.70 ± 1.39 c 0.26 ± 0.09 a 1.55 ± 0.38 b 4.15 ± 0.12 a 39.50 ± 8.35 b 0.73 ± 0.18 a 10.76 ± 0.44 a 16.30 ± 1.21 b 
14 18.10 ± 1.25 a 0.17 ± 0.07 a 0.48 ± 0.10 a 4.25 ± 0.22 a 16.50 ± 2.50 a 1.24 ± 0.26 a 11.17 ± 2.50 a 12.73 ± 1.39 a 
15 21.80 ± 1.14 b 0.41 ± 0.10 a 1.87 ± 0.18 b 5.63 ± 0.34 b 4.50 ± 1.00 a 0.87 ± 0.19 a 12.68 ± 1.57 a 15.22 ± 0.75 ab 
16 28.90 ± 1.14 c 0.96 ± 0.32 b 0.32 ± 0.15 a 5.02 ± 0.54 ab 73.50 ± 13.43 c 3.46 ± 0.17 b 13.82 ± 0.49 a 14.02 ± 0.27 ab 

Data marked with the same letter in the columns is not significantly different at p ≤ 0.05. 
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Horizon 
Designation 

Horizon 
Depth (cm) Description of the Soil Layer 

Ah 0–3 Gray (7.5YR 5/1) color, single-grain sand, 
slightly humus-like level, rooted  

E 3–20 Light gray (7.5YR 7/1) color, single-grain sand, 
slightly humus-like level, rooted 

Bw 20–55 Dark brown (7.5YR 3/3) color, single-grain 
sand, heavily rooted 

C 55–90 Reddish yellow (7.5YR 6/6) color, single-grain 
sand, lightly rooted 

Clr 90–160 Dark gray (7.5YR 4/1) color, single-grain sand 

The soil plasticity was sand in all layers of the profile. A high organic matter 
accumulation was found close to the surface (HU% = 4.33, Table 12). Nevertheless, it 
mainly consisted of raw humus with clearly recognizable remains of plant parts. 
Therefore, the stability coefficient was very low (K = 0.07). As a result of the extremely 

Horizon
Designation

Horizon Depth
(cm) Description of the Soil Layer

Ah 0–3 Gray (7.5YR 5/1) color, single-grain sand,
slightly humus-like level, rooted

E 3–20 Light gray (7.5YR 7/1) color, single-grain sand,
slightly humus-like level, rooted

Bw 20–55 Dark brown (7.5YR 3/3) color, single-grain sand,
heavily rooted

C 55–90 Reddish yellow (7.5YR 6/6) color, single-grain
sand, lightly rooted

Clr 90–160 Dark gray (7.5YR 4/1) color, single-grain sand

The loss of humus content in each area is illustrated (Figure 4). The humus content
of each sample area was marked with a dark color, while the data relating to the new soil
condition measured after the soil preparation at the same depth (0–30 cm) was marked
with a light color.
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Table 12. The physical, chemical, and biological properties of the Debrecen Forest (DB) 369 A sample
site were examined.

Sample KA HU % Stability
Coefficient (K) pH (H2O) Microscopic

Fungi × 103 g−1
Soil Bacteria
× 106 g−1

mg CO2 × 100
g−1 Soil

mg CO2 × 100 g−1

× 10 Day−1

17 19.70 ± 0.62 ab 4.33 ± 0.28 c 0.07 ± 0.03 a 4.08 ± 0.19 a 430.50 ± 30.43 d 7.77 ± 1.60 c 16.68 ± 3.98 a 17.19 ± 2.25 a
18 17.60 ± 1.73 a 2.82 ± 0.22 b 0.16 ± 0.07 a 4.63 ± 0.29 b 124.50 ± 17.68 b 2.70 ± 0.63 ab 12.54 ± 2.05 a 15.72 ± 1.35 a
19 17.90 ± 0.69 ab 1.03 ± 0.33 a 0.32 ± 0.25 a 5.42 ± 0.22 c 22.50 ± 4.58 a 0.78 ± 0.28 a 15.85 ± 5.19 a 17.63 ± 1.73 a
20 20.40 ± 082 b 3.11 ± 0.48 b 0.09 ± 0.03 a 4.61 ± 0.10 ab 184.50 ± 23.11 c 4.11 ± 0.16 b 17.62 ± 1.18 a 17.81 ± 1.36 a

Data marked with the same letter in the columns is not significantly different at p ≤ 0.05.
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Figure 4. Change in the humus content in the upper 0–30 cm layer of the total sample areas (summary
diagram) (n = 3).

The diagram reveals that the amount of organic matter decreased at all planting depths,
with no exception. The organic matter accumulated in the row of tree stumps.

In the Hosszúpályi 7 H forest unit, a loss of 38.89 HU% was ascertained in the 0–30 cm
planting soil depth. In the high-altitude part of the Hosszúpályi 8 M forest unit, one
assessed 40.14 HU% loss, while in the low-altitude part of the area, only 19.20 HU%
loss was found. The loss determined in the Hosszúpályi 4 L forest unit was 34.62 HU%,
while in the Debrecen 369 A forest unit, the loss was equal to 34.87 HU%. The average
amount of organic matter loss caused by the tillage practices in the study areas was 33.54%
(see Table 13).

Table 14 lists the results of a correlation analysis among the parameters studied. This
analysis enabled us to understand the relationships between the variables. The correlation
values highlighted medium and close correlations. The correlation table includes all the
sections and their tested parameters.

The humus content strongly correlates with the number of microscopic fungi
(r = 0.806). The decomposition of organic matter can explain this. Nonetheless, the humus
content also correlates positively with the number of bacteria (r = 0.648) and at a medium
level with the CO2 production (r = 0.607). Hence, as expected, the organic matter content is
related to the number of soil microbes.

The decrease in organic matter content assessed in the upper layer of the deep-plowed
soil layer is particularly hazardous in sandy soils because it results in lower colloid content
of the soil, along with decreased amounts of nutrients and water. When the afforestation of
these areas is completed, professionals must pay special attention to the new young plants
and provide thorough care for soil preparation.
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Table 13. Losses of humus content of the sample areas in the upper 0–30 cm layer.

Forest Sample HU (%) HU (%) Loss

HP 7 H: unplowed 1 0.36
38.89HP 7 H: deep plowed 2 0.22

HP 8 M: upper lying unplowed 5 2.84
40.14HP 8 M: upper lying deep plowed 6 1.70

HP 8 M: deep-lying area unplowed 9 4.01
19.20HP 8 M: deep-lying area deep plowed 10 3.24

HP 4 L: unplowed 13 0.26
34.62HP 4 L: deep plowed 14 0.17

DB 369 A: unplowed 17 4.33
34.87DB 369 A: deep plowed 18 2.82

Average: 33.54%

Table 14. Pearson-type correlation table (n = 24).

Pearson Correlations

HU% K-Coefficient pH (H2O) Microscopic Fungi Total No. of Bacteria CO2
Production

HU% 1
K coefficient −0.330 1

pH (H2O) 0.017 0.055 1
Microscopic fungi 0.806 ** −0.254 −0.360 1

Total no. of bacteria 0.648 ** −0.248 −0.155 0.469 * 1
CO2 production 0.607 ** −0.364 0.122 0.238 0.223 1

** Correlation is significant at the 0.01 level (one-tailed). * The correlation is significant at the 0.05 level (one-tailed).

4. Discussion
Extreme weather events resulting from global climate change necessitate developing

measures to mitigate these changes. The growth of forest cover can help reduce atmospheric
CO2 concentrations [53]. Land use change from arable land [54] or orchards [55] to forest
can lead to differences in soil nutrient and organic matter content. The reforestation efforts
motivated us to research the soil profiles in this territory and investigate the organic matter
stocks and the distribution of humus materials within the soil profile. With this goal, we
measured several physical, chemical, and microbiological properties of soil samples where
reforestation is planned. Deep plowing was carried out before planting the new nursery
stock to loosen the compacted topsoil and reduce weed competition. This mixing of soil
layers caused a relocation of the organic matter content. The tillage of reforestation soil
layers significantly affected soil organic carbon and microbial community, as found in other
studies [56,57]. Results show a significant reduction in humus content in every planting area
(in 0–30 cm layers), with an average decrease of 33.54%. At a 30–70 cm depth, low humus
content (<0.10 HU%) did not increase with soil preparation; we can still find a low humus
content after deep plowing. HP 4 L has the highest humus content (0.41 HU%) in the deeper
layer, where fallow land deep plowing probably happened earlier before afforestation,
as we can guess from its soil profile. The chances of survival of future seedlings were
reduced. Stump depositions presented one of the highest values in microscopic fungi
and soil bacteria, except for the HP 8 M higher sample site, where, after tillage, the upper
0–30 cm layer had the highest number of microscopic fungi (28.00 × 103 (g soil)−1), with
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most of the humus content concentrated in this layer. This sample site probably offered the
best conditions (HU%, pH, KA) for microbial activity in the study area.

Our study has demonstrated, however, that a more significant accumulation of humus
content does not always imply a high quality of the organic matter [58,59]. A low stability
coefficient (e.g., stump row in HP 7H, K = 0.07) can still have a high microbial number
(microscopic fungi and bacteria), suggesting that this factor alone does not fully explain
the biological activity. For example, Debrecen 369 A had the highest HU% (4.33) with the
lowest stability coefficient (K = 0.07) and pH (H2O) = 4.59, whereas the Hosszúpályi 8 M
deeper sample site had 4.01 HU% with K = 2.11 and pH (H2O) = 7.79. The main difference
between the compared forest sites is the soil pH. This outcome indicates that the content of
organic matter is closely related to the abundance of soil microbes. A similar result was
reported by Hicks et al. [60], who found that soil organic matter content improves nutrient
cycling, soil microorganism dynamics, abundance, and activity [46,61–63]. Samples with
high HU% (e.g., DB 369 A unplowed 0–30 cm layer with 4.33 HU% or stump row in HP 7H
with 4.20 HU%) indicate higher microbial presence and CO2 emissions. Higher organic
matter content may result from more active soil life [64]. With low humus content, we
found low microbial counts (e.g., Sample 19—0.10 HU%, 22.50 thousand microscopic fungi
g−1, 0.78 million soil bacteria g−1) at a depth of 30–70 cm in the sample sites. Our statistical
evaluation demonstrated that the humus content is strongly correlated with the number of
microscopic fungi and positively correlated with the number of bacteria. At the same time,
there is a significant correlation level with CO2 production. The highest emissions (e.g.,
Sample 20—17.81 mg) align with high microbial abundance, elevated HU% and KA, and
moderate pH. Depending on the soil pH, the number of microbial fungi (in acidic medium,
e.g., Sample 17—430.50 thousand microscopic fungi g−1) or soil bacteria (in neutral to
alkaline medium, e.g., Sample 12—7.12 million soil bacteria g−1) increased, similar to the
results reported by Anderson [65] and Buckeridge and colleagues [66].

Reforestation can also play other frequently overlooked but essential roles in helping
society and ecosystems adapt to climate variability and change [67]. Over time, the rapid
and drastic changes in climatic conditions suggest that regular soil monitoring, particularly
in less favorable areas, is becoming increasingly meaningful in the examined region.

5. Conclusions
Deep plowing, which inverts, covers, or mixes the soil’s organic layer (forest floor)

and surface mineral A horizon into the mineral subsoil, burying the upper soil horizon in
deeper layers and disrupting pedogenic processes, is a debatable topic in forest plantation
management [68]. Traditional technologies of forest soil preparation by dump plowing are
outdated and do not allow for a radical increase in labor productivity [69]. The outcome of
our study is evidence that the targeted interventions to maintain and improve soil fertility
are highly justified in the examined area of sandy soils. The organic and inorganic colloid
content of sandy soils is very low, so nutrient and water management are essential [23],
as well as the availability of humus content for the plants’ early growth. As our results
indicate, in the study site, after deep plowing, only a lower amount of humus was turned
into the 0–30 cm layers and much less into the deeper (30–70 cm) layers. We found an
adverse effect of soil preparation before reforestation because a large amount of humus
was concentrated in the stump depositions. Well-thought-out soil preparation will become
increasingly important for all professionals to reduce abiotic stress and facilitate success-
ful reforestation. The study documents the significant organic matter-reducing effect of
complete soil preparation on forest regeneration in the seedlings’ root depth. Consequently,
we expect the role of partial soil preparation (no stump removal) to increase, primarily to
mitigate the unfavorable effects of climate change and ensure proper seedling development.
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