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Combining machine learning algorithms with Earth observations has great potential
in the context of crop monitoring and management, which is essential in the face of global
challenges related to food security and climate change. The integration of advanced
technologies such as digital imaging, satellite data and drone imagery is becoming crucial
to better understand the mechanisms that regulate plant growth and development [1–3].
These cutting-edge approaches not only optimize conditions for crops but also enable
the early detection of abnormal situations that can trigger non-standard plant defense
responses. Advances in machine learning algorithms, combined with a vast database of
Earth observation data, are creating unique opportunities to monitor crop growth, health,
and yield at various scales. By integrating machine learning with spatial data, precise
assessments of crop health can be achieved, which, in turn, fosters the development of
innovative strategies to increase productivity and sustainability in agriculture [4]. In this
Special Issue, we present research that not only demonstrates the applicability of these
technologies, but also reveals their limitations and the critical challenges that need to be
addressed to increase their effectiveness in practice [5,6].

We invite readers to explore articles that examine a variety of topics, ranging from
an integrated approach to the use of machine learning algorithms in crop monitoring and
management. These studies highlight both the practical applications and benefits of these
innovative methods, contributing to the advancement of sustainable agricultural practices.

The first article explores the application of machine learning techniques to detect
pests and diseases in crops, a significant challenge leading to significant yield losses world-
wide [7]. The study focuses on the integration of machine learning models, particularly
convolutional neural networks (CNNs), which have shown high performance in accurately
identifying and classifying plant diseases from images. An analysis of the literature pub-
lished between 2019 and 2024 summarizes common methods, covering the steps of data
acquisition, preprocessing, segmentation, feature extraction and prediction, leading to the
development of robust ML models. The results indicate that the use of advanced image
processing and ML algorithms significantly improves disease detection capabilities, result-
ing in the earlier and more accurate diagnosis of crop disorders. Furthermore, CNN-based
models, especially with ResNet architecture, dominate the research, highlighting their
popularity in tasks requiring deep architectures and advanced feature extraction [8].

Yu et al.’s [9] research presents the LP-YOLO framework, an optimized lightweight
object detection model designed specifically for identifying pests using mobile devices. It
describes innovative components, such as LP_Unit and LP_DownSample, which effectively
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replace many of the standard modules found in the YOLOv8 architecture. In addition,
the framework includes a novel attention mechanism known as ECSA (Efficient Channel
and Spatial Attention), enhancing model detection capabilities. Comprehensive tests
conducted on the IP102 dataset confirmed the performance of LP-YOLO, achieving an
impressive 70.2% reduction in parameters along with a 40.7% increase in frames per second
(FPS). These results highlight the significant effectiveness and efficiency of the LP-YOLO
model, demonstrating its potential for real-time pest identification in resource-constrained
environments.

The third paper used a drone-mounted multispectral sensor to assess disease severity
in soybean at stage R7 [10]. The study applied the random forest classification algorithm
to categorize defoliation levels, indicating that combining multispectral imagery with
machine learning algorithms allows for a more accurate assessment of Asian rust disease
in commercial soybean fields. The random forest algorithm achieved high classification
performance with accuracy, precision, recall, F1, specificity and AUC values of 0.94, 0.92,
0.92, 0.92, 0.92, 0.97 and 0.97, respectively.

In Silva et al.’s research [11], correlations between the biometric parameters of forage
cactus and vegetation indices obtained using UAVs are investigated, along with the predic-
tion of these parameters utilizing machine learning algorithms. Four different experimental
units were included in the study, analyzing plant height and width, vegetation indices,
and fresh and dry yields. Higher correlations with yield were obtained for the RGBVI and
ExGR indices, and predictive analysis using the Random Forest algorithm showed a mean
absolute error of 1.39, 0.99 and 1.72 Mg ha−1 for the respective test units.

The fifth paper proposes a lightweight convolutional neural network (CNN), named
LeafNet, for plant disease identification in resource-limited environments [12]. Inspired
by the VGG19 architecture, LeafNet introduces a number of optimizations, including a
reduced number of parameters and a fast inference time, while maintaining competitive
accuracy. The study showed that LeafNet performs well in classification on four different
datasets, including a newly completed plant collection, confirming its potential for use in
real-world settings.

The advantages of integrating machine learning algorithms with Earth observation
technologies, as the research presented here shows, have the potential to revolutionize
approaches to crop management and plant health monitoring. These innovative methods
have the potential to accelerate the response to changing environmental conditions and
limitations associated with traditional agricultural methods. With the ability to rapidly pro-
cess data and analyze images, these technologies allow for more effective disease detection,
pest identification and yield assessment. The articles in this Special Issue demonstrate a
variety of applications of machine learning algorithms, from applications in image classifi-
cation, in the context of plant disease identification and diagnosis, to the use of dedicated
frameworks for mobile pest detection or the complex analysis of biometric plant growth
parameters using UAVs. Each of these studies highlights the importance of contemporary
technologies in developing precise and efficient agricultural strategies that can significantly
contribute to addressing the growing demand for food in an era of global climate change.
In particular, research into the use of lightweight neural networks, such as LeafNet, shows
that it is possible to achieve high accuracy in plant disease identification, even on devices
with limited computing power [13,14]. This opens up new opportunities for farmers using
mobile technologies, which is particularly relevant in the context of sustainable develop-
ment. This Special Issue is a call for the further exploration and development of machine
learning applications in agriculture. As the technology evolves, there is the potential to
further optimize processes and strategies, resulting in more efficient and sustainable crop
management. We encourage the research community to undertake further research in this
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area, which will not only improve the technology but also implement policy frameworks
that foster innovation in agriculture, which is essential for future food security.
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