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Abstract: Mechanistic crop growth models are becoming increasingly important in 
agricultural research and are extensively used in climate change impact assessments. In such 
studies, statistics of crop yields are usually evaluated without the explicit consideration of 
sample size requirements. The purpose of this paper was to identify minimum sample sizes 
for the estimation of average, standard deviation and skewness of maize and winterwheat 
yields based on simulations carried out under a range of climate and soil conditions. Our 
results indicate that 15 years of simulated crop yields are sufficient to estimate average crop 
yields with a relative error of less than 10% at 95% confidence. Regarding standard 
deviation and skewness, sample size requirements depend on the degree of symmetry of the 
underlying population’s distribution. For symmetric distributions, samples of 200 and 
1500 yield observations are needed to estimate the crop yields’ standard deviation and 
skewness coefficient, respectively. Higher degrees of asymmetry increase the sample size 
requirements relative to the estimation of the standard deviation, while at the same time the 
sample size requirements relative to the skewness coefficient are decreased.
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1. Introduction

Mechanistic crop growth models are of high importance in agricultural research. They offer a 
cost-effective tool for simulating plant growth under a wide range of management options and 
environmental conditions [1]. The field of application of crop models is wide. For instance, new
management technologies can be tested in quasi-field trials and agro-environmental problems can be 
addressed at field-, farm- or watershed-level [2]. Crop growth simulation models can also be used to 
identify critical traits with respect to survival rates and yield levels (e.g., [3,4]). They are further 
extensively employed for climate change (CC) impact assessments (e.g., [5–10]), in which the goal is 
often to derive crop yield distributions for varying climate conditions and management options, in 
particular with respect to irrigation, fertilization intensity or soil cultivation (e.g., [5,9,11,12]). 

Optimal crop- and site-specific management patterns highly depend on the prevailing climate 
conditions. Reliable information concerning the distribution of yields can thus be obtained only from 
simulations spanning a sufficiently large number of years [13]. In principle this is not a problem, in 
particular if climate records are developed with the help of stochastic weather generators [14]. In 
practice, however, the computational burden can easily become a critical issue. For instance, the 
simulation of crop growth during a single vegetation period with the crop model CropSyst requires about 
7 sec on a common PC (Intel Pentium Core(TM) i5 at 3.33 GHz). Thus, the decision to run one hundred 
or one million simulations is not without consequences. Computational constraints are even more 
relevant if crop models are applied in a spatially explicit setup (e.g., [15]) or if a large number of 
management options is optimized simultaneously by heuristic optimization techniques (e.g., [11,16]). 

The choice of an adequate sample size is a well-known problem in statistics ([17–19]) and is crucial 
for the analysis of yield distributions. Yet, it has never been addressed in a systematic way in agronomic 
studies and climate change impact assessments. A review of the existing literature indicates a wide range 
of assumptions made at this stage. For instance, Moriondo et al. [20] consider yield records extending 
over 100 years to derive information on mean and standard deviation of crop yields, whereas 
Tingem et al. [21] rely on 50-year records to simulate mean yield levels. Next, Thornton et al. [22] use 
30 repetitions to estimate the first two statistical moments, while only 25 runs are used by Finger and 
Calanca [23] to estimate also skewness. Finally, Kapphan et al. [24] use 1000 crop yield simulations in 
order to estimate climate-related risks and to design optimal crop yield insurance contracts.

Under the assumption that samples are normally distributed, statistical theory provides solutions 
regarding the sample size requirements for the estimation of both the mean as well as the standard 
deviation. In the former case, the minimum sample size n necessary to obtain an estimate with an 
maximum absolute error of d at a confidence level can be given following Cochran’s sample size 
formula [17]:
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where z /2 is the upper (1 /2) quantile of the standard normal distribution and 2 is the population 
variance. Regarding standard deviation, the minimum sample size ns to obtain an estimate with the 
relative error ds can be determined from the method of Thompson and Endriss [25]:

with (2)

where s is the sample standard deviation, which represents an unbiased estimate for the underlying 
population statistics .

Distributions of crop yields, however, only seldom follow the normal distribution [26]. Furthermore, 
Equations (1) and (2) do not provide guidance concerning the sample size requirements relative to the 
estimation of higher statistical moments, in particular skewness, which is of great importance for many 
applications in agricultural economics [27].

Against this background, the aim of this study was to investigate sample size requirements for the 
estimation of the first three statistical moments of crop yield distributions. The analysis is based on a 
large simulation experiment conducted with the crop growth model CropSyst [28]. Given the fact that 
yield distributions may vary considerably in shape depending on crop, climate and soil characteristics, 
we set up our simulation study as a combinatory experiment with two crops, viz. winterwheat (Triticum 
aestivum L.) and maize (Zea mays L.), two sites at the Swiss Plateau, viz. Payerne and Uster, and two 
climate scenarios, viz. a baseline scenario reflecting current climatic conditions and a future scenario 
characterized by markedly higher temperature and reduced summer precipitation amounts.

2. Methods

CropSyst is a deterministic, process-based crop growth model, which simulates crop growth at a daily 
time scale [28]. In order to drive the biological and environmental processes, CropSyst requires daily 
weather data along with the specification of soil and crop characteristics [28].

In our study CropSyst was used to simulate crop yields at Payerne (6°57’ E, 46°49’ N, 490 m a.s.l.) 
and Uster (8°42’ E, 47°21’ N, 440 m a.s.l). Payerne is located in western Switzerland and has relatively 
low annual precipitation (885 mm per year). Uster lies in the northeastern part of Switzerland and is 
characterized by more humid conditions (1183 mm precipitation per year). We employ soil properties 
following Lehmann et al. [11], with fractions of sand, clay and silt of 62%, 12% and 26% at Payerne and 
66%, 12% and 22% at Uster [11].

The crops considered for our analysis are grain maize, a warm season crop being particularly 
sensitive to drought at flowering [29], and winterwheat, a cool season crop being prone to excess 
temperature [30], which is sown in autumn and harvested in summer. Site specific crop parameters for 
maize and winterwheat were obtained from results of the calibration exercise described in 
Klein et al. [31]. Following Lehmann et al. [11], the sowing date of winterwheat was fixed at 10 October 
whereas grain maize was sown when the 5-day average air temperature exceeded 10 °C. Furthermore, 
standard nitrogen fertilization amounts of 140 kg·ha and 110 kg·ha were assumed for winterwheat 
and maize, respectively [32]. In addition, identical initial soil conditions with respect to the concentrations of 
organic matter and nitrogen were used in each year in order to avoid distortions due to dynamic effects in 
soil nutrient availability. Thus, all variations in simulated crop yields were only due to differences in 
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weather conditions. Effects of elevated CO2 concentrations on crop growth were not taken into account, 
because its quantification is still highly uncertain [33].

One thousand, five hundred years of synthetic daily weather data was generated consistently with 
observations for the reference period of 1981–2009 (Baseline) as well as for a climate change (CC)
scenario valid for 2036–2065 using the stochastic weather generator LARS-WG [34,35]. As detailed in 
Lehmann et al. [11], the CC scenario was specified according to simulations performed with the 
ETHZ-CLM regional climate model [36] in the context of the ENSEMBLES experiment [37] assuming 
a A1B emission pathway [38]. The scenario projects increases in monthly average temperatures between 
2.0 °C in winter and 4.0 °C in summer months. Regarding average precipitation, only in summer months

ying assumption in LARS-WG [34,35],
the simulated data can be considered as representing 1500 independent realizations of annual 
weather states. 

For each combination of crop × location × scenario, the synthetic weather data was used as input to 
CropSyst for the simulation of 1500 crop yields. These were assumed to represent the underlying yield 
population, with corresponding statistical moments denoted as ref (mean yield), ref (standard deviation 
of crop yields) and ref (skewness of crop yields). In order to analyze the effect of different sample sizes 
on the robustness and accuracy of the estimated statistical moments and to determine minimum sample 
size requirements, the following procedure was implemented:

(1) 5000 samples of crop yields were drawn without replacement from the population for sample 
sizes i = 5,10,15,….,1500.

(2) For each sample size i and realization j, mean ( ), standard deviation ( ) and skewness 
( ) were estimated based on the drawn sample. 

(3) Relative deviations of the individual estimates from their reference values were computed for 
all moments as: 

(3)

with analogous equations for the standard deviation and the skewness. Here, is the 

relative difference of the mean yield in the sample j = 1,2,3,…,5000 of size 

i = 5,10,15,…,1500 from the population’s mean yield ref.
(4) Finally, upper 95%-quantiles for the distributions of , and were computed for 

each sample size i. This measure can be used to determine the minimum sample size leading 
for 95% of all 5000 samples to a relative error smaller than a pre- = 5%, 10%,
15% and 25%. The 95%-quantile has been chosen because it represents a robust measure and 
can directly be compared with the 95%-confidence interval usually applied in conjunction 
with Equations (1) and (2).
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3. Results 

Figure 1 shows the distributions of the simulated 1500 crop yields for all considered simulation 
settings. The corresponding statistical moments are presented in Table 1. Since winterwheat is already 
harvested in early summer, it is less exposed to summer droughts and exhibits a narrower yield 
distribution than grain maize. Figure 1 further suggests a smaller spread of yields at Uster than at 
Payerne owing to the relatively more humid climate conditions at the former location. Average yield 
levels are reduced for both crops and at both locations under CC. The null hypothesis of normality is 
rejected by a Kolmogorov-Smirnov test for all scenarios except for grain maize at Payerne and 
winterwheat at Uster both simulated under CC climate conditions.

Figure 1. Simulated crop yield distributions. 

Table 1. Statistical moments of simulated yield distributions.

Payerne
Winterwheat Baseline Winterwheat CC Maize Baseline Maize CC

Mean yield ref (t·ha ) 8.393 7.109 11.221 9.318
Standard deviation ref (t·ha ) 1.212 1.050 2.027 1.761

Coefficient of variation 14.4% 14.8% 18.1% 18.9%
Skewness ref 0.270

Uster
Winterwheat Baseline Winterwheat CC Maize Baseline Maize CC

Mean yield ref (t·ha ) 6.375 5.086 11.261 9.881
Standard deviation ref (t·ha ) 0.515 0.469 1.066 1.386

Coefficient of variation 8.1% 9.2% 9.5% 14.0%
Skewness ref

Figure 2 shows the relationship between the number of considered weather years and the 
95%-quantile of the relative errors of the estimated statistical moments at the example of the 
winterwheat simulation at Payerne under Baseline climate conditions. In all circumstances, relative 
errors of moment estimates computed according to Equation (3) decrease with increasing sample size. 
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As expected from statistical considerations, relative errors of mean yields are smaller than relative errors 
of estimated standard deviations, which in turn are smaller that relative errors of skewness coefficients. 
Overall, the results in Figure 2 suggest that while about 10 samples are sufficient to estimate average 
yields with a relative error of less than 10% at 95% certainty, considerably larger samples are needed to 
estimate higher order moments at the same level of accuracy.

Figure 2. Relative error of estimated statistical moments as a function of sample size. 
Simulations of winterwheat yields at Payerne under Baseline climate conditions.

Sample size requirements to obtain moments estimates with a relative accuracy of better than 25%, 
15%, 10% and 5% at 95% confidence are summarized in Tables 2 and 3. These figures suggest that a 
sample size of 15 observations is for all scenarios sufficient to obtain estimates of the mean yield with a 
relative error of less than 10%. With respect to mean yield estimations, differences in sample size 
requirements between the two sites reflect the overall smaller coefficients of variation at Uster than at 
Payerne.

Much larger sample sizes are required in order to obtain reliable estimates of crop yields’ standard 
deviations, with substantial differences depending on scenario. For instance, 675 observations are 
required to estimate the standard deviation of maize yields in the Baseline scenario at Uster to within 
10% of the reference at 95% certainty. Conversely, already 120 observations are sufficient to estimate 
the standard deviation of maize yields at Payerne with the same accuracy and certainty level.

Table 2. Minimum sample sizes for different relative errors at Payerne.

Winterwheat Baseline Winterwheat CC Maize Baseline Maize CC
Relative Error a,b

<25% 5 40 390 5 40 535 5 25 710 5 30 1020
<15% 5 100 750 5 105 900 10 60 1060 10 75 1280
<10% 10 205 1040 10 210 1155 15 120 1275 15 145 1400
<5% 35 580 1355 35 585 1405 50 400 1440 55 450 1475

a All values shown in Table 2 correspond to the 95%-quantile. b μ = mean yield; = standard deviation of yields; 
= skewness of yields.
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Table 3. Minimum sample sizes for different relative errors at Uster.

Winterwheat Baseline Winterwheat CC Maize Baseline Maize CC
Relative Error a,b

<25% 5 135 1430 5 35 1485 5 165 315 5 90 190
<15% 5 310 1430 5 85 1495 5 395 665 5 225 440
<10% 5 525 1430 5 170 1500 5 670 965 10 425 715
<5% 15 1040 1475 15 505 1500 15 1145 1330 30 915 1180

a All values shown in Table 3 correspond to the 95%-quantile. b = mean yield; = standard deviation of yields; 
= skewness of yields.

Concerning skewness, sample size requirements are even larger and can vary substantially depending 
on crop, site and scenario. With the exception of maize at Uster, the results indicate that more than 
1000 samples are needed to estimate the skewness coefficient with a relative accuracy of less than 10% 
with 95% certainty.

While it is difficult to discern more specific patterns in Tables 2 and 3, concerning the estimation of 
the standard deviation and the skewness coefficient there are systematic tendencies that appear when 
plotting minimum sample size requirements against reference values of the skewness coefficient 
(Figure 3). Within the examined range of reference values, the minimum sample size relative to the 
estimation of the standard deviation increases with the degree of asymmetry. As opposed to this, 
minimum sample sizes for the estimation of the skewness decrease with increasing degree of asymmetry. 
This latter feature, however, can be explained by the fact that in the limit of a symmetric distribution the 
skewness coefficient is equal to zero, and therefore relative errors are in principle always infinitely large. 

Figure 3. Relationship between sample size required for the estimation of standard deviation 
(triangles) and skewness (squares) and absolute values of the reference skewness. Required 
sample sizes refer to relative errors of less than 10% at 95% certainty.
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Returning to the estimation of mean yields, we notice that minimum sample sizes listed in 
Tables 2 and 3 are always very close to the values obtained from applying Cochran’s sample size 
formula (Equation (1)), in spite of the fact that only in two scenarios simulated crop yield distributions 
follow normality. 

Lower agreement is found between our empirical estimates and the theoretical derived minimum 
sample sizes for estimating standard deviations obtained from Equation (2). For a relative error of 10% 
at 95% confidence, the latter results for all scenarios in a minimum sample size of 194 observations. At 
Payerne this figure lies within the range of the empirical data. On the other hand, with the exception of 
winterwheat yields simulated under the CC scenario, the method of Thompson and Endriss [25] largely 
underestimates the required sample size at Uster. 

4. Discussion and Conclusions

In our analysis we addressed the evaluation of the minimum sample size required to estimate mean 
and higher statistical moments of crop yield distributions with given accuracy and confidence. While the 
sample size required to estimate mean yields did not show large differences across the range of 
combinations of crop × location × scenario, the required sample sizes for higher statistical moments was 
found to be extremely sensitive to the characteristics of the population from which the samples are 
drawn. More specifically, our results indicate that the minimum sample size required for estimating the 
standard deviation and skewness can be related to the degree of asymmetry of the underlying distribution, 
at least for the range of skewness coefficients implied by our simulations. 

Relatively to the eight simulation setups considered in this study, the following conclusions can 
be drawn:

A sample size of 15 yield observations is sufficient to obtain estimates of mean yields with a 
relative error of less than 10% at 95% confidence.
200 realizations are in general sufficient to obtain estimates of the standard deviation of crop 
yields with a relative accuracy of better than 10%. The sample size should be increased to 
roughly 500 when it can be assumed that the crop yield distribution is strongly skewed 
(absolute skewness value > 1).
At least 1000 realizations are needed in most cases to reliably characterize the skewness of the 
distribution. When a high degree of symmetry is suggested by the available information, much 
larger samples are needed. This implies that in the absence of prior information, risk analyses 
should always be based on very large sample sizes. 
In practice, simulating 1000 or more years of crop yields may not always be feasible. In these 
cases compromises between the computation time and the accuracy of the estimated statistical 
moments have to be made. For instance, the required sample size is reduced by a factor of about 
5 with respect to the estimation of the standard deviation, if the allowable relative estimation
error is increased from 10% to 25%. This can be meaningful in studies aiming e.g., at 
optimizing crop management (e.g., [11,16]) or in studies simulating crop yields in a spatially 
explicit manner (e.g., [15]).
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Concerning the estimation of mean yields, we noticed that Cochran’s formula (Equation (1), [17])
provides a reliable starting point for the determination of the required sample size, in spite of the fact the 
assumption of normality does usually not apply to crop yields. A further drawback of Equation (1) is that 
in principle knowledge of the population standard deviation is needed, whereas in practice only the 
sample standard deviation s is available. This difficulty can be overcome by considering two-stage
sampling procedures [39,40]. Although preliminary tests using Stein’s two-stage sampling procedure 
conducted with our data suggest that there is no necessity for taking a second sample if more than 5 
observations are already considered in the first step, double sampling is simple enough to be 
implemented in impact assessments. 

This kind of drawback is not found with the method of Thompson and Endriss [25], since it depends 
only on the choice of the relative accuracy and confidence level. However, our results suggest that its 
outcomes tend to largely underestimate sample size requirements, in particular when the distributions 
are narrow and the coefficients of variation are low.

Despite the fact that we considered two different crops, two sites and two climate scenarios, our study 
cannot have the pretension of being exhaustive and further work is needed to develop general rules. 
Future research should consider other crop types and extend the analysis to geographic areas 
characterized by more extreme conditions than examined in this study. Furthermore, analyses of 
simulated crop yields should be complemented with more theoretical studies referring to standard 
distributions other than the normal one. Insights could be gained, e.g., from consideration of the beta 
distribution. Apart from the fact that it has been shown suitable for describing crop yields [41], the beta 
distribution is flexible enough to mimic distributions with various degree of asymmetry and spread.
Moreover, exact formulas are available for evaluating the statistical moments of interest in 
impact assessments.
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