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Abstract: In recent years, market pressures have reinforced the demand to solve the 
problem of an increased occurrence of Fusarium head blight (FHB) in cereal production, 
especially in wheat. The symptoms of this disease are clearly detectable by means of image 
analysis. This technique can therefore be used to map occurrence and extent of Fusarium 
infections. From this perspective, a separate harvest in the field can be taken into 
consideration. Based on the application of chlorophyll fluorescence and hyperspectral 
imaging, characteristics, requirements and limitations of Fusarium detection on wheat, 
both in the field and in the laboratory, are discussed. While the modification of spectral 
signatures due to fungal infection allows its detection by hyperspectral imaging, the 
decreased physiological activity of tissues resulting from Fusarium impacts provides the 
base for CFI analyses. In addition, the two methods are compared in view of their usability 
for the detection of Fusarium, and different approaches for data analysis are presented. 

Keywords: head blight; differentiated spatial analysis; imaging; Triticum spp.; quality and 
safety of cereals 

 

1. Introduction 

The aim of modern agriculture is it not only to increase and optimize production but also to produce 
safe and healthy food and feed of high quality. In this regard, especially Fusarium infections on cereals 
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represent an important, increasingly growing problem. Fusarium promoting cultivation systems  
such as intensified maize production have considerably aggravated the problem in recent years. 
Consequently, the extent of Fusarium infection has increased worldwide. Yield losses of up to 30% [1] 
may highlight the tremendous impact of this disease. 

Typical early and externally visible symptoms of Fusarium infections are the bleaching of 
individual spikelets and the partial dieback of the ear or head well before maturity. These symptoms 
are eponymous for the name of this fungal disease: “head blight”. The direct consequence of Fusarium 
infection is a massive crop failure due to the final development of shrunken lowmass tombstone 
kernels. The worst problem of the disease, however, is the potential toxic side effect due to the 
production of mycotoxins. Highly contaminated lots of grain are evidentially harmful and dangerous to 
humans and livestock. Fusarium generates mycotoxins such as deoxinivalenol (DON), zearalenone 
and fumonisins to different degrees [2–4], which can cause vomiting, mass loss, kidney failure, 
miscarriage, false pregnancy and cancer [5–9]. 

Therefore, infected grains should always be excluded from the human food cycle or livestock feed.  
In this context, identification of Fusarium infestations in the field with simple and rapid methods 
would be a substantial progress in food and feed safety. This might offer producers the opportunity to 
separately harvest infected and healthy grains, which, in turn avoids the risk of mixing contaminated 
and non-infected lots for storage. Separate harvest is also appropriate because spread of Fusarium 
fungi and synthesis of mycotoxins can proceed under certain conditions in storage. In addition, the risk 
of mycotoxin toxication of food can be decreased and the rational use of the Fusarium infected  
grain facilitated. 

Until now, rapid and comprehensive Fusarium detection methods are not available in practice. It is 
still common to test grain lots for a possible mycotoxin contamination namely to determine their 
content of mycotoxin only at harvest or post-harvest. For this purpose, time consuming and expensive 
laboratory tests are necessary (HPLC, serological rapid tests, Fast-DON-ELISA-test, counting  
method [10]). 

Along the entire cereal production chain, there are various options and management practices to 
avoid Fusarium infection and, thus, the occurrence of head blight (Figure 1). First of all, Fusarium 
tolerant wheat cultivars should be chosen for cultivation. In crop rotation, cereals such as maize, 
wheat, barley of durum, which readily spread Fusarium may be exclude, if possible. Furthermore, 
tillage may eliminate infected grain stubble or straw, which may function as inoculums the next year. 
This also prevents hibernation of fungi spores and, hence, a rapid distribution in the following spring. 
If disease pressure is high, e.g., due to unfavourable climatic conditions, fungicide must be applied 
shortly prior to flowering. At this time, azoles are often prophylactically sprayed on the entire field to 
assure prevention of Fusarium infection. Without doubt, closely targeted application of fungicides may 
be economically and ecologically advantages. This, however, requires routinely pre harvest acquisition 
of exact knowledge about the true, site-specific state of Fusarium infection. 

Thus, automated reliable Fusarium detection is urgently needed because the frequency of infections 
is increasing, and, as a consequence, the legal provisions are intensified. Producers are waiting for 
innovative detection methods and appliances. Although currently not applied by default in crop 
production, such knowledge may be yet obtained by field monitoring with several recent imaging 
techniques. This review introduces the means of both chlorophyll fluorescence (CFI) and hyperspectral 
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imaging for rapid site-specific on-field detection of head blight. It also presents recent advances in 
these techniques and discusses their capabilities and limits for practical applications of these methods. 

Figure 1. Options to prevent Fusarium infection in the cereal production chain. 

 

2. Imaging Techniques to Detect Head Blight Symptoms 

During initial successful infection, Fusarium induces various internal changes and host-specific 
responses in inoculated plants. The resulting disease symptoms do normally not occur immediately but 
become externally visible only after approx. 7–11 days after inoculation. Only then, these symptoms 
can be detected and analyzed with spectro-optical reflectance measurements in the visible (VIS) and 
near-infrared (NIR) range [11,12] but also with the aid of fluorescence spectroscopy. External, and to  
a certain degree also host-internal biochemical changes of cuticle, cell-walls, epidermis cells etc. 
changes may be evaluated by fluorescence and NIR measurements. In addition, fungal impacts on 
specific tissue properties such as composition and overall contents of leaf pigments or changes in cell 
water, sugar or protein contents may be investigated by remission measurements in the VIS and the 
NIR range, respectively. On the other hand, Fusarium effects on hosts’ metabolic competence at the 
cellular level at progressing infection not necessarily develop externally visible symptoms. These plant 
responses can be, not least, comprehensively monitored by analyzing chlorophyll fluorescence transients, 
which, among others, reflect the integrity of the photosynthetic apparatus [13,14]. 

2.1. Chlorophyll Fluorescence Imaging for Evaluation of Fungal Infections 

Chlorophyll fluorescence analysis (CFA; e.g., [13,14] and chlorophyll fluorescence imaging (CFI; 
e.g., [15,16]) are well-established, effective tools for a comprehensive examination of development 
and effects of bacterial, fungal and viral infections on leaves of many cultivated plants [17–20]. It can 
be used for entire intact plants [21,22], detached leaves and also leaf disks punched out from infected 
plant material [23–25]. 

On wheat, CFI was applied to determine, among others, effects of drought and heat stress [26,27], 
of limited supply of nutrients [28] and of various diseases such as leaf rust [22,29], leaf and glume 
blotch [30] or powdery mildew [31]. 

For disease detection, the empirical fluorescence parameter Fv/F0 has been proposed for use on dark 
adapted plants [29]. Although a clear physiological derivation is still lacking [32], Fv/F0 presumably 
represents the maximum quantum yield of fluorescence [33]. This parameter has been used as an 
indicator of the photosystem II (PSII) status and may estimate rates of energy transport from PSII to 
PSI in low-temperature fluorescence (−196 °C; [34]). 



Agriculture 2014, 4 35 
 

 

In addition, the potential maximum quantum yield of electron flow through completely open PSII, 
Fv/Fm [34] is often used for evaluation of microbial diseases [16,20,24]. Fv/Fm reflects the maximum 
photochemical efficiency and the interference with different environmental factors and may also 
indicate potential pathogen-related functional disturbance of the photosynthetic apparatus [13,14]. 
Fusarium infections immediately impact Fv/Fm because the fungi rapidly and strongly impair 
metabolism and, thus, photosynthetic processes of contaminated spikelets or head parts of the  
host plants. The mycotoxins produced by the fungi may also contribute to the complete reduction  
of photosynthetic performance as has been found for infection of maize and banana by  
Colletotrichum musae and Fusarium moniliforme, respectively [35]. Hence, it has been shown that the 
reduction of Fv/Fm, and also Fv/F0 [29], correlates closely with the degree of infection and is, therefore, 
a suitable parameter for detection of head blight and other fungal diseases [36]. 

2.1.1. Advantages of Image Analyses 

Standard handheld Fluorometer, available from many various companies (e.g., Heinz Walz GmbH, 
Effeltrich, Germany; Hansatech Instruments Ltd., Norfolk, UK; Photon Systems Instruments, Brno, 
Czech Republic; Opti-Sciences Inc., Hudson, NY, USA; EARS Holding B.V., Delft, The Netherlands) 
provide average chlorophyll fluorescence values measured at a certain point of the examined object.  
In an attempt to identify tulip breaking virus (TBV) infections on three tulip cultivars with different 
leaf colour patterns, [37] analyzed average Fv/Fm values, taken as precisely and as early as possible 
under laboratory conditions. Nonetheless, disease responses obtained by averaging Fv/Fm over the 
entire leaves differed up to 46% from the degree of disease determined by ELISA-tests. It seems 
obvious that both spot measurements and averaging of the fluorescence parameter might level off most 
of the disease-related differences in photosynthetic responses [21]. 

Applying chlorophyll fluorescence imaging, [38] analyzed the spatial variation of disease 
development within infected wheat heads instead of averaging the chlorophyll fluorescence values 
over the entire object. This approach allows the close evaluation of even minor changes in the typical 
infection pattern of head blight. During disease development, the relative area of the heads with 
impacted spikelets and, hence, low Fv/Fm (<0.3) increased, while that of healthy spikelets with high 
Fv/Fm (>0.3) declined. Hence, spatial distribution patterns and not average chlorophyll fluorescence 
parameters were used to evaluate changes in the degree of disease during progressing infection.  
Pixel-wise classification of all Fv/Fm in relatively small value class and class-wise accumulation of all 
Fv/Fm, starting from 0 up to a value of 0.3 facilitated the detection of the head blight disease. The 
degree of disease was even differentiable in 10%-steps. Instead of leveling the infection-related 
differences by averaging the Fv/Fm values, considerable differences between healthy and infected 
plants emerged by application of this approach. In addition, mathematical operations were easy to 
program and numerical efficient, which is essential for field application. 

2.1.2. The Timeframe of Detection 

Because it closely reflects the physiology of photosynthesis, chlorophyll fluorescence imaging 
enables the early detection of Fusarium infection-related tissue damage. It is, indeed, well established 
that variations in photosynthetic activity and in the chlorophyll fluorescence patterns are detectable at 
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early stages of infection [29,39]. However, the earliest changes on a cellular level had only a minor 
effect on PSII [38,40]. Only when the integrity of cellular structures of host plants was damaged by the 
fungi, the photosynthetic system was impaired. This interpretation reflects findings of [41] and [42]. 
With light and electron microscopy, these authors showed that the dominating fungal hyphae  
caused pronounced cellular changes (e.g., degeneration of cytoplasm, destruction of cell organelles, 
disintegration of cell walls and deposition of cell wall material at the walls of vascular elements of the 
diseased head) only 4 to 5 days after infection. 

However, the capability of chlorophyll fluorescence analysis and imaging, respectively, to detect 
fungal infections does not only depend on the period after inoculation; it is also considerably influenced 
by the object to examine itself. Infections by Pseudomonas syringae in Arabidopsis thaliana are 
detectable within few hours after inoculation [32]. In contrast, Fv/F0 decreased two to three days before 
leaf rust and mildew infections, respectively, became visible on leaves of winter wheat [19]. Pustules 
of leaf rust appeared 6 days after inoculation (dai), while symptoms of mildew were visible approx. 
from the 9th dai onward. With leaf rust infection, Fv/F0 significantly declined by about 0.4 relative 
units after the 6th dai onward, while decreases in Fv/Fm were considerably smaller (0.02 relative unit) 
compared to uninfected controls. First symptoms of Venturia inaequalis infection on apple seedlings 
could be detected at the 7th onward [43]. In seedlings of common spruce (Picea abies), needle rust 
(Chrysomyxa rhododendri) infections could be identified with CFA only three weeks after infection 
but not at earlier stage [44]. 

Time range for the meaningful detection of Fusarium infections of wheat with CFA and CFI is also 
limited. With the onset of wheat head maturation, chlorophyll content of the spikelets inevitably 
declines, and, concomitantly, also Fv/Fm decreases irrespective of whether infected or not (Figure 2). 
Consequently, relative cumulative Fv/Fm rapidly increases at low Fv/Fm classes (Figure 2a). Logically, 
this parameter is no longer suitable for biunique disease detection on fully mature wheat heads  
(cf. dai 43 = BBCH 89) after reaching the final grain developmental stage (BBCH 79; developed by 
Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und Chemische Industrie, 
this system comprehensively describes development states of crops according to Eucarpia Codes, EC). 

Figure 2. (a) Relative cumulative Fv/Fm of a healthy wheat head during maturation. 
Measurements started from early fruit development (BBCH 71 at the 4th dai) and 
continued until final grain ripening (BBCH 89; 43rd dai); (b) cumulative Fv/Fm at 0.3 of  
a healthy and an inoculated wheat head during the course of the experiment 
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2.1.3. Detection Accuracy of CFI on Wheat Plants with Different Degrees of Fusarium Infection 

The potential maximum photochemical efficiency Fv/Fm readily indicates damage of photosynthetic 
apparatus by Fusarium culmorum. Very high detection accuracy (10% RMSE) could be achieved  
with the application of the relative cumulative Fv/Fm (rcFv/Fm) at a threshold of 0.3 (Figure 2b) [38]. 
Relative cumulative Fv/Fm values in the lower efficiency classes gradually increased from <0.1% at  
2%–3% of visually evaluated degrees of Fusarium infection (degrees of infection, doi) to 10% at doi 
of 10%–20%, hold approx. 30% at degrees of infection of 40%–60% and reach 85% at an infection 
rate of 90%. In the above investigation, averaging Fv/Fm over the analysed heads indeed levelled all 
these differences. However, the application of distinct Fv/Fm value classes precisely monitored the 
damaging effects of Fusarium on photosynthesis. Beyond a minimum doi of 5%, the respective degrees 
of infection could be readily distinguished in steps of 10% with this method [38]. In other  
investigations [19,37], where all efficiency classes were considered by averaging, changes in Fv/Fm 
with progressive infection remained small and could be only insufficiently resolved. 

For practical application, the true degree of infection may be easily evaluated by remote CFI and 
use of relative cumulative Fv/Fm. With the threshold relative cumulative Fv/Fm of 0.3, the degree of 
infection contaminated wheat plants can be reliable estimated with only an error of 5.8%  
(doi (%) = 4.00 + 1.073 × rcFv/Fm; R2 = 0.98). 

2.1.4. Application under Field Conditions 

The application of CFI for detection of fungal diseases under field conditions was occasionally 
tested [37,45–47]. For this purpose, [46] used a 10 bit-camera with a resolution of 1300 pixels ×  
1000 pixels, coupled with a four band optical beam splitter, pass-band filter (450, 550, 690 and 740 nm), 
xenon arc lamp with IR cut-off filter and a low-pass filter (threshold at 410 nm; emission spectral 
range 350–420 nm), while [48] used a chlorophyll fluorescence imaging system patented by [49]. 

In this regard, recording of steady state fluorescence signals is certainly easier than that of 
fluorescence kinetics [46]. [36] prefer ϕPSII (Fq'/Fm' = (Fm' − Ft)/Fm') as an “extremely useful parameter” 
to measure CF under real environmental conditions. Without doubt, this parameter does not require 
any pre-darkening of the measured object. However, ϕPSII strongly depends on the highly variable 
prevailing daylight conditions, and should, therefore, be related to a certain standard. Because of their 
complex physiological nature, fluorescence signals directly depend on the regarding photosynthetic 
photon fluence rates [14]. In addition, values of light-adapted steady state fluorescence signals  
(F0', Fm') are lower than dark-adapted (F0, Fm) and measurable changes caused by the fungal diseases 
might be less clearly detectable. 

Present techniques of chlorophyll fluorescence imaging, such as the modular system of FluorCam 
MF700 (Photon Systems Instruments, Brno, Czech Republic), used under field conditions for head 
blight detection (measured parameter Fv/Fm) certainly requires adaptations for this particular 
application [40] (Figure 3). Furthermore, changing photon fluence rates and direct exposure to sunlight 
should be avoided during measurement, while recording of F0 and Fm requires dark adaption (approx. 
10 min; [50]) of plants [13,46,51]. If these requirements are fulfilled, CFI can be successfully applied 
even under outdoor conditions [40] (Figure 4). 
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Figure 3. CFI measurements for on-field evaluation of Fusarium infection in wheat:  
(a) FluorCAM MF 700; (b) Movable windshield construction for CFI measurements. 

 

Figure 4. Images of Fv/Fm distribution on wheat heads infected at largely different degrees. 

 

Methodical problems during out-door measurements with current CF imaging systems can be 
reduced by appropriate usage. Especially difficult are CFI-scans under windy conditions. Because of 
wheat head movements during records of F0 and Fm sequences, images of these parameters may not be 
completely overlaying. The reduction of total recording time to 2 s may largely reduce this problem. 
Nevertheless, peripheral areas of heads, worst affected by the wind, can show artificially low Fv/Fm 
values and resulting marginal regions of ROIs (ROI = regions of interests) need to be excluded from 
further analyses. Also, incomplete or uneven shadowing may lead to overestimation of the basic 
fluorescence and, consequently, incorrectly low Fv. Hence, for out-door usage, measurement techniques 
and protocols, and algorithms for elimination of outliers need to be optimised to exploit the high 
potential of CFI for non-invasive disease detection. 
  

(b)(a)
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2.2. Hyperspectral Imaging in the VIS (400–700 nm) and NIR-Range (700–3000 nm) 

Hyperspectral imaging (Figure 5) largely enhances the possibilities of multispectral image analysis. 
Major advantage of hyperspectral imaging is the pixel-wise incorporation of a continuous spectral 
signature of hundreds of wavelengths [52] into a two-dimensional image of the object under  
inspection [53]. This comprises the free choice to calculate ratios of different desired wavelengths 
(ranges) and of different indices and finally, obtaining multiple wavelengths optimal for evaluation of 
specific problems under consideration. 

Figure 5. (a) Hyperspectral image scanner; (b) Reflexion images of a Fusarium-infected 
wheat sample at different spectra channels (from left to right: red: 550 nm, green: 685 nm, 
blue: 765 nm). 

 

By applying six different vegetation indices, calculated from spectra of sugar beet leaves infected 
with Cercospora beticola, Erysiphe betae and Uromyces betae, it was possible to distinguish infected 
and healthy leaves during the course of three weeks [54]. Using discriminant analysis and neuronal 
networks, 10 optimal wavelengths, out of 167 originally recorded both in the VIS and NIR range, were 
identified for effective weed detection in sugar beet [55]. For the distinction of various rust pathogens 
on wheat, different vegetation indices were calculated from spectra recorded between 400 and 900 nm [56]. 
While differentiation of yellow rust (Puccinia striiformis f. sp. tritici) was fairly simple, the 
discrimination between P. graminis f. sp. tritici and P. triticina was only possible by several 
subsequently used indices. 
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2.2.1. Detection of Fusarium-Damaged Grains 

Both symptoms of head blight and also even single Fusarium-damaged spikelets can be detected by 
hyperspectral imaging. In the VIS to NIR range, six wavelengths were identified by Principal 
Component Analysis (PCA) and used to detect infected grains by linear discriminant analysis with an 
accuracy of 92% [57]. In another investigation, two high resolution hyperspectral imaging systems 
(“Spectral Dimensions Matrix”-NIR camera with an indium-gallium-arsenic detector; range 960–1662 nm; 
sisuChema SWIR system with a mercury-cadmium-tellurium detector; range 1000–2500 nm) were 
used to evaluate Fusarium verticilloides infection in maize [58]. By selecting only few specific 
wavelengths (1960 and 2100 nm for infected; 1450, 2300 and 2350 nm for non-infected grains), 
discrimination of healthy and infected tissue was possible with both systems (Matrix-NIR, r2 = 0.73; 
SWIR, r2 = 0.86). The infection-related spectral alterations in the wavelengths ranges of 1360 to 1600 nm 
and 1960 to 2100 nm are assumed to reflect changes in hosts’ carbohydrate and protein contents and 
compositions [59]. Analyzing differences in the red and green spectral range between healthy and 
diseased grains [60] could identify abnormalities of Fusarium damaged kernels. Even with fewer 
wavelengths and less technical affords Fusarium-infected kernels could be detected with a high 
probability (90%). [61] found a significant correlation between the colour components hue, saturation 
and intensity (HSI) of RGB images and the thousand-seed-weight, which decreased with infection. 

From NIR spectra (940 to 1700 nm) and applying a classification, which regards grain mass and the 
differences in logarithmic reciprocal spectral values at 1182 and 1242 nm, Fusarium damaged wheat 
grains could be detected by hyperspectral imaging with an accuracy of up to 95% under practical 
conditions [2]. [59,62] used absorption spectra in the NIR range to determine the Deoxynivalenol 
(DON) content in Fusarium infected kernels. Following acetonitrile extraction, DON contaminated 
wheat grains showed mycotoxin content-depended spectral differences at 1204, 1365 and 1700 nm. 
Significant spectral differences between DON free and DON contaminated material appeared in the 
ranges between 1425 to 1440 nm and 1915 to 1930 nm [59]. It, however, remains uncertain to what 
extent different fungal diseases of grains are distinguishable by NIR. Penecillium spp. and Aspergillus 
species, for instance, show abnormalities at similar wavelengths (1284, 1316, 1347 nm) as Fusarium [63]. 
Furthermore, carbohydrates, proteins and lipid contents of infected tissues are probably likewise 
modified in all these fungal diseases. [64] applied hyperspectral transmission imaging with an 
ImSpector spectrograph (Spectral Imaging Ltd., Oulu, Finland) in both VIS and NIR range to link the 
spectral information to the kernels’ content of Fusarium culmorum DNA by supervised partial least 
squares regression. As stated for CFA, in particular the combination of the spectral information and its 
spatial distribution patterns obtained by imaging in the examined object largely facilitates the detection 
of plant diseases or tissue damages [65]. 

2.2.2. Application of Hyperspectral Imaging for Head Blight Detection 

2.2.2.1. Wavelength Ranges for a Successful Discrimination of Head Blight and Other Diseases 

Fusarium infections pronouncedly alter the external appearance of contaminated wheat heads. Early 
occurrence of senescence symptoms such as chlorophyll degradation and decreased kernel water 
content [42] indicates the dieback of individual spikelets, which can be readily established by spectral 
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analysis. Spectral patterns of healthy and diseased wheat heads mainly differ in the VIS and short wave 
NIR range between 400 and 1000 nm. The spectral modifications during disease development are 
based on changes in carotenoid (500 to 533 nm) and, in particular, of chlorophyll contents (560 to  
675 nm and 682 to 733 nm). Additionally, spectral changes between 927 and 931 nm represent 
differences in the water content of healthy and diseased plant tissues. Although plant physiological 
responses are reflected in all distinct wavelength ranges, the application of mathematical and statistical 
methods such as interpolation, smoothening, standardization or formation of differences is necessary to 
provide a solid basis for all calculations and a comprehensive image analysis. 

Various indices are used for spectral analysis and imaging. The most common index for 
characterization of chlorophyll content and “activity” is the so called “Normalized Difference 
Vegetation Index” (NDVI). The NDVI is mainly helpful for the detection of healthy, chlorophyll 
containing plants. Consequently, this index does not necessarily give reasonable results for Fusarium 
detection. The same pertains to other frequently used indices such as “greenness-band”  
(G = R554/R677, [66]), the “structure intensive pigment index” (SIPI, [67]), the “normalized pigment 
chlorophyll index” (NPCI, [68]) or the Lichtenthaler index (Lic1 and Lic2, [69,70]). These are not 
quite suitable to distinguish healthy from Fusarium infected wheat heads. For instance in case of 
greenness-band or NPCI, infected tissue parts cannot be explicitly recognized, although, in particular, 
the chlorophyll free spikelets must be determined for evaluation of Fusarium infection. Furthermore, 
threshold definition for the successful detection of infected tissues is very difficult for SIPI [45]. 

In a Fusarium infected wheat head tissue, the absorption in the range of chlorophyll bands 
decreases rapidly with a progressing infection as a result of the destruction of chloroplasts and the 
gradual decomposition of chlorophyll in fungus affected cells [41]. The decrease in the chlorophyll 
content in these cells reduces the potential of the internal photon remission and re-absorption processes 
in the relevant wavelength range. This leads to a distinct shift (up to 15 nm) of the “red edge” 
inflection point of the spectrum [71] from approximately 700 nm to shorter wavelengths (Table 1). 

All modifications described above become more distinct with an increasing degree of infection. [72] 
reported enhanced flattening of the green reflexion peak and a strong decrease of reflexion at  
near infrared wavelengths with increasing degree of disease (0.6%, 5.2%, 49.2%, 76.1%) of 
Drechslera tritici-repenti infected summer wheat leaves. Additionally, these authors found a similar 
decrease in the near infrared reflexion plateau with an increasing degree of infection of the examined 
leaves accompanied by an enhanced reflexion in the visible range (550–750 nm). 

To detect exactly those heads that are head blight diseased, [40] suggested to analyze the records 
with the head blight index (HBI) that needed only two spectral ranges comprising a band of 10 nm 
each (665–675 and 550–560 nm). These two ranges reflect modifications of major photosynthetic 
pigments (chlorophylls and carotenoids) and effectively indicate infection induced physiological 
damages. As a result, both ranges show by far the most distinct modifications of the spectral signature. 
Utilizing the HBI, the data collection can be technically less complex and its evaluation can be much 
quicker. Therefore, the HBI could be an index for an early detection of a Fusarium infection, although 
it is slightly less efficient than the spectral angle mapper algorithm (SAM) that uses much more bands. 
Approximately 84% of healthy and infected tissue was found in the error range of +/−10%. This error 
range seems to be acceptable as the rating error is of the same dimension [73]. The visual rating is 
always subjective and the rate of error could thus strongly depend on the personal skills of the rating 
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person. On the other hand, the actual infection in the field is rated three-dimensionally because the head 
is looked upon as a whole [73]. Image analysis, however, displays the object only two-dimensionally. 
Due to the loss of one dimension, the accuracy of the image analysis may suffer. 

Table 1. Summary of some plant-pathogen systems, the spectral lines used for analysis and 
information about targets and statistical methods of analyses. 

Plant-Pathogen system Relevant Spectral Lines Targets/Method References

Triticum aestivum—Fusarium 
550–560 nm 
665–675 nm 

detection of carotenoids 
and chlorophylls 

[38] 

Beta vulgaris—Cercospora 
beticola, Erysiphe betae and 

Uromyces betae 

10 optimal wavelengths  
between 450–1650 nm 

 [55] 

Triticum aestivum—Puccinia 
striiformis f. sp. tritici,  

P. graminis f. sp. tritici and  
P. triticina 

indices  [56] 

Zea mays—Fusarium 
verticilloides (grains) 

1960 and 2100 nm for infected;  
1450, 2300 and 2350 nm for  

non-infected grains 

changes of carbohydrate 
and protein contents 

[58] 

Triticum aestivum—Fusarium 
(grains) 

RBG  [61] 

Triticum aestivum—Fusarium 
(grains) 

1182 and 1242 nm  [2] 

Triticum aestivum—Fusarium 
(grains) 

1425 to 1440 nm and 1915 to 1930 nm
DON estimation changes 
of carbohydrates, proteins 

and lipid contents 
[59] 

Triticum aestivum—Fusarium 
(grains) 

1204, 1365 and 1700 nm 
DON estimation changes 
of carbohydrates, proteins 

and lipid contents 
[62] 

Triticum aestivum—Penecillium 
spp. and Aspergillus species 

(grains) 
1284, 1316, 1347 nm 

changes of carbohydrates, 
proteins and lipid contents 

[63] 

Triticum aestivum—Fusarium 
culmorum 

430–1750 nm method: PLS [64] 

Triticum aestivum—Drechslera 
tritici-repenti 

550–750 nm methods: PCA, FVBA [72] 

Beta vulgaris—Heterodera 
schachtii and Rhizoctonia solani 

400–1000 nm methods: SVI, SAM [74] 

Triticum aestivum—Fusarium spp. 670 ± 22, 800 ± 65 nm  [12] 

Triticum aestivum—Fusarium spp. RGB 
changes of chlorophyll 

and carotenoids 
[75] 

Triticum aestivum—Fusarium  bands in R, MIR and NIR 
changes of chlorophyll 

and carotenoids 
[11] 

Despite these problems, the present approach can rapidly provide valuable information about the 
degree of Fusarium infection in wheat and can therefore indicate the risk of a mycotoxin 
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contamination. On the other hand, visual symptoms of head blight not necessarily reflect detectable 
contents of mycotoxin. Occurrence and extent of mycotoxin formation depends on various conditions 
and is variable between species [76]. Even this uncertainty also indicates the great importance of an 
accurate detection especially in the lower classes of infection. 

2.2.2.2. Detection Accuracy and Time Frame of the Application of Existing Classification Algorithms 

Depending on the situation of the data, both supervised and unsupervised classification is possible. 
In unsupervised classifications, different spectral classes are automatically assigned by a computer or a 
evaluation module, respectively, after specification of certain parameters (e.g., number of classes etc.), 
This finally yields an assembly of values based on similar statistic attributes, wherein similar pixel 
values can be combined into one value (algorithms: IsoData, k-means). The different pixels comprise 
certain grey-scale values and correspond to the colors of the image. On the other hand, if well-defined 
classes should be distinguished, supervised classification methods such as Minimum Distance, 
Parallelepiped, Maximum Likelihood, Mahalanobis Distance, Binary Encoding or Spectral Angel 
Mapper (SAM) may be applied. 

The different classification algorithms available for automated identification show very specific 
advantages. In case of multispectral image analysis with only few wave lengths, good classification 
results can be achieved by Maximum Likelihood [77,78]. In contrast, Spectral Angle Mapper obtained 
good classifications with highly complex hyperspectral images [79,80]. 

In a RGB imaging-based approach to automatically identify Fusarium-infected wheat heads [75], 
the authors used two supervised classification methods, i.e., Maximum Likelihood [81,82] and SAM. 
Evaluating RGB images, taken under light and shade, respectively, Maximum Likelihood achieved 
better classifications than SAM, because only three channels were available. In contrast to RGB, 
hyperspectral images are based on a large number of spectral bands, thus containing much more 
information. Here, SAM allows a rapid mapping of spectral similarities [83,84] and provides good 
classification results in most cases [79]. This method directly compares the similarities of different 
vectors (“spectral angles”) of various distinct classes. Consequently, SAM leads to a more efficient 
and accurate classification of features in hyperspectral images than Maximum Likelihood for instance. 
Further, hyperspectral image analysis with SAM does not depend on variability of object illumination. 

Thus, SAM may be optimal for classifications under semi-practical conditions [85,86]. Indeed, 
SAM achieved very good classification results in several studies. On sugar beet, Cercospora leaf spots 
could be correctly evaluated by up to 98%, while powdery mildew and rust were recognized with 
accuracies of up to 97% and 62%, respectively [85]. Considering a rating error of 10%, head blight 
infection was correctly classified up to 87% [45]. On the other hand, on wheat leaves, support vector 
machine (SVM) was more successfully applied for the detection of powdery mildew than SAM [86]. 

By no means, recording and analysis of the 512 wavelengths requires considerable computing 
resources. In contrast to laboratory studies, this is still not very practical for on-line on-field 
applications. Installed on a field vehicle, camera systems must record a great amount of spectral 
information, which has to be analyzed within seconds by the board PC. Additionally, evaluation of 
disease specific spectra, in particular the setting of ROIs is very time consuming and difficult to 
integrate into practical processes. 
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Another important problem of disease classification by means of spectral imaging is the choice of  
a suitable stage of plant development; otherwise, results might become inaccurate. If measurements 
start at a too early stage, anthers and sterile heads potentially caused by growth disturbances will be 
classified as diseased. In some cases, classification results could be improved by choosing different 
specific angular radians in corresponding object classes as well as by manually adjusting the angular 
radians by means of setting a low value, for instance 0.05. These specific adjustments, however, 
renders data evaluations even more time consuming. 

With incipient grain ripening, spectra of healthy and diseased heads become very similar. This may 
largely increase the risk of misclassifications [40]. Unclassified pixels reflect the increase in 
developmental-regulated degradation of chlorophyll, which appears in healthy heads without the 
typical disease-specific spectral signature of infected grains. To what extend the utilization of a 
specific class “ripe, but not Fusarium infected” could improve classifications at this developmental 
stage remains open. 

The SAM classification mode opens possibilities to significantly reduce time and computational 
efforts considering the entire range of 512 wavelengths. Reduction of the amount of spectral 
information certainly increase the classification efficiency. Reduced band density indeed considerably 
shortens computation time; it, however, leads to a less accurate classification. For instance, decreasing 
the number of spectral bands by 25% often leads to the overestimation of the degree of disease. This 
effect is most obvious during grain development e.g., in BBCH 75. However, even if the number of 
bands is reduced, the hyperspectral analysis initially requires to recording the entire spectrum. 
Furthermore, the time consuming necessity of setting the ROIs remains. That is why this method with 
a misclassification rate of up to 37% is hardly appropriate for practical applications. 

2.2.2.3. Optimum Stage of Head Development for Disease Detection 

It is very important to choose the correct time frame for the classification of the degree of infection 
by Fusarium on wheat. During examinations of durum wheat plants using red (R), near infrared (NIR) 
and mid infrared (MIR) spectral bands, the first significant differences between the spectral signatures 
of healthy and head blight infected plants were obvious during early grain development one week after 
flowering (BBCH 73) [11]. Similar observations were made on winter wheat [40,45] and durum  
wheat [87] with hyperspectral imaging. Infected heads could be distinguished from healthy references 
only seven days after inoculation and were correctly classified 8–10 dai by Partial Least Squares and 
Discriminant Analysis (PLSDA). 

Also, measurements with a multispectral camera in wheat populations comprising types with 
different ripening times and sensitivities to Fusarium did not lead to satisfying results [12] in an 
advanced stage of development of the head during late grain ripening (BBCH 85). On the contrary, 
detection during early grain development and ripening (BBCH stages 75–83) was indeed successful 
even with this method. 

2.2.2.4. Effects of Steady and Unsteady Characteristics on the Automated Disease Determination 

Degradation of chlorophyll is a steady characteristic of Fusarium head blight. Red spore covering, 
however, does not develop constantly and, therefore, cannot constitute an exclusive feature for 
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detection of Fusarium infection in image analysis. The effects of red spore covering on head blight 
disease detection were explicitly examined by [45]. The results showed that spectral evaluation by 
PCA also classified this additional feature as diseased. Thus, red spore covering did not deteriorate the 
detectability of Fusarium head blight. 

Other fungal pathogens such as Pseudocercosporella herpotrichoides, causing the eyespot disease, 
and Ophiobolis graminis, which elicits the take-all root disease, might also induce head blight. Unlike 
Fusarium with its partial chlorophyll defect [88], infections with these fungal pathogens result in 
chlorophyll defects on the entire head. Chlorophyll fluorescence and hyperspectral imaging (HSI) 
enables the automated detection of symptoms; it cannot, however, replace the analytical determination 
of correspondingly generated mycotoxins. 

2.2.2.5. Effects of the Degree of Infection on the Detection Accuracy of Hyperspectral Imaging 

As in the case of chlorophyll fluorescence imaging, at least a degree of Fusarium infection of 5% 
should have developed [38] for effective disease detection with HIS; otherwise even minimal 
interferences in development and growth might result in serious misclassifications. 

Although for hyperspectral imaging detection accuracy is less dependent on the degree of infection, 
it is much more influenced by the time recording takes place. This is true for both SAM classifications 
with 512 and 168 bands as well as for disease detection with the head blight index. Applying SAM 
classification with only 168 bands, misclassification rated up to 37%, which is much too high in 
relation to the necessary efforts. If all 512 bands are analyzed with SAM, the period between full 
flowering and late grain development (BBCH stage 65 to 75/77) is optimal for head blight detection 
yielding a misclassification of only approx. 4%. 

The hit ratio with HBI is about 67% during the whole period between full flowering and final grain 
ripening (BBCH 65 to 89). Considering the optimal time of classification, detection accuracy of this 
index is definitely improvable. In the BBCH stage 65 to 75/77 (i.e., full flowering till mid grain 
development), HBI achieved very precise detection results with an average absolute deviation of 
infection of a little over 2%. Nevertheless, upon final grain ripening (BBCH 85 to 89), deviation of 
residues increases to nearly 21% as a result of physiological changes. 

2.3. Advantages and Disadvantages of Chlorophyll Fluorescence and Hyperspectral Imaging for Head 
Blight Detection 

Radically improved image analysis techniques, and reproducible and reliable data acquisition 
systems denote the initial vital steps of any attempt to optimize objective disease recognition. Only 
then a meaningful automatic on-field detection of head-blight will become possible. For non-invasive 
analysis of head-blight disease on wheat heads, CFI has yet only rarely been used, although this 
technique seems very well suited for this purpose, in particular during the initial phase of infection. 
Already on the 6th dai onward, early recognition of Fusarium infection was possible with CFI but not 
with hyperspectral imaging [40]. Fv/Fm, the parameter applied in the above study, indicates overall 
photosynthetic activity and closely reflects the intactness of the entire photosynthetic apparatus [50]. 
Hence, Fv/Fm may sensitively monitor the physiological responses of cells to fungal infection, well 
before any visual symptoms may become detectable [40]. 
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Nonetheless, hyperspectral analysis provides its own advantages. Unquestionably, hyperspectral 
imaging includes a much higher information density than multispectral or RGB images. The 
involvement of several hundreds of wavelengths in image analysis may provide the prerequisite for 
high accuracy of detection, and, thus, makes a meaningful monitoring of maturation, quality or 
diseases possible at all [58,89–92]. Nevertheless, with currently applied standard techniques such as 
conventional line scanners, recording of hyperspectral images is rather slow [45,58,74]. In addition, 
pre-processing, processing and analyses of the enormous amount of data are, still, laborious and time 
consuming and, thus, retarding infection evaluation. At the normal on-field operating speed of approx. 
10 km h−1, disease symptoms cannot be reliably evaluated. On the other hand, recent advances in 
hyperspectral techniques such as high speed real time imaging system UHD 285 (Cubert GmbH,  
Ulm, Germany), operating with cube rates of up to 20 s−1, the ever increasing performance and 
miniaturization of computer and actual improvements of mathematical and statistical image analysis 
algorithms may render hyperspectral imaging accessible for practical on-field disease monitoring in 
the near future. 

Another limitation for the spectral recognition of head blight disease in the VIS and short-wavelength 
NIR range (up to 1000 nm) on wheat is that it is only meaningful between mid grain development till 
early grain ripening (BBCH 75 to 83). After full maturation of grains, chlorophyll is completely 
degraded and tissue water content is decreasing. Hence, any attempt to classify healthy and diseased 
grains in fully ripe wheat heads by means of spectral imaging beyond BBCH 85 is only reasonable if 
the NIR range is considered [58]. In this spectral range, infection-induced variations in water and 
protein contents grains may be estimated. This, in turn, may provide additional valuable information 
about the true degree of infection and could improve the significance of pre-harvest on-field detection 
of Fusarium infection. 

Technical solutions for the practical implementation of on-line, on-field Fusarium detection during 
wheat harvest are yet available. One approach would be the automatic separation of healthy and diseased 
grain batches directly in the grain stream on the harvester. In a yet existing quality-differentiated 
harvesting of cereals, NIR sensors, continuously acquiring e.g., the protein content of grains, are used  
to control the direction of the grain stream into the respective grain tanks [93]. In case of  
Fusarium-contaminated wheat, this on-line grain sorting technique, however, is still not meaningful  
to apply [94]. This would require the direct analysis of mycotoxins in addition to that of protein and 
water contents of grains. For this purpose, unfortunately no on-line sensors for mycotoxins exist at  
the moment. 

Hence, the imaging-based on-field pre-harvest detection and monitoring of head blight on wheat is 
currently the only meaningful technique to potential control the negative impacts of Fusarium 
infection on grain quality and safety. In combination with GPS data, maps of potential centres of 
infection can be obtained site-specifically with this approach. Based on this information, the harvester 
can either simply bypass areas with contaminated crops or, if possible, may separately harvest healthy 
and potentially infected grains, as discussed above. 
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2.4. Approaches to Analyse Chlorophyll Fluorescence and Spectral Images 

Normally, CF transient measurements are evaluated by averaging the relevant parameters  
(e.g., Fv/Fm, NPQ, ΦPSII) over the object under consideration [25,50,95]. To follow the course of 
Plasmopara viticola infection, [96] applied a complex pixel-wise analysis of CF images. Manual 
setting of ROIs during image analyses may further help to improve quality of disease detection [22]. 

In some studies on the evaluation of combined CF and thermographic image analyses, resembling 
and interpolation was applied to link the results of systems providing different spatial resolutions. This 
approach, indeed, enables the combination of different types of measurement results. Hence, this 
method was used to quantitatively analyze the local variability of physiological processes on leaf 
surfaces from images obtained with both techniques [97]. In contrast, [98] used the local distribution 
patterns of maximum temperature variations between healthy and infected tissues, obtained by thermal 
imaging, to illustrate the degree of infection of cucumbers with Pseudoperonospora cubensis (downy 
mildew). The algorithm applied proved to be very sensitive for pathogen detection during the course of 
the disease. 

For automatic detection of stripe rusts on wheat, [99] merged two fluorescence emission images 
(emission wavelengths 550 and 690 nm). Effective wavelengths of fluorescence were chosen out of 
four initially recorded. From fluorescence image intensities at both wavelength, the authors pixel-wise 
calculated the disease index fG as 

 

They defined values of fG < 0.65 as indicative for diseased. 
Similarly, [100] detected Fusarium infection on seed potatoes by mathematically combination of 

two fluorescence images, taken at 554 and 649 nm. Respective fluorescence signals from ROIs of 
healthy and infected tissues were used as data bases for the evaluation program written in MATLAB. 
As a first step, with an ANOVA, the authors determined an optimal global threshold value at which 
classification accuracy was highest. As a second step, standard PCA was applied to select multispectral 
wavebands optimal for disease detection. 

From CF images of Tulip Breaking Virus (TBV)-infected tulip plants, [37] calculated means ± 
standard deviation of the photochemical efficiency in classes from 0 to 1 individual for each single 
leaf. Averaging, however, partially levelled the differences existing between healthy and diseased leaf 
tissues. Thus, error rates of 31% to 46% remained worse than expected for this analysis and lower than 
the accuracy of detection achieved in comparable studies of [38] and [99]. Similarly, [21] could not 
sufficiently discriminate regions of infected tissues by averaging respective pixels of non-photochemical 
quenching images. Quite obviously, besides the adequate resolution of recorded images, a pixel-wise 
analysis and the elaboration of local distribution patterns may yield a more expedient for  
disease recognition. 

For the complex analysis of relevant wavelengths in hyperspectral images, Principal Component 
Analysis (PCA) or Partial Least Squares regression (PLS) is preferred [101]. On the other hand, 
various spectral indices (cf. 2.2.2.1, e.g., Greenness-Band [66], Structure Intensive Pigment Index [67], 
Photochemical Reflectance Index [102], Normalised Pigment Chlorophyll Index, [68] or Lichtenthaler’s 
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Indices [69,70]) calculated from spectral signals of distinct wavelengths, can be specifically selected 
for a particular problem and may largely facilitate evaluation. 

Furthermore, images obtained by hyperspectral analysis can be evaluated and assessed by supervised 
and unsupervised classification techniques such as decision tree or k-nearest neighbor [103] and Bayes 
classification or maximum posterior classification [104]. 

If high-resolution spectral imaging systems are used, which are mainly applied in the laboratory, 
certain form factors may be integrated in data evaluation. For instance, progressing head blight on 
wheat is characterized by the close coexistence of parts of the heads comprising dead, chlorophyll free 
as well as living, chlorophyll containing groups of spikelets. These pronounced local variations in 
distinct regions of the entire structure under consideration, i.e., the wheat head, may provide valuable 
additional information that may sharpen recognition efficiency. In that way, [91] used spatial patterns 
of relative proportions of chlorophyll a and b, respectively, along a leaf transect to discriminate areas 
of frost damages. In general, the pixel-wise classified spectral data may be submitted to additional 
classification according to size and form patterns. This also may enhance success of discrimination of 
infected and healthy tissue areas. Applying this idea, [105] sought to improve results of disease 
recognition with spectral imaging on differentially colored leaves by combining form parameters (length, 
width, depth of the object), number of pixels and average signal intensities. In addition, by penalized 
likelihood warping, [48] successfully aligned incongruent CF images of Xanthomonas campestris pv. 
campestris infected leaves of black nightshade (Solanum nigrum L.). This enabled the authors to 
rapidly detect the fungal disease. For Fusarium recognition on wheat, [12], by manual calibration, set 
thresholds that allowed the elimination of misclassified pixels and of small sized clusters. The 
threshold was set when symptoms in the binary image aligned with those perceived by human eye. 

2.5. Improvement of Disease Recognition by Sensor Fusion 

Mainly by direct fusion of several differing techniques, i.e., in this case of different imaging 
systems, the efficacy of disease recognition may be further enhanced. As stated earlier, [46] took this 
step for investigation of stripe rusts on wheat. The weak point in their spectral analysis laid in the 
accuracy of detection of infected tissues, which were approx. 13% falsely classified. In contrast,  
with CFI, 29% of healthy leaves were misclassified. Combining both techniques in one device that  
also guaranteed integrated and congruent images reduced classification errors to less than 5%. 
Nevertheless, both spectral and CF images (at 550 and 690 nm) were still evaluated separately and 
needed various preprocessing steps (e.g., quadratic discriminant analysis) before they were included in 
a common data pool for final evaluation. For such complex data analyses, the application of artificial 
neural networks may provide further improvement of detection results. With this method, [106] could 
increase detection success of stripe rusts infection on wheat to nearly 99%. 

Hence, this approach certainly will also enhance efficiency and accuracy of detection of Fusarium 
infection on wheat. Fusion of CF and (multi)spectral imaging may not only provide advances in reduction 
of detection error rates but may also improve earliness of disease recognition. In this context, CFI has  
been shown to detect effects of Fusarium infection earlier than spectral reflection imaging [40,45]. 
Hyperspectral imaging is only effective after infection symptoms, i.e., chlorophyll degradation, have 
become visible. Cytological analysis of the exact time-course of Fusarium infection on most recent 
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winter wheat cultivars clearly stressed the importance of an early disease detection as major 
determinant for reasonable development and applications of new pesticides [42]. These chemical 
should be able to effectively function during initial phases of infection before any damage by spread of 
hyphae occur. 

As time-dependent measurement, CFI restricts the absolute speed of detection. On the other hand, 
spectral imaging may only be reasonable applied for Fusarium recognition when clear disease 
symptoms had become visible. If both techniques could be used for a direct combined recording of 
inoculated, infected and diseased wheat heads, respectively, and the resulting sets of data jointly 
analyzed, the accuracy of Fusarium detection will largely increase, as has been shown by [46]. 
Appling such a fused sensor system, an overall timeframe of 10 days for meaningful detection of this 
fungal disease may be feasible [11,40]. 

Nevertheless, for any imaging-based on-field recording of head blight in a very early stage of fungal 
infection, at least two passages over crop will be necessary, irrespective of imaging systems were used 
singularly or fused. The final nitrogen fertilizer application will occur right before heading dates of 
wheat, while the last dates for pesticide application against rust and Fusarium pathogens are suited 
between early and late flowering (BBCH 61 to 69) [107]. Cultural and disease management practices 
are no longer meaningful during late grain development (BBCH 75 to 77) when visible or imaging-based 
disease detection can be successful. All the more, the construction of imaging analysis-aided  
GPS-based grain disease risk map and its successful application for a direct split-harvest will certainly 
help to reduce the risk of grain contamination with Fusarium toxins. 
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