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Abstract: Investigating the wave hydrodynamics of free-surface flow over rippled bottoms is a
continuing concern due to the existence of submarine multiple sandbars and ambient flow in coastal
and estuarial areas. More attention to free-surface wave stimulation has been received from the
perspective of resonant wave-wave interaction, which is an intensive way for wave energy transfer
and a potential way for wave component generation. However, the basic behavior of the triad
resonant interaction of this problem is still limited and unclear. In this study, the triad resonant
interaction induced by steady free-surface flow over rippled bottoms is numerically investigated by
means of the High-Order Spectral (HOS) method. By considering the interactions among free-surface
waves, ambient current, and rippled bottoms, the numerical model is applied for this situation based
on Zakharov equation with ambient flow term. The temporal evolution of the triad resonant wave
amplitude has been numerically investigated and compared well with multiple-scale expansion
perturbation theory. Specifically, the temporal evolution behaviors of all six triad resonant wave
components are confirmed by both numerical simulation and nonlinear perturbation analysis.

Keywords: triad resonant interaction; numerical simulation; high-order spectral method (HOS);
free-surface flow; temporal instability

1. Introduction

The open channel flow over rippled bottoms has drawn increasing attention to wave
hydrodynamics recently [1–3] because the possible unstable resonant modes might be
triggered in some circumstances of ambient flow and bottom ripples. It will be applied
in the research of the estuarial wave field due to the existence of continuous submarine
sandbars and ambient tidal/runoff currents.

Firstly, the related studies of the resonant interaction with the existence of ambient flow
and rippled bottoms originated from the early study of stationary waves for free-surface
flow over rippled bottoms [4–7]. This steady-state free-surface wavy profile becomes an
important part of introducing the following resonant-related work because the station-
ary waves are the medium for achieving the resonant interaction and energy transition
from ambient flow (with rippled bottoms) to free-surface propagating (resonance-related)
wave components.

Then, the theory of resonant wave-wave interaction [8–10] was introduced to the prob-
lem of steady free-surface flow over rippled bottoms. The leading-order (triad interaction
at second order) resonance became a critical issue to discuss the potential unstable resonant
wave modes. If the leading-order resonance with unstable resonant modes is triggered,
the wave energy transfer induced by resonance will be very intensive and the free surface
wave field could be strongly affected in estuarial areas with the existence of continuous
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submarine sandbars and ambient currents. It was first proposed from the perspective of
instability of stationary waves for steady free-surface flow over rippled bottoms [11]. By
linear instability analysis, it reveals that the stationary waves are unstable for any bottom
wavenumber if the Froude number F ≥ 1, and for bottom wavenumber kb > kbc (kbc as the
critical value) if F < 1.

Further, McHugh [12] investigated the stability of stationary waves for steady free-
surface flow along the channel with rippled sidewalls. During the analysis of the condition
for unstable wave modes, the classification of this specific triad resonance was given.

Specifically, for the triad resonance involving free-surface waves, ambient current,
and rippled bottoms, there are totally six triad resonant combinations that correspond to
two free-surface resonant wave components (from four wavenumber solutions in currents [13])
and one bottom profile steady wave component.

In detail, for the triad resonance induced by free-surface uniform flow (U) over rippled
bottoms, two free-surface propagating wave components and one bottom wave component
(fixed bottom) are involved. These two free-surface resonant wave components have
different wavenumbers (km and kn) and the same frequency (ωm = ωn = ω) in general.
The bottom resonant wave component is steady with zero frequency and wavenumber
kb for the bottom profile. Under the assumption of ω > 0 and kb > 0 without loss of
generality, the triad resonant conditions will be satisfied as below.

km − kn = ±kb and ωm −ωn = 0 (1)

The wavenumbers (km and kn) and frequency (ωm = ωn = ω) of the free-surface
resonant wave components satisfy the dispersion relation with the uniform ambient current.

(ω− kU)2 = gktanhkh (2)

in which k = km or kn. From this dispersion relation with the given free-surface wave
frequency, there are four wavenumber solutions in total [13] ( k1 ∼ k4) obtained at most (as
referred to in [2] Figure 2). Then, the subscripts become m, n = 1, 2, 3, 4 and m 6= n.

The wavenumber solutions of k3 and k4 always exist with positive values (0 < k3 < k4),
which means that the phases of k3 and k4 wave components are traveling along with the
flow. However, the wavenumber solutions of k1 and k2 are negative (k2 ≤ k1 < 0) but do
not always exist (only exist if the flow velocity is less than the critical value), which means
that the phases of k1 and k2 wave components are traveling against the flow. For the wave
energy propagation, the wave energy of k2, k3, and k4 propagates downstream, whereas
the wave energy of k1 propagates upstream.

If all four resonant wavenumber solutions exist with a given wave frequency ω and
flow velocity U, there will be six triad resonant combinations in total: Triad resonant
combinations (1): k3 − k1 = kb; (2): k3 − k2 = kb; (3): k4 − k3 = kb; (4): k4 − k2 = kb;
(5): k4 − k1 = kb; (6): k1 − k2 = kb.

On the basis of above, the temporal instability scenario for stationary waves dis-
cussed by Yih [11] only belongs to one specific triad resonant combination (3) containing
two downstream-propagating resonant wave components (k3 and k4).

Moreover, the effects on the instability condition of surface tension were considered [14].
It concludes that for zero surface tension, the waves from three triad resonant combinations
(expressed as p waves, which correspond to triad combinations No. 1–3) are always unsta-
ble. Later, the phenomenon of upstream-propagating waves for flow over rippled bottoms
was observed by flume experiments [15,16]. The generation mechanisms are analyzed
by multiple-scale expansion perturbation from the perspective of triad resonance and
validated by experiments [2]. However, it is still of limited understanding for the temporal
evolution behavior of triad resonant interactions for free-surface flow over rippled bottoms.

In this study, we focus on six triad resonant combinations induced by free-surface
steady and uniform flow over rippled bottoms. The High-Order Spectral (HOS) method
numerical model is established to investigate the temporal evolution characteristics of
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triad resonant free-surface wave components for flow over rippled bottoms. The specific
objective of this study was to identify the temporal evolution behavior of all six triad reso-
nant combinations and provide clear conclusions, which are cross-validated by numerical
simulation results.

The remainder of this paper is organized as follows. The mathematical formulation of
the High-Order Spectral (HOS) method for wave-current-bottom interactions is summa-
rized in Section 2. The results of the HOS numerical simulation for temporal evolution, as
well as the comparison with perturbation theory for exact triad resonance, are presented
in Section 3. Finally, Section 4 contains the discussions and conclusions. Furthermore, the
necessary information from the previous studies on instability analyses and multiple-scale
expansion perturbation solutions are reviewed in the appendixes.

2. High-Order Spectral Method (HOS) Method for Free-Surface Flow over
Rippled Bottoms

The High-Order Spectral (HOS) method is applied to calculate the spatial distribution
and temporal evolution of resonant waves’ amplitudes in this study. This numerical
study is initialized for cross-validation between numerical and theoretical solutions of
resonant interaction among free-surface waves, rippled bottoms, and ambient (steady and
uniform) flow.

The HOS numerical model is based on the ideas of the Zakharov equation [17] and
mode-coupling [18]. It was firstly developed for nonlinear wave-wave interaction [19,20],
then, it was extended to wave-body interaction [21], wave-bottom interaction [22–24],
and many other scenarios [25–27]. This numerical model could solve the nonlinear initial
boundary value problem up to any order. Its computational efforts will be kept near
linear dependence based on orthogonal spectral expansions for the free-surface and bottom
functions as well as fast Fourier transform techniques. The solutions calculated have
exponential convergence with an increasing number of free-surface and bottom modes.
The HOS model applied to calculate the resonant interaction for free surface waves in the
presence of ambient steady uniform flow and rippled bottoms in this study are adapted
based on the program developed for investigation of the Bragg resonance (wave-bottom
resonant interaction without ambient current [22,23]).

For the mathematical formulation and algorithm of HOS with the existence of ambient
flow, in the presence of ambient steady and uniform flow of velocity, the nonlinear free-
surface boundary conditions in the Zakharov form [17] are,

ηt + ηxU + ηxΦS
x − (1 + ηxηx)Φz(x, η, t) = 0 (3)

ΦS
t +

1
2

U2 +
1
2

ΦS
xΦS

x + η − 1
2
(1 + ηxηx)Φ2

z(x, η, t) = 0 (4)

in which the terms ηxU and 1
2 U2 indicate the effect of steady and uniform ambient flow.

The function ΦS is the surface potential defined as below.

ΦS(x, t) = Φ(x, η(x, t), t) (5)

Therefore, Equations (3) and (4) are evolution equations that could be integrated by giv-
ing the initial value of surface elevation η(x, 0) and free surface potential ΦS(x, η(x, 0), 0).
The surface vertical velocity Φz(x, η(x, t), t) could be solved by the boundary conditions.

The bottom boundary condition of the rippled patch at z = −h + ζ(x) is as below,

Φz = ζx(U + Φx) (6)

For solving the boundary value problem, the regular perturbation expansion is applied
to the velocity potential Φ(x, z, t). In this paper, if the steepness of free surface elevation
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and bottom undulation is assumed to be the identical small value of ε, then the velocity
potential is expanded as below,

Φ(x, z, t) =
M

∑
m=1

Φ(m)(x, z, t) (7)

in which Φ(m) is the velocity potential of each order up to arbitrary order M with Φ(m) = O(εm).
To get the relation of velocity potential Φ(x, z, t) by each order, the Taylor expansion is

applied to the mean free surface z = 0 and mean bottom z = −h, respectively.
At mean free surface z = 0, the expressions of velocity potential by successive orders

are obtained as Dirichlet boundary conditions.

Φ(1)(x, 0, t) = ΦS (8)

Φ(m)(x, 0, t) = −
m−1

∑
`=1

η`

`!
∂`

∂z`
Φ(m−`)(x, 0, t) m = 2, 3, · · · , M (9)

At the mean rippled bottom z = −h, the expressions of velocity potential by successive
orders are obtained as Neumann boundary conditions.

Φ(1)
z (x,−h, t) = Uζx (10)

Φ(m)
z (x,−h, t) =

m−1

∑
`=1

∂

∂x

[
ζ`

l!
∂(l−1)

∂z(l−1)
Φ(m−l)

x (x,−h, t)

]
m = 2, 3, · · · , M (11)

Based on the periodic condition of horizontal coordinate x and the Laplace governing
equation in the computation domain −h < z < 0, the perturbation potential function
Φ(m)(x, z, t) at each order could be decomposed into two kinds of terms which satisfy only
the free-surface or bottom boundary condition separately based on the linear superposition
of the Laplace operator.

Therefore, we decompose each order’s velocity potential Φ(m) = α(m) + β(m). α(m)

and β(m) satisfy the homogeneous bottom boundary condition (zero Neumann condition)
and homogeneous free-surface boundary condition (zero Dirichlet condition), respectively.
Then, the decomposed velocity potentials α(m) and β(m) are expanded by the eigenfunction
of the Fourier series.

α(m)(x, z, t) =
∞

∑
n=0

α
(m)
n (t)

cosh[|kn|(z + h)]
cos h(|kn|h)

eiknx + c.c. (12)

β(m)(x, z, t) = β
(m)
0 (t)z +

∞

∑
n=1

β
(m)
n (t)

sin h[|kn|(z + h)]
|kn|cos h(|kn|h)

eiknx + c.c. (13)

in which α(m) and β(m) are the modal amplitudes which are solved with corresponding
boundary conditions.

Thus, the vertical velocity term Φz(x, η, t) on the free surface could be obtained from

Φz(x, η, t) =
M

∑
m=1

M−m

∑
l=0

ηl

l!
∂(l+1)

∂z(l+1)
Φ(m)(x, 0, t) (14)

Therefore, the vertical velocity term Φz(x, η, t) will be solved iteratively during the
numerical solving process to obtain the updated value of ΦS(x, t) and η(x, t) in HOS.

At the initialization of the simulation process, all parameters are dimensionless along
with the number of total spatial points N and nonlinear order M. Then, based on the
initial free surface elevation function η0(x) and surface potential Φs

0(x), which are already

given as the initial condition, the values of modal amplitudes α
(m)
n (t) and β

(m)
n (t) will
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be obtained by solving both Dirichlet and Neumann boundary value problems with the
pseudo-spectral method.

During the iteration process, the modal amplitudes α
(m)
n (t), β

(m)
n (t) and free surface

elevation η(x) are substituted into the expression Φz(x, η, t) to obtain the vertical velocity
on the free surface. Then, the value of Φz(x, η, t) is substituted into the evolution equation
to obtain the time derivative of free surface elevation ηt(x, t) and time derivative of surface
potential Φs

t (x, t). Then, based on the 4th order Runge-Kutta equation, the free surface
elevation η(x, t + ∆t) and surface potential ΦS(x, t + ∆t) at the next time step will be
obtained and utilized to calculate the value of modal amplitudes for iteration.

For calculating the temporal evolution of the resonant wave amplitude, the periodic
rippled bottoms are set over a total length of the computation domain due to the periodic
boundary in the HOS model. The input data for HOS simulation is this study includes the
spatial points distribution and time step and evolution time information, as well as the
initial free surface profile and rippled bottoms profile, which are nondimensional.

3. Numerical Simulation of Temporal Evolution for Resonant Wave Amplitude above
Infinite Patch by HOS and its Comparison with the Theory

In this section, the temporal evolution of resonant wave amplitude for all six triad
resonant combinations will be numerically simulated and compared with nonlinear theoret-
ical solutions based on multiple-scale expansion perturbation analysis, which are referred
to in Appendices A and B.

For the ripples’ configuration during the temporal evolution simulation in HOS,
the harmonic rippled bottoms are fulfilled in the whole computational domain, which
could capture the resonance-related wave evolution above the infinite extended rippled
patch due to the periodic conditions on both sides of the computational domain in this
numerical model.

For HOS configuration with a general triad combination km − kn = kb and ωm = ωn,
the initial free-surface disturbance wave component kn is given in prior with amplitude
an. There was no other free-surface wave component km that existed initially. Then, the
amplitude temporal variation Am(t) will be extracted from the HOS simulation results.

Correspondingly, for the theoretical solution, the corresponding initial conditions for
Am(t) at t = 0 are as below,

Am(0) = 0 (15)∣∣∣∣dAm(t)
dt

∣∣∣∣
t=0

= An(t)P = anP (16)

The solution of Equation (A1) (without spatial derivative and variables) of Am(t) with
its boundary conditions (15) and (16) is,

Am(t) =
anP
γ

sin γt (17)

The other wave component kn, which is given in prior with initial amplitude an, its
initial conditions at t = 0 is as below.

An(0) = an (18)∣∣∣∣dAn(t)
dt

∣∣∣∣
t=0

= Am(t)Q = 0 (19)

The solution of Equation (A2) (without spatial derivative and variables) of An(t) with
its initial conditions (18) and (19) is,

An(t) = an cos γt (20)
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The detailed comparisons between HOS and theoretical solutions are presented below
for all six triad resonant combinations. It should be noted that the total length of the compu-
tational domain in HOS is equal to the total length of rippled patch, so the bottom boundary
condition is fully periodic as infinite patch during the simulation process. Moreover, due
to the numerical simulation being intended to capture the triad resonant interaction as
the second order, the nonlinear order M in HOS is set as two, correspondingly. The wave
number and flow velocity values applied afterwards are selected from the parameter’s
domain of all six triad resonance combinations (as referred to in [2] Figure 3).

3.1. Triad Resonant Combination (1) k3 − k1 = kb

For the selected condition from the triad resonant combination (1) for temporal evolu-
tion validation, the triad resonant condition is k3 − k1 = kb, and the wave component k3 is
given in prior as the initial free surface disturbance wave component. The water depth h
and flow velocity U are 0.192 m and 0.2586 m/s, respectively. The corresponding Froude
number is 0.1884.

The resonant wave component k3 has the wavelength L3 = 0.9975 m and initial wave
amplitude A3(0) = 7.9379× 10−5 with steepness k3 A3 = 0.0005. The other free-surface
wave component, k1, induced by resonant interaction, has the wavelength L1 = 0.3160 m.
The wave period of the resonant free-surface wave component is 0.7125 s. The bottom
wavelength Lb is 0.24 m and amplitude Ab is 0.005 m with the corresponding bottom
steepness kb Ab of 0.1309.

For the satisfaction of the periodic boundary in HOS, the total length of the computa-
tion domain is set as L = 31.92 m, which is 133 integral times that of the bottom wavelength
Lb, 101 integral times that of L1, and 32 integral times that of L3.

As for the configuration of the numerical model, there are 8192 (213) spatial points in
this computational domain, and the distance between neighboring spatial sampling points
is ∆x = 0.0039 m. The time step ∆t is set as 0.0104 s. The total time steps during the whole
computation process is 25,600 (total calculation time as 265.01 s).

Figure 1 is the comparison of the amplitude of free-surface resonant wave compo-
nents k3 (initially given) and k1 (generated by resonance) between HOS simulation and
multiple-scale expansion perturbation analysis. The HOS results present the harmonic
temporal variation pattern (temporally stable), which compares well with the multiple-scale
expansion (nonlinear) solutions.
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Figure 1. Resonant wave components’ amplitude temporal evolution comparison for triad
combination (1); (a) k3 wave component dimensionless amplitude A3(t)/a3 temporal evolution
comparison, Multiple-scale expansion solution (Blue line), HOS simulations (Red dash line); (b) k1

wave component dimensionless amplitude A1(t)/a3 temporal evolution comparison, Multiple-scale
expansion solution (Blue line), HOS simulations (Red dash line); T is the wave period, a3 is the initial
wave amplitude of k3 wave component.
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However, the traditional temporal instability analysis indicates that this triad resonant
combination is temporally unstable (with exponential growth), which is inconsistent with
the HOS simulation and multiple-scale expansion solutions.

3.2. Triad Resonant Combination (2) k3 − k2 = kb

For the selected condition from triad resonant combination (2) for temporal evolution
validation, the triad resonant condition is k3− k2 = kb, and the wave component k3 is given
in prior as the initial free surface disturbance wave component. The water depth h and flow
velocity U are 0.192 m and 0.4754 m/s, respectively. The corresponding Froude number
is 0.3464.

The resonant wave component k3 has the wavelength L3 = 2.9826 m and initial wave
amplitude A3(0) = 2.3019× 10−4 m with steepness k3 A3 = 0.0005. The other free-surface
wave component k2 induced by resonant interaction has the wavelength L2 = 0.2617 m.
The wave period of the resonant free-surface wave component is 1.5980 s. The bottom
wavelength Lb is 0.24 m and amplitude Ab is 0.005 m with the corresponding bottom
steepness kb Ab of 0.1309.

For the satisfaction of the periodic boundary in HOS, the total length of the computa-
tion domain is set as L = 54.96 m, which is 229 integral times that of the bottom wavelength
Lb, 210 integral times of L2, and 19 integral times of L3.

As for the configuration of the numerical model, there are 8192 (213) spatial points in
this computational domain, and the distance between neighboring spatial sampling points
is ∆x = 0.0067 m. The time step ∆t is set as 0.0095 s. The total time steps during the whole
computation process is 25,600 (total calculation time as 243.59 s).

Figure 2 is the comparison of the amplitude of free-surface resonant wave components
k3 (initially given) and k2 (generated by resonance) between HOS simulation and multiple-
scale expansion perturbation analysis. Similar to the triad combination (1), the HOS results
of triad combination (2) present the harmonic temporal variation pattern (temporally
stable), which also compares well with the multiple-scale expansion (nonlinear) solutions.
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On the contrary, the traditional temporal instability analysis indicates that the triad
resonant combination (2) is temporally unstable (with exponential growth), which is still
inconsistent with the HOS simulation and multiple-scale expansion solutions.

3.3. Triad Resonant Combination (3) k4 − k3 = kb

For the selected condition from triad resonant combination (3) for temporal evolution
validation, the triad resonant condition is k4− k3 = kb, and the wave component k3 is given
in prior as the initial free surface disturbance wave component. The water depth h and flow
velocity U are 0.192 m and 0.9634 m/s, respectively. The corresponding Froude number
is 0.7020.

The resonant wave component k3 has the wavelength L3 = 0.9714 m and initial wave
amplitude A3(0) = 7.7298× 10−5 m with steepness k3 A3 = 0.0005. The other free-surface
wave component, k4, induced by resonant interaction has the wavelength L4 = 0.1924 m.
The wave period of the resonant free-surface wave component is 0.4634 s. The bottom
wavelength Lb is 0.24 m and amplitude Ab is 0.005 m with the corresponding bottom
steepness kb Ab of 0.1309.

For the satisfaction of the periodic boundary in HOS, the total length of the computa-
tion domain is set as L = 143.76 m, which is 599 integral times that of the bottom wavelength
Lb, 148 integral times that of L3, and 747 integral times that of L4.

As for the configuration of the numerical model, there are 16384 (214) spatial points in
this computational domain, and the distance between neighboring spatial sampling points
is ∆x = 0.0088 m. The time step ∆t is set as 0.0193 s. The total time steps during the whole
computation process is 5120 (total calculation time as 98.73 s).

Figure 3 is the comparison of the amplitude of free-surface resonant wave components
k3 (initially given) and k4 (generated by resonance) between HOS simulation and the
multiple-scale expansion perturbation analysis. Different from the triad combinations
(1) and (2), the HOS results of the triad combination (3) present an exponential temporal
variation pattern (temporally unstable), which also compares well with the multiple-scale
expansion (nonlinear) solutions.
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This triad resonant combination is the situation discussed by Yih [11]. The traditional
temporal instability analysis indicates that the triad resonant combination (3) is tempo-
rally unstable (also with exponential growth), which coincides with HOS simulation and
multiple-scale expansion solutions.

3.4. Triad Resonant Combination (4) k4 − k2 = kb

For the selected condition from triad resonant combination (4) for temporal evolution
validation, the triad resonant condition is k4− k2 = kb, and the wave component k2 is given
in prior as the initial free surface disturbance wave component. The water depth h and flow
velocity U are 0.192 m and 0.8311 m/s, respectively. The corresponding Froude number
is 0.6056.

The resonant wave component k2 has the wavelength L2 = 0.7984 m and initial wave
amplitude A2(0) = 6.3532× 10−5 m with steepness k2 A2 = 0.0005. The other free-surface
wave component, k4, induced by resonant interaction has the wavelength L4 = 0.3432 m.
The wave period of the resonant free-surface wave component is 3.4380 s. The bottom
wavelength Lb is 0.24 m and amplitude Ab is 0.005 m with the corresponding bottom
steepness kb Ab of 0.1309.

For the satisfaction of the periodic boundary in HOS, the total length of the computa-
tion domain is set as L = 39.12 m, which is 163 integral times that of the bottom wavelength
Lb, 49 integral times that of L2, and 114 integral times that of L4.

As for the configuration of the numerical model, there are 8192 (213) spatial points in
this computational domain, and the distance between neighboring spatial sampling points
is ∆x = 0.0048 m. The time step ∆t is set as 0.0083 s. The total time steps during the whole
computation process is 25,600 (total calculation time as 212.93 s).

Figure 4 is the comparison of the amplitude of free-surface resonant wave components
k2 (initially given) and k4 (generated by resonance) between HOS simulation and multiple-
scale expansion perturbation analysis. The HOS results of triad combination (4) present
the exponential temporal variation pattern (temporally unstable), which also compares
well with the multiple-scale expansion (nonlinear) solutions. It should be noted that
although the temporal variation pattern presents linear growth in Figure 4b, it also presents
exponential growth on the longer time scale.
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The traditional temporal instability analysis indicates that the triad resonant combina-
tion (4) is temporally unstable (also with exponential growth), which coincides with the
HOS simulation and multiple-scale expansion solutions.

3.5. Triad Resonant Combination (5) k4 − k1 = kb

For the selected condition from triad resonant combination (5) for temporal evolution
validation, the triad resonant condition is k4− k1 = kb, and the wave component k1 is given
in prior as the initial free surface disturbance wave component. The water depth h and flow
velocity U are 0.192 m and 0.7695 m/s, respectively. The corresponding Froude number
is 0.5607.

The resonant wave component k1 has the wavelength L1 = 1.3900 m and initial wave
amplitude A1(0) = 1.1061× 10−4 m with steepness k1 A1 = 0.0005. The other free-surface
wave component, k4, induced by resonant interaction has the wavelength L4 = 0.2901 m.
The wave period of the resonant free-surface wave component is 3.0003 s. The bottom
wavelength Lb is 0.24 m and amplitude Ab is 0.005 m with the corresponding bottom
steepness kb Ab of 0.1309.

For the satisfaction of the periodic boundary in HOS, the total length of the computa-
tion domain is set as L = 33.36 m, which is 139 integral times that of the bottom wavelength
Lb, 24 integral times that of L1, and 115 integral times that of L4.

As for the configuration of the numerical model, there are 4096 (212) spatial points in
this computational domain, and the distance between neighboring spatial sampling points
is ∆x =0.0081 m. The time step ∆t is set as 0.0154 s. The total time steps during the whole
computation process is 51,200 (total calculation time as 788.58 s).

Figure 5 is the comparison of the amplitude of free-surface resonant wave components
k1 (initially given) and k4 (generated by resonance) between HOS simulation and multiple-
scale expansion perturbation analysis. The HOS results of triad combination (5) present the
exponential temporal variation pattern (temporally unstable), which also compares well
with the multiple-scale expansion (nonlinear) solutions.
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On the contrary, the traditional temporal instability analysis indicates that the triad
resonant combination (5) is temporally stable (with a harmonic temporal variation pattern),
which is inconsistent with HOS simulation and multiple-scale expansion solutions.

3.6. Triad Resonant Combination (6) k1 − k2 = kb

For the selected condition from triad resonant combination (6) for temporal evolution
validation, the triad resonant condition is k1− k2 = kb, and the wave component k2 is given
in prior as the initial free surface disturbance wave component. The water depth h and flow
velocity U are 0.192 m and 0.4878 m/s, respectively. The corresponding Froude number
is 0.3554.

The resonant wave component k2 has the wavelength L2 = 0.2133 m and initial wave
amplitude A2(0) = 1.6976× 10−5 m with steepness k2 A2 = 0.0005. The other free-surface
wave component, k1, induced by resonant interaction has the wavelength L1 = 1.9200 m.
The wave period of the resonant free-surface wave component is 2.3871 s. The bottom
wavelength Lb is 0.24 m and amplitude Ab is 0.005 m with the corresponding bottom
steepness kb Ab of 0.1309.

For the satisfaction of the periodic boundary in HOS, the total length of the computa-
tion domain is set as L = 145.92 m, which is 608 integral times that of the bottom wavelength
Lb, 76 integral times that of L1, and 684 integral times that of L2.

As for the configuration of the numerical model, there are 8192 (213) spatial points in
this computational domain, and the distance between neighboring spatial sampling points
is ∆x =0.0178 m. The time step ∆t is set as 0.0049 s. The total time steps during the whole
computation process is 30,720 (total calculation time as 149.95 s).

Figure 6 is the comparison of the amplitude of free-surface resonant wave components
k2 (initially given) and k1 (generated by resonance) between HOS simulation and multiple-
scale expansion perturbation analysis. The HOS results of triad combination (6) present the
harmonic temporal variation pattern (temporally stable), which also compares well with
the multiple-scale expansion (nonlinear) solutions.
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The traditional temporal instability analysis indicates that the triad resonant combination (4)
is temporally stable (with harmonic temporal variation pattern), which coincides with the
HOS simulation and multiple-scale expansion solutions.

It should be noted that this triad resonant combination (6) corresponds to the genera-
tion of upstream-propagating waves in flume experiments. Although this triad combination
is temporally stable, the intensive free surface waves could still be stimulated due to the
combined condition of spatial exponential growth behavior and the critical flow condition
of wave energy stagnation.

3.7. Overall Comparison between HOS Results and Theoretical Analysis

For better comparison, the resonant condition, phase and energy propagating direc-
tions, and temporal evolution behaviors (calculated by HOS simulation, multiple-scale
expansion, and traditional temporal instability analysis) for all six triad resonant combina-
tions have been summarized and organized in Table 1.

Table 1. Summarization and comparisons of temporal evolution behavior for six triad resonant
combinations among HOS simulation results (this study), multiple-scale expansion analysis [2]
(Appendix A), and traditional temporal instability analysis [14] (Appendix B).

Triad Resonant
Combination

Phase
Propagating

Direction

Energy
Propagating

Direction

HOS Simulation
Results

Multiple-Scale
Expansion
Analysis

Temporal
Instability
Analysis

No.1 k3 − k1 = kb
k3: Downstream

k1: Upstream
k3: Downstream

k1: Upstream Stable Stable Unstable

No.2 k3 − k2 = kb
k3: Downstream

k2: Upstream
k3: Downstream
k2: Downstream Stable Stable Unstable

No.3 k4 − k3 = kb
k4: Downstream
k3: Downstream

k4: Downstream
k3: Downstream Unstable Unstable Unstable

No.4 k4 − k2 = kb
k4: Downstream

k2: Upstream
k4: Downstream
k2: Downstream Unstable Unstable Unstable

No.5 k4 − k1 = kb
k4: Downstream

k1: Upstream
k4: Downstream

k1: Upstream Unstable Unstable Stable

No.6 k1 − k2 = kb
k1: Upstream
k2: Upstream

k1: Upstream
k2: Downstream Stable Stable Stable

It reveals that the HOS simulation results for temporal evolution behavior are al-
ways consistent with the theoretical analysis by multiple-scale expansion for all six triad
combinations, which could be confirmed on the basis of such cross-validation. How-
ever, there are contradictions with the results with traditional temporal instability anal-
ysis for triad combinations (1), (2), and (5). If the study of triad resonance behaviors
involves these three combinations, one should be cautious in the analysis of their temporal
evolution behaviors.

4. Discussion and Conclusions

In this study, the High-Order Spectral (HOS) method is applied to simulate the tem-
poral evolution behavior of triad resonant wave components’ amplitude for steady free-
surface flow over rippled bottoms. The numerical calculation results compare well with
the multiple-scale expansion perturbation solutions as the cross-validation.

Both the numerical and theoretical (multiple-scale expansion) work reveals the consis-
tent temporal evolution behaviors. In addition, this work confirms the temporal evolution
behavior for all six triad resonant combinations in which triad resonant combinations (3),
(4), and (5) are unstable with exponential temporal growth for both free-surface resonant
wave components involved, and triad resonant combinations (1), (2), and (6) are stable with
harmonic temporal growth and limited amplitude values. Moreover, it also reveals that all
three unstable triad resonant combinations involve the free-surface wave component k4,
which is not easy to be observed and needs further investigation.
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It should be noted that the numerical and theoretical work in this paper is still limited
to the second order, which corresponds to the triad resonant interaction. In future work,
the higher order effects for the resonant interaction involved need to be studied, and the
further theoretical mechanisms for the differences between tradition instability analysis
and multiple-scale expansion perturbation analysis will be discussed in detail with more
mathematical methods [28–31]. Moreover, the experimental observation of wave compo-
nent k4 in the ambient current and its connection with the temporal instability behavior
need to be identified.
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Appendix A. Theoretical Solution of Triad Resonance by Multiple-Scale
Expansion Analysis

The amplitudes of resonant wave components could be solved theoretically by multiple-
scale expansion perturbation analysis. The decoupled equations of resonant wave ampli-
tude Am(x, t) and An(x, t) are obtained [2] and restated as below.

∂2 Am(x, t)
∂t2 +

(
Cmg + Cng

)∂2 Am(x, t)
∂x∂t

+ CmgCng
∂2 Am(x, t)

∂x2 + PQAm(x, t) = 0 (A1)

∂2 An(x, t)
∂t2 +

(
Cmg + Cng

)∂2 An(x, t)
∂x∂t

+ CmgCng
∂2 An(x, t)

∂x2 + PQAn(x, t) = 0 (A2)

in which Cmg and Cng are the group velocities of resonant wave components. The parame-
ters P and Q are,

P =

[
gbkmkn

4(ω− knU) cosh kmh cosh knh
+

Ubkb
2g(gsinhkbh−U2kb cosh kbh)

M
]

(A3)

Q =

[
gbkmkn

4(ω− kmU) cosh kmh cosh knh
+

Ubkb
2g(gsinhkbh−U2kb cosh kbh)

N
]

(A4)

Thus, the parameters M and N in the expressions of P and Q are given as follows,

M =

 gkn
ω−(kn+kb)U

ω−knU
(
U2kbtanhknh− g

)
+ 1

2

[
Ug2k2

n
ω−knU

1
cosh2 knh

+ kb
(
U4k2

b − g2)]
 (A5)

N =

−gkm
ω−(km−kb)U

ω−kmU
(
U2kbtanhkmh + g

)
+ 1

2

[
Ug2k2

m
ω−kmU

1
cosh2 kmh

− kb
(
U4k2

b − g2)]
 (A6)

For the temporal evolution solutions of resonant wave amplitude, the equations could
be obtained by ignoring the spatial derivative and variables, and could be solved by initial
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conditions. The temporal instability behavior could be revealed by parameter PQ [2], in
which the resonant wave is temporally unstable if PQ < 0 and is stable if PQ ≥ 0.

Appendix B. Traditional Temporal Instability Analysis of Triad Resonant Modes

In previous research on steady flow over rippled bottoms, the temporal variation
characteristics of free-surface wave components were investigated utilizing instability
analysis [14]. Based on the dimensionless boundary value problem (BVP), the steady
and unsteady disturbance terms of the velocity potential and free surface elevation are
defined separately. After obtaining the BVP for the disturbance terms of velocity po-
tential, the dimensionless frequency σ (σ = ωh/U) is expanded in a power series as
σ = λ0 + aλ1 + a2λ2

2 + · · · . Although the leading order term λ0 in this series corresponds
to the frequency of disturbance wave without triad resonant interaction, whether the next-
order term λ1 is real or imaginary will determine the instability. The expression of λ1

2

given are presented as below [14].

λ1
2 =

mm′b2GH
16(λ0 −m)(λ0 −m′)

(A7)

in which m is the dimensionless wavenumber as m = kh, and is the amplitude of stationary
waves given as below,

b =
amb

mb cosh mb − F−2sinhmb
(A8)

in which, mb and a are dimensionless wavenumber and amplitude of rippled bottoms
separately, and F is the Froude number.

The parameters G and H are as follows,

G = (λ0 −m)2tanhm′ + F−2(2λ0 − 2m−m′
)

(A9)

H = (λ0 −m)2tanhm′ + F−2(2λ0 − 2m−m′
)

(A10)

Based on expression for λ1
2, if the value of λ1

2 is negative (or positive), the wave
components involved in triad resonance for flow over rippled bottoms are unstable (or
stable). Moreover, the situation for the value of λ0 defined as negative under different
definitions [14] has also been taken into consideration and calculated.
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