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Abstract: Groundwater overexploitation and loading of buildings have been the main factors trigger-
ing land subsidence along the west coast of Bohai Bay, China, since the 2000s. Uneven subsidence
has been causing damage to buildings and civil facilities, loss of elevation, increasing the risk of
flood and seawater intrusion, and threatening the safety of people’s lives and property. This paper
analyzed the spatial and temporal features of land subsidence along the coastal area from 2003
to 2010 and from 2015 to 2020, respectively. The relations between the initiating factors and land
subsidence were explored. Then, the simulation model of land subsidence was constructed through
a deep learning method. During the process, multiple data were collected, including land satellite
(Landsat), environmental satellite advanced synthetic aperture radar (ENVISAT ASAR) and Sentinel-1
images, leveling data, lithological data, and groundwater level data. The area occupied by buildings
and vertical displacement were extracted by using supervised classification, small baseline subset
(SBAS), and persistent scatterer interferometry (PSI) technologies. The gated recurrent unit (GRU)
neural network was adopted to simulate the evolution of land subsidence. Results showed that
the maximum annual vertical displacement rate decreased from −94 mm/yr during 2003–2010 to
−87 mm/yr during 2015–2020. The correlation efficiency between the groundwater level of the third
confined aquifer group and land subsidence was larger than the area occupied by buildings and
the compressible layer thickness with subsidence. The constructed GRU neural network model can
simulate subsidence from September 2019 to December 2019, with the overall RMSE and MAE being
3.16 mm and 2.19 mm, respectively. This work can facilitate an understanding of the evolution and
prevention of land subsidence along the west coast of Bohai Bay, which will provide information for
policy decisions and flood-fighting plans of the worldwide coastal cities.

Keywords: land subsidence; urbanization; groundwater overexploitation; GRU; InSAR

1. Introduction

More than 200 land subsidence areas have been reported caused by excessive exploita-
tion of groundwater, most of which belong to alluvial basins or coastal plains [1]. In coastal
areas, land subsidence makes them more vulnerable to floods and sea level rise, which
may cause the inundation of deltas, enhancing coastal erosion and seawater intrusion [2–4].
Spatially dense and continuous observation of land subsidence improved understanding
of the driving mechanisms, and reliable predictions of future subsidence are needed for
policy decisions and flood-resilience plans for coastal megacities around the world.
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Monitoring land subsidence is the base for studying land subsidence. Compared with
conventional technologies, including leveling, GNSS, and extensometer, Interferometric
Synthetic Aperture Radar (InSAR) technology can be used to obtain large-scale land sub-
sidence with a relatively high spatial resolution with millimetric accuracy. The InSAR
technique uses microwave radar signals to illuminate the ground surface and then records
the amplitude and phase of the signals backscattered from the surface. Comparing the
change in the phase enables the displacement of the ground surface toward or away from
the sensor to be determined. The precision of the phase observations is often expressed in
terms of the coherence between the two SAR images, with values close to one indicating
high-quality measurements. The radar wavelength of the SAR instrument, atmospheric
conditions during each image acquisition, and land cover can affect the interferometric
coherence. Loss of coherence can limit the coastal areas for which conventional InSAR can
provide useful data. Multitemporal InSAR approaches have been developed to overcome
the limitations of loss of coherence. The commonly used InSAR time series techniques
include persistent scatterer interferometry (PSI) and the small baseline subset (SBAS)
method, which can minimize traditional InSAR limitations, including spatial and temporal
decorrelation and atmospheric effect [5,6]. Interferometric Point Target Analysis (IPTA)
was carried out on 59 ERS SAR data from 1992 to 2000 to investigate the displacement
in Venice coastland with accuracy on the order of 1–2 mm/yr [7]. The PSI method was
used to monitor the land subsidence in Jakarta, Indonesia, with ALOS PALSAR images
from 2007 to 2010. The two subsidence bowls in Jakarta had subsided up to 865 mm. The
standard deviation between the derived subsidence rate and the GPS-measured value was
9 mm/yr [8]. PSI technology was adopted for dealing with the Sentinel-1 images to get land
subsidence in Tianjin from 2015 to 2018. More than 95% of the persistent scatterer showed
the absolute difference between the derived displacement and the leveling data within
5 mm [9]. SBAS technology was applied to dealing with 25 Sentinel-1 images from 2015 to
2016 to investigate subsidence in the Binhai New Area, Tianjing. The vertical displacement
rate ranged from −70 to 10 mm/yr [10]. However, considering coastal land subsidence is a
complex long-term developing process, it is difficult to find the evolution mechanism on
the basis of short-term monitoring.

Land subsidence is complex in coastal areas due to the sediment’s natural consoli-
dation, groundwater pumping, and build-up areas’ load. A striking linear relationship
between compaction rate and peat thickness on the basis of ~250 boreholes found in Missis-
sippi Delta [11]. It was found that subsidence is mainly caused by the primary compaction
of the Holocene strata in Po Delta [12]. Land subsidence was concentric around locations of
intense groundwater withdrawal in Houston–Galveston, Gulf Coast region of the United
States [13]. Subsidence with a value up to 140 mm/yr due to peat compaction and oxidation
was quantified in built-up areas in the Rhine-Meuse delta in the Netherlands on the basis
of borehole data and dry bulk density, organic matter, and CO2 respiration [14]. Previous
studies showed that the main causes of land subsidence in the Binhai New Area are in-
tensive groundwater extraction, the natural consolidation of cohesive soil, and building
load [15]. The research found that the land subsidence rate of Tianjin coastal towns varied
with the type of land use, and the subsidence of industrial areas was more serious due
to the overexploitation of groundwater [16]. The in situ test indicated that with the same
groundwater exploitation, the land subsidence was more serious where the clay thickness
was thicker [17]. The extensometer data from 2011 to 2014 was used and found that land
subsidence at 33 m depth accounted for ~70% of total land subsidence, which indicated
that urban development played the important contributor to land subsidence in Tianjin’s
coastal region [18].

Modeling land subsidence is essential for geo-disaster prevention, generally, including
physics-based models and data-based models. Physics-based model is based on the physical
process of land subsidence, which requires many input data such as hydrogeological
and geotechnical parameters, initial conditions, and boundary conditions. Physics-based
subsidence model generally is fit for small-scale areas. The data-based model includes an
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autoregressive model (AR), gray model (GM), artificial neural network model, and deep
learning model. AR model and GM model are based on historical subsidence data, which
makes the prediction accuracy not high and easily overfitting. Artificial neural network
models such as the backpropagation (BP) model, coupled genetic algorithm (GA) and BP
model, and eXtreme gradient boosting (XGBoost) model consider the influencing factors
of land subsidence, but the convergence speed is slow [19,20]. Long short-term memory
(LSTM) and gated recurrent unit (GRU) belong to a recurrent neural network, which can
learn the characteristics of time series data, share parameters during the time domain using
a cyclic structure (memory unit), record the context of the sequence and process long-term
data with nonlinear characteristics [21,22]. A geographically weighted LSTM (GW-LSTM)
model was proposed for effectively simulating the subsidence in the Chaobai River alluvial
fan in the northeast Beijing Plain area, China [23]. The GRU model uses an update gate to
replace the input gate and output gate used in the LSTM model, which can improve the
network training efficiency, require fewer parameters, and low requirement for computing
resources. GRU models have been widely used in behavior prediction, machine translation,
and text classification [24]. In the field of land subsidence, the GRU model was used to
predict the deformation induced by shield tunneling [25]. The result is better than the
outputs from the BP model. However, few studies have applied the GRU model to the
subsidence caused by groundwater exploitation.

The Binhai New Area in Tianjin Municipality is located on the west bank of Bohai
Bay, which has been one of the most rapidly developing areas in China since 2006, with
the issued development and opening-up policy. Since the 1950s, groundwater has been
intensively exploited to meet the demands of rapid economic development and population
growth, which produce severe subsidence problems in the Binhai New Area [26]. Over
the past decades, many scholars have studied the evolution, factors of land subsidence,
and land subsidence modeling. The existing studies aimed at a single factor affecting land
subsidence in coastal areas, and the constructed data-based models do not consider the
comprehensive interaction of multiple variables.

The objectives of this paper are to explore the evolution characteristics of land subsi-
dence from 2003 to 2020 and to provide an effective method to simulate land subsidence in
the Binhai New Area on the west coast of Bohai Bay, China. The relations between land
subsidence and three main factors, including groundwater level changes in the aquifer
system, building load, and geological features, were analyzed. Then, the GRU model was
constructed to simulate land subsidence with the three factors as input data. The results
can supply scientific support for decision-makers to establish hazard mitigation measures
and groundwater resource management in the Binhai New Area and supply technologies
for other coastal cities that are currently experiencing land subsidence problems.

2. Study Area

The study area is the Binhai New Area, one of the important harbors for northern
China, located on the west coast of Bohai Bay, Tianjin municipality. It consists of Hangu
District, Tanggu District, and Dagang District. The total area is 2270 km2, and the length of
the western coastline is about 150 km (Figure 1). This region belongs to a warm temperate
monsoon continental climate with an annual average temperature of 13 ◦C and precipitation
of 566 mm from 1956 to 2020. The terrain is generally flat, with an elevation of 2.6–4.5 m.
Rivers, canals, and lakes are widely distributed. The Hai River, Jiyun Canal, Chaobai River,
and Duliujian River merge into the sea in this area.

The Quaternary sediments, with a thickness ranging from 280 to 450 m, are composed
of four main aquifer units (Figure 2). From west to east, the sediments become finer, and
permeability gradually decreases. The thickness of low permeability layers increases, and
groundwater quality gradually becomes saline. Groundwater in the first aquifer group
is mainly unexploited saltwater. The underlying aquifer groups (from the second to the
fourth) are deep confined groundwater systems and are composed of freshwater. The most
exploited groundwater is from the third confined aquifer group [27,28].
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Figure 1. Distribution of the study area. The yellow box indicates the boundary of the ENVISAT 
ASAR images (track 175, frame 2817), and the green box indicates the boundary of the Sentinel-1 
images (path 149, frame 463) used to map land subsidence. The positions of the leveling benchmarks 
and wells monitoring station are provided. The black dashed line shows the hydrogeological cross-
section. The background is a Sentinel-2 image acquired on 16 September 2020. 
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Figure 1. Distribution of the study area. The yellow box indicates the boundary of the ENVISAT
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and wells monitoring station are provided. The black dashed line shows the hydrogeological cross-
section. The background is a Sentinel-2 image acquired on 16 September 2020.
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Figure 2. Hydrogeological cross-section in the study area. The black dashed line represents the
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Water consumption increased with urbanization. Groundwater has been pumped
since the beginning of the previous century. In the 1980s, the annual pumping volume was
1.4× 108 m3. After the operation of the water diversion project from Luan River to Tianjin in
1983, the pressure from industrial and residential water demands was partially alleviated.
The annual pumping of groundwater decreased to 0.6 × 108 m3 in the early 2000s. In
2002, the groundwater pumping volume of the second, third, and fourth confined aquifer
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groups in the Binhai New Area was 2.1 × 107 m3/a, 3.5 × 107 m3/a, and 1.7 × 107 m3/a,
respectively, the pumping volume of the third confined aquifer group was more.

Land subsidence has been observed in Tanggu District in the center part of the study
area since 1952 [27]. Due to the increase in groundwater exploitation, the displacement rate
obtained by leveling reached −30~−50 mm/yr from 1960 to 1966. From 1967 to 1985, the
displacement rate in Tanggu District increased largely, with a range of −80 to −150 mm/yr.
After 1986, Tianjin municipality carried out land subsidence controlling implements, which
diverted Luanhe River water to reduce groundwater exploitation. The groundwater level
in the second confined aquifer group had recovered ~24 m from 1986 to 1996, with the land
subsidence rate correspondingly decreased [30,31]. From 2005 to 2013, the displacement
rate in Tanggu District ranged from −19 to −35 mm/yr, among which the land subsidence
at the urban construction area and sea reclamation area was large. From 2015 to 2016, the
land subsidence due to urban construction was small, and there was almost no subsidence
in Tanggu District [10].

The maximum subsidence in Hangu District from 1957 to 2006 was 3.11 m, and the
average subsidence in 2006 was 27 mm. From 2015 to 2016, the displacement rate in Hangu
District reached −70 mm/yr, and the subsidence bowl was located in Yang jiapo town. The
maximum subsidence in Dagang District from 1959 to 2006 was 1.45 m, and the average
subsidence in 2006 was 33 mm. Zhongtang town had a large subsidence, with a maximum
subsidence of 66 mm [32].

3. Materials and Methods
3.1. Materials

In order to explore the evolution characteristics of land subsidence, find out the
relations between land subsidence and three main factors, to provide an effective method
to simulate land subsidence, the data used in this article mainly include remote sensing
data and thematic data. Among them, remote sensing data includes radar data and optical
remote sensing data. The thematic data mainly includes leveling data, the contour lines
of groundwater level depth, the third confined groundwater level at three long-term
observation wells, and the schematic description of two observation wells lithologies. The
flowchart of the processing is shown in Figure 3.
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3.2. Dataset
3.2.1. Remote Sensing Data

There were 27 Stripmap-mode descending ENVISAT ASAR images with a revisit time
of 35 days from 2003 to 2010 and 66 descending TOPS-mode Sentinel-1 images with a revisit
time of 12 days from 2015 to 2020 that were collected. The two types of SAR images were
obtained with C-band sensors. These images were processed to obtain the distribution of
land subsidence by using InSAR technology.

Optical images, including Landsat 5 and Landsat 8 images, were used to extract the
area occupied by buildings on the basis of the Google Earth Engine (GEE). The study area
was covered by two Landsat scenes. A total of 452 images from 2003 to 2010 and 2015 to
2020 were selected.

3.2.2. Thematic Data

Five leveling benchmarks provided by authorities were obtained from precision geo-
metric leveling to validate the accuracy of the InSAR-based land subsidence. The distribu-
tion is given in Figure 1. There were two leveling benchmarks from 2003 to 2005 and three
benchmarks from 2017 to 2019.

The groundwater level depth recorded the distance from groundwater to the surface.
The contour lines of groundwater level depth below the land surface of the second and
third confined aquifer groups in 2013, 2016, and 2019 were collected to understand the
relationship between land subsidence and groundwater level. The monthly groundwater
level of the third confined aquifer group was collected at three groundwater monitoring
wells from January 2018 to December 2019, which were used for simulating the subsidence.

Schematic descriptions of two groundwater monitoring wells lithologies were collected
to analyze the relationship between the compressible layers thickness and land subsidence.

3.3. Methodology
3.3.1. Land Subsidence from 2003 to 2010 with SBAS Technology

Considering that the ASAR images number from 2003 to 2010 were limited, the
time interval of images was long, which may cause spatiotemporal incoherence. SBAS
technology was used to deal with the ASAR images. SBAS methodology was proposed by
Berardino et al. [6], which can guarantee high land subsidence monitoring accuracy with
limited images. This method can support multimaster images and utilize interferometric
pairs with small spatial and temporal baselines. The main processing steps were described
as follows.

First, interferograms were generated from single-look complex images. Among all the
possible interferograms formed by pairs of images, 60 interferograms from SAR images
were selected for further processing by setting thresholds for spatial and temporal baselines
with values of 400 m and 400 days, respectively. The external Shuttle Radar Topography
Mission digital elevation model with 30 m resolution was used to remove the topographic
component of the interferometric phase and geocode the interferograms.

Second, after eliminating the noise phase using an adaptive filter, the minimum cost
flow method was used for phase unwrapping, with a coherence threshold of 0.4. The reason
for setting the coherence threshold to 0.4 is that the time interval of Envisat ASAR images is
too long. After many experiments, the results obtained by setting the coherence threshold
to 0.4 have been verified to be good. The next step was estimating the land subsidence rate
by stacking multiple unwrapped differential interferograms.

Third, high-coherence candidate points were generated from all high-coherence pixels,
and atmospheric effects were removed with a spatiotemporal filtering method. After
removing the elevation, atmospheric, and noise errors from the interference phase, the
deformation phase results in the line of sight direction were obtained.
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3.3.2. Land Subsidence from 2015 to 2020 with PSI Technology

Considering PSI technology can overcome the problems of traditional InSAR systems
related to temporal and geometrical decorrelation and minimize atmospheric and noise
phases, PSI technology was used to process 66 Sentinel-1 images from 2015 to 2020 [33,34].

First, the single master image (acquired on 2 March 2017) was chosen from SAR images
based on the short spatial baseline, temporal baseline, and Doppler centroid frequency
difference. Then, a series of interferograms was constructed, and persistent scatterers (PSs)
with temporal coherence and phase stability were obtained by using the model coherence
and amplitude standard deviation threshold.

The differential interferometric phase of each PS in the interferogram is the accumu-
lation of five components, including the deformation phase along the line of sight, the
topographic phase, the phase component due to atmospheric delay, the orbital error phase,
and the phase noise. The orbital error phase was mitigated by refining the satellite baselines
with the least-squares approach based on unwrapped phases. The terrain heights were
extracted using Shuttle Radar Topography Mission digital elevation model with 30 m
resolution. The phase component associated with atmospheric delays and the phase noise
were removed based on temporal frequency characteristics [7,35]. Finally, the line-of-sight
deformation phase was obtained.

3.3.3. Building Information Using the GEE

Building load can affect land subsidence to some extent in the alluvial plain [19],
which effect may be obvious in the coastal area. The GEE is a cloud-based computing
platform on which users can deal with available remotely sensed images using a web-based
Integrated Development Environment code editor without downloading these data to the
local machines [36]. A total of 452 images were selected for extracting building information.
Notably, if users do not specifically select the path and row numbers of a scene, all the
images that intersect with the boundary of the study area will be automatically selected on
the GEE platform.

The top-of-atmosphere (TOA) reflectance data of Landsat 5 and Landsat 8 images in
the study area were chosen by setting the boundary. Then, the quality assurance (QA) band,
which is used to identify clouds, was used to mask out cloudy pixels from the selected
images. All the selected images were combined by the aggregation method, in which
mosaic images were produced [37,38]. We collected about 1000 samples from each year’s
images and randomly divided them into 50% of the training set and 50% of the validation
set. The random forest (RF) algorithm was chosen as a classifier. We classified the study
area into six types: forest, grassland, cropland, urban and built-up, water, and barren land,
and extracted the area occupied by buildings.

3.3.4. Modeling Land Subsidence Based on the GRU

GRU model can learn the relationships of sequence data through a self-cyclic process
and can share parameters among several time steps [22]. The self-cyclic structure includes
a reset gate r for adjusting the combination of new inputs and the previous hidden state
and an update gate z for controlling how much information from the previous hidden state
will carry over to the current hidden state. Additionally, update gates are used to adjust
the information flow in the unit with the aim that each cycle in the process can adaptively
capture correlations at different time scales.

The hidden state h(t) of the GRU at time t involves a linear interpolation between the
previous hidden state h(t−1) and the candidate hidden state h̃(t):

h(t) = zh̃(t) + (1− z )h(t−1) (1)

where an update gate z determines the degree of retention of the previous information
based on the current forecasting result. The update gate is computed by
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z = σ
(

Wzx + Uzh(t−1)
)

(2)

where σ is a sigmoid function with a value between 0 and 1. Wz and Uz are the training
weight matrices of z which are learned.

The reset gate r controls how much historical information should be ignored with the
expression of

r = σ
(

Wrx + Urh(t−1)
)

(3)

where Wr and Ur are the training weight matrices of the reset gate r. The computation
formula of h̃(t) is similar to that of a traditional recurrent unit:

h̃(t) = ϕ
(

Wx + U
(

r·h(t−1)
))

(4)

where ϕ is usually the tanh activation function with a value from −1 to 1. The GRU
self-cyclic structure is illustrated in Figure 4.
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4. Results
4.1. Land Subsidence Distribution and Validation

The leveling benchmarks data were applied to validate the derived land subsidence
through InSAR technology. The vertical displacement is considered to be more appropriate
for comparison with ground leveling measurements. Thus, the measurements in line of
sight are directly projected into the vertical direction. The correlation coefficient between
the leveling benchmarks data and the land subsidence derived from SAR images was 0.93
(Figure 5). The absolute errors between the two data were 3 mm/yr from 2003 to 2005 and
7 mm/yr from 2017 to 2019, respectively.
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The maximum vertical displacement rate in the study area was −94 mm/yr from 2003
to 2010, which was located in Tanggu District and marked with a star symbol in Figure 6a.
There was a subsidence center in the western Tanggu District. The percentage of PSs in
the study area with displacement rates ranging from −40 to −25 mm/yr was ~50%. The
maximum displacement rate in the study area was −87 mm/yr from 2015 to 2020, which
was located in Dagang District and denoted with a star in Figure 6b. The land subsidence
center was located in the northeastern Hangu District. Compared with the distribution of
land subsidence from 2003 to 2010, the displacement rate decreased in this period.
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4.2. Area Occupied by Buildings and Validation

With the development of urbanization, the area occupied by buildings has gradually in-
creased. The building distribution derived from the GEE platform is shown in Figure 7. The
confusion matrix of the results indicated that the average classification accuracy was 89%.

Buildings are mainly distributed in the middle and southern parts of the study area.
The newly built buildings are mainly located in the eastern Tanggu District and southeastern
Dagang District, which were coastal industrial zones. The area had a superficy of 443.4 km2

in 2003, which increased to 756.1 km2 in 2020 (Figure 8).
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5. Discussion
5.1. Relationships between Factors and Land Subsidence
5.1.1. The Groundwater Level and Land Subsidence

According to Terzaghi’s effective stress principle, as the water level drops, the pressure
undertaken by the pore water is transferred to the soil, resulting in land subsidence [39].
The contour lines of the groundwater level depth of the second and third confined aquifer
groups in 2013, 2016, and 2019 were compared with the subsidence rate distribution from
2015 to 2020 (Figure 9). The distribution of land subsidence was more consistent with the
groundwater level depth of the third confined aquifer group. There were two main depres-
sion cones of groundwater level, located in the northwestern Hangu District and in Dagang
District, which were consistent with the locations of serious land subsidence (Figure 6b).
With the decreasing groundwater level depth of the third confined aquifer group in Tanggu
District, the land subsidence rate slowed down correspondingly. The subsidence intensified
in the region with the increasing groundwater level depth in Hangu District.
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Figure 9. The contour lines of groundwater level depth of the second (a) and third (b) confined
aquifer group in 2013, 2016, and 2019.

Three monitoring wells of the third confined aquifer group were chosen to analyze
the relationship between groundwater level fluctuation and land subsidence. Well #1 was
located in the displacement rate zone from −60 to −48 mm/yr, Well #2 was located in the
displacement rate zone from −24 to −12 mm/yr, and Well #3 was located in the −12 to
12 mm/yr displacement rate zone. However, the position of each well does not correspond
to any PSs. The average InSAR value of PSs at a distance within 200 m from each well
was used as the cumulative subsidence to be compared with the groundwater level. The
cumulative average InSAR value of the PSs from January 2018 can be obtained by linear
interpolation. Land subsidence exhibited a seasonal pattern, which showed a downward
movement from July to January and an upward movement from April to July (Figure 10).
The small panel shows the local exaggerated curves of cumulative land subsidence and
groundwater level. The exaggeration factors of land subsidence and groundwater level
are 2 and 50 times, respectively. The shape of groundwater level fluctuation was similar
to that of land subsidence. The absolute value of the Pearson correlation coefficient of
groundwater level and cumulative land subsidence of the three wells were 0.45, 0.75, and
0.21, respectively. Considering the hysteresis of the water released from fine sediment
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layers, compaction still occurred in the aquifer group, in which land subsidence continued
during the groundwater level recovery period, such as the last three months of 2019.
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5.1.2. Area Occupied by Buildings and Land Subsidence

In the processes of building construction and loading, the increase in additional foun-
dation stress can lead to the compressive deformation of cohesive soil and displacement.
The land subsidence cycle is generally 10 years or less [40]. The area occupied by build-
ings per month and cumulative land subsidence of PSs within a 200 m buffer near three
wells were compared (Figure 11). The absolute value of the Pearson correlation coefficient
between the cumulative land subsidence and the area occupied by buildings of the three
wells were 0.66, 0.52, and 0.26, respectively. New buildings were mainly in the coastal
land reclamation areas in the eastern part of Tanggu District and the southeastern part of
Dagang District, where the displacement rate ranged from −24 to 0 mm/yr. In the central
Tanggu District, there has been a rebound in recent years due to the long-term construction
implementation since 2006. In the northeastern part, the area occupied by buildings was
almost unchanged, but the land subsidence rate increased due to groundwater extraction
for the aquaculture industry [10]. It is noted that the land subsidence of Well #3 has a low
correlation with the groundwater level and area occupied by buildings, which may be due
to the subsidence caused by land reclamation in the past 10 years since Well #3 is located in
the coastal industrial zone.
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5.1.3. Compressible Layer Thickness and Land Subsidence

The lithology controls the subsidence magnitude and the evolution process [41].
Figure 12 shows the land subsidence from 2003 to 2010 and from 2015 to 2020 along
the west-to-east hydrogeological cross-section (H-H′) marked in Figure 1. The absolute
value of Pearson correlation coefficients between the land subsidence rate and the thickness
of the compressible layer was 0.42 from 2003 to 2010 and 0.50 from 2015 to 2020.
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The lithology information at wells #1 and #3 was showed in Figure 13. The thicknesses
of the compressible deposits, such as silty clay, clay, and silt, are 234.5 m and 222 m,
accounting for 78.1% and 72.5% of the borehole. Since there is no borehole around Well #2,
the thickness of compressible deposits was set as the same as that in reference to Yang, J. L.
et al. with the value of 212 m through the calculation of soil samples thickness [18]. The
cumulative land subsidence of the three wells was −49.2 mm, −33.1 mm, and −15.1 mm
from 2003 to 2010 and −114.7 mm, −4.3 mm, and +21.8 mm from 2015 to 2020. Due to the
large thickness of the compressible deposits, the land subsidence of Well #1 was larger than
that of other wells. The land subsidence of Well #2 and Well #3 slowed down, which may
be due to the over-consolidation and slight over-consolidation of compressible deposits
caused by the long-term construction history and large-scale exploitation of groundwater
in the past [18].
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5.2. Simulation of Land Subsidence
5.2.1. Construction of the GRU Model

The cumulative average InSAR value of the PSs in the 200 m buffer zone around the
well was the output. The analysis in Section 5.1.1 showed that the distribution of land
subsidence is more similar to the groundwater level distribution in the third confined
aquifer group than in other aquifer groups. Therefore, we calculated the cumulative
thickness of the compressible layer above the third confined aquifer group for analysis.
Considering the groundwater was exploited most from the third aquifer group, and land
subsidence was more similar to the distribution of groundwater level in the third confined
aquifer, the static load from buildings represented by the area occupied by buildings per
month, the cumulative thickness of the compressible layer above the third confined aquifer
and the monthly third confined aquifer groundwater level from January 2018 to December
2019 were selected as the independent input variables of GRU model.
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Because the input data and land subsidence have different units, zero-mean normaliza-
tion was used to standardize the data [42]. The output of the model can be de-standardized
to restore the real subsidence value. The data of the first 20 months (from January 2018 to
August 2019), which was 80% of the time series of data, was used for the training model.
The remaining data from September 2019 to December 2019 were used to validate the
subsidence model. Based on the trial-and-error method, the parameters of the GRU model
were determined (Table 1).

Table 1. Parameters of the GRU model.

Parameter Initial Learning Rate Batch Size Dropout Rate Optimizer RNN Units

Value 0.001 20 0.1 Adam 16

5.2.2. Model Validation

The RMSE and mean absolute error (MAE) between the simulated outputs and SAR-
based data from September 2019 to December 2019 were used to validate the GRU model
(Table 2). The overall RMSE and MAE of the model were 3.16 mm and 2.19 mm, respectively.
The simulated results fit the SAR-based land subsidence well (Figure 14). The maximum
error occurred at Well #1 in September 2019, with the reason of land subsidence changing
greatly in September and October 2019. The relative larger RMSE and MAE for Well #1 than
the values of the other two wells with low land subsidence indicated that the constructed
GRU model was sensitive to slow subsidence processes.

Table 2. Comparison between SAR-based values and simulated results for three wells.

Monitoring Well Displacement (mm) 2019/09 2019/10 2019/11 2019/12 MAE RSME

#1

InSAR derived −61.94 −53.83 −58.80 −65.34

4.13 5.00Modeled −52.97 −51.68 −56.43 −62.30

Absolute error 8.97 2.15 2.37 3.04

#2

InSAR derived −24.66 −18.39 −22.88 −27.83

0.78 0.80Modeled −23.82 −19.3 −22.37 −28.70

Absolute error 0.84 0.91 0.51 0.87

#3

InSAR derived −18.42 −15.70 −18.95 −23.81

1.65 2.07Modeled −16.12 −15.99 −18.32 −20.44

Absolute error 2.3 0.29 0.63 3.37
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6. Conclusions

Coastal subsidence is a highly complex problem owing to multiple reasons. The spatial
and temporal characterizations of land subsidence in the Tianjin Binhai New Area were
obtained by using InSAR technology. The InSAR results were combined with groundwater
monitoring data, buildings load, and geological features to analyze the causes of land
subsidence, and a GRU model considering the above three factors, which is neglected in
traditional data-driven methods, was constructed to simulate land subsidence.

Based on the analysis of land subsidence and three factors, we found that the ground-
water level in the third confined aquifer has a stronger correlation to land subsidence than
the area occupied by buildings and compressible layer thickness. Seasonal variation in
land subsidence is positively correlated with the level of groundwater. The absolute value
of the Pearson correlation coefficient of groundwater level and cumulative land subsidence
of the three wells were 0.45, 0.75, and 0.21, respectively. The area occupied by buildings per
month and land subsidence curves show that an increase in the area occupied by build-
ings was often accompanied by land subsidence, and the absolute value of the Pearson
correlation coefficient between the cumulative land subsidence and the area occupied by
buildings of the three wells were 0.66, 0.52 and 0.26, respectively. The results also show
that serious land subsidence is generally distributed in regions with thick compressible
deposits. The outcomes of this study indicate that a GRU neural network land subsidence
model combined with groundwater level, the area occupied by buildings, and the thickness
of compressible deposits can be used to predict future land subsidence with a small amount
of data in the Binhai New Area and the overall RMSE and MAE of the model were 3.16 mm
and 2.19 mm, respectively.

Our study provides a scientific basis for coastal land subsidence prevention and
control. In future work, more groundwater level data of aquifers at different depths will be
collected, and the features of coastal lithofacies will be fully considered to further explore
the simulation of coastal land subsidence.
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