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Abstract: This study deals with a solar photovoltaic demonstration project composed of four types of
sub-plants that will be operated in the Saemangeum Seawall coast. The project aimed to investigate
the most efficient sub-plant types. Hydrodynamic analyses were undertaken to obtain the loads
exerted on the floating photovoltaic power plants on which two kinds of frame structures supported
shed- and gable-type photovoltaic panels, producing the four types of sub-plants composed of
three floaters. Hydrodynamic interactions between the floaters were considered because floaters
were linked with hinge joints. The pressure and acceleration response operator amplitudes were
transferred to the finite element analysis model using an in-house code. Because each sub-plant had
a different mass and second moments of mass, it was found that huge stresses had been retained in
hinge joints. After the masses in the twelve floaters were evenly distributed, the maximum stresses
were reduced so that they were less than material yield strengths. There were larger stresses in the
POSCO (Pohang Iron and Steel Company) magnesium alloy coating (POSMAC) frames than in the
fiber-reinforced plastic (FRP) frames because the POSMAC frame had an open-channel section. It is
concluded that weight in each floating unit should be evenly controlled if hinged joints are used to
link the floaters.

Keywords: floating photovoltaic power plant; sub-plant; floater; frame structure; response
operator amplitude

1. Introduction

Recently, national carbon-free policies have been realized around the world. Social
attention to eco-friendly renewable energy is continuously increasing, and the solar power
generation market is gradually developing. According to the World Bank report [1], if 1%
of the world’s reservoir water surface is used, the capacity of floating photovoltaic (PV)
power generation is projected to be 400 GW. Its efficiency is estimated to be 5–15% higher
than that of land solar power. The International Energy Agency (IEA) survey [2] showed
that the global solar power installed capacity in 2019 was 114.9 GW, including 30.1 GW in
China, 16.0 GW in the EU, and 13.3 GW in the US. The BP statistical data [3] showed that
global solar power generation in 2019 recorded 724.1 TWh, an increase of 24.3% compared
to the same period of the previous year.

While various problems have been raised about land PV power plants, such as that
solar power generation requires a large-scale installation space to meet the planned power
generation, floating PV power using public waters can be a good alternative to the land
space problems. As shown in Figure 1, the power generation method using floating PV
structures is similar to the land-based one, but there are some differences in terms of
foundation structures and associated station-keeping methods.

J. Mar. Sci. Eng. 2022, 10, 1738. https://doi.org/10.3390/jmse10111738 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10111738
https://doi.org/10.3390/jmse10111738
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-4720-8277
https://orcid.org/0000-0003-1407-9031
https://doi.org/10.3390/jmse10111738
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10111738?type=check_update&version=3


J. Mar. Sci. Eng. 2022, 10, 1738 2 of 15

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 2 of 16 
 

 

structures is similar to the land-based one, but there are some differences in terms of foun-

dation structures and associated station-keeping methods. 

The floating PV structural system consists of frame structures supporting PV mod-

ules, buoys, and mooring systems (see Figure 1). A mooring system includes mooring 

lines, lines stoppers at floater attachment points (usually called fairlead point even though 

no fairleads are used), and anchors to fix horizontal and vertical displacements. In order 

to keep the initial position of the power plant under environmental loads, it is necessary 

to maintain effective tensile forces on the mooring lines at all times. Therefore, it is re-

quired to develop a technology to design the configuration of mooring lines. 

 

Figure 1. A schematic of floating PV power generation system. 

While some live and dead loads dominantly apply to land-based PV power genera-

tion systems, floating PV power generation systems are largely affected by land-based 

loads and hydrodynamic loads. It is necessary to develop an advanced structural system 

that can maintain durability and safety in marine environments such as wetting and salt 

corrosion. Floating PV structures require an advanced technological background includ-

ing hydrodynamics and structural dynamics under an in situ environment. The associated 

international and national rules and codes have been released [4–6]. Recently, the Det 

Norske Veritas (DNV) developed a design guideline (DNV-RP-0584) dealing with design 
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Figure 1. A schematic of floating PV power generation system.

The floating PV structural system consists of frame structures supporting PV modules,
buoys, and mooring systems (see Figure 1). A mooring system includes mooring lines,
lines stoppers at floater attachment points (usually called fairlead point even though no
fairleads are used), and anchors to fix horizontal and vertical displacements. In order to
keep the initial position of the power plant under environmental loads, it is necessary to
maintain effective tensile forces on the mooring lines at all times. Therefore, it is required
to develop a technology to design the configuration of mooring lines.

While some live and dead loads dominantly apply to land-based PV power gener-
ation systems, floating PV power generation systems are largely affected by land-based
loads and hydrodynamic loads. It is necessary to develop an advanced structural system
that can maintain durability and safety in marine environments such as wetting and salt
corrosion. Floating PV structures require an advanced technological background including
hydrodynamics and structural dynamics under an in situ environment. The associated
international and national rules and codes have been released [4–6]. Recently, the Det
Norske Veritas (DNV) developed a design guideline (DNV-RP-0584) dealing with design
considerations for the floating PV structures [7]. As a result of a joint development project,
this guideline covers all topics associated with floating PV platforms including marine
environmental conditions, platform design and analysis technologies, buoy and mooring
facilities, installation, operation, maintenance, decommissioning, safety, and the estimation
of levelized ground cost of electricity (LCOE).

It is necessary to obtain synthetic rope mooring material properties for floating PV
structures. Mechanical properties of a synthetic fiber chai were provided by Kim et al. [8]
and Chung et al. [9]. Kim et al. [10] performed fluid–structure interaction (FSI) analysis
using finite element method and finite volume method to examine the behavior of a floating
PV platform composed of PV support frames and buoys made from fiber-reinforced plastic
(FRP) and high-density polyethylene (HDPE), respectively. Considering wave height
and wave period in various methods based on linear wave theory, it was found that
maximum stress occurred in vertical and horizontal members at the front edge when the
wave crest passes through the structure. Kim et al. [11] performed wave load analysis
on floating bodies composed of concrete block structures to verify the strength of the
connection part of a modular floating structure that can be applied to a floating PV power
generation. Using hydrodynamic forces, stresses were evaluated and compared by dynamic
analysis of connection parts based on beam theory. Li et al. estimated motion performance,
dominant load parameters, and hydrodynamic forces of a floating PV structure based
on design wave method [12]. Using hydrodynamic forces, he evaluated yield strength
from the entire structural analysis. Yoon et al. [13] carried out design verification based on
structural analysis for a floating PV structure made of FRP composite material suggested
by Lee et al. [14]. Lin et al. [15] examined the correlation between energy efficiency and tilt
angle to apply the decommissioned floating production storage and offloading (FPSO) unit
to a floating PV structure. Performing frequency-domain motion analysis of the FPSO, it
was confirmed that roll motion had a much more negative effect on total radiation than
pitch motion. Studies regarding mooring design have been released, even though they were
for the different types of floating renewable platforms such as floating wave converters and
wind turbines [16,17].
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A pilot PV power generation system, which is called hereafter floating PV power
plant, is discussed in this paper in terms of structural integrity based on hydrodynamic
and structural dynamic simulations. It will be operated in Saemangeum Seawall Lake,
South Korea. It consists of four sub-plants composed of three floater units. Because four
sub-plants have different mass distributions, the purpose of this paper is to analyze the
effect of mass distributions on structural integrity.

2. Geometric Details of the Pilot PV Platform

As shown in Figure 2a, the pilot floating PV power plant is composed of four sub-
plants, whereas a sub-plant includes three floater units. Twelve floater units were linked
with hinges. The PV modules were arranged in the shed (SHD) and gable (GBL) types
(refer to Figure 2a,b) and supported by two different profiles made from fiber-reinforced
plastic (FRP) and formed sheet steel called POSMAC (POS) (see Figure 2c). The FRP frame
has an I-beam section as delineated in Figure 2c, while the section of the POS frame is
channel type.

Six buoys per floater made from polyethylene (PE) support the frame structures.
Seventy-two buoys were used in total. The configuration of a buoy is shown in Figure 2a,b.
Four synthetic mooring lines were arranged at each side of the PV power plant where two
mooring lines were anchored by a heavy concrete block (refer to Figure 2e). Table 1 lists
the detailed specifications of the mooring lines and the Figure 2f presents the layout of the
mooring lines.

Table 1. Properties of mooring systems.

Items Unit Value

Nominal diameter m 0.024
Minimum breaking load kN 57.0
Mooring density kg/m 0.27
Unstretched length m 9.513
Young’s modulus MPa 1800
Axial stiffness N/m 6.53 × 104
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Figure 2. Configuration of the floating PV platform composed of 12 floating units: (a) Sketch of a plan
view of overall PV power plant; (b) PV arrangement; (c) Sections of FRP and POS frames; (d) Frame
structure of a shed-type floater unit; (e) Buoy; (f) Mooring arrangement.

3. Hydrodynamic Analyses
3.1. Theoretical Background

When a floating body moves due to incident waves, the added mass-induced force
should be estimated. The moving body also can radiate away waves dissipating some parts
of kinetic energy. This energy dissipation-induced force is usually called wave damping
force. One of the most important objectives in the hydrodynamic frequency response
analysis is to obtain the added mass m and wave damping coefficient b using radiation
potential φ (refer to Equation (1)).

Meanwhile, wave excitation forces due to incident wave and diffracted wave should
be obtained from the hydrodynamic frequency response analysis. The incident wave
potential φb and diffraction wave potential φd are used to obtain the wave excitation force
Fw using Equation (2). In this study, Airy’s linear wave theory was introduced, as shown in
Equation (3), where wave elevation η is given as a cosine function.

m − i
ω

b = ρ
x

n·φdS (1)

Fw = iωρ
x

n·(φi + φd)dS (2)

η(x, t) =
H
2

cos(kx − ωt) (3)

i : complex number;
ω : wave frequency;
S : wetted surface;

n : normal vector to wetted surface;
x : coordinate in incident wave direction;

t : time.

3.2. Hydrodynamic Analysis Model

A commercial potential flow code Ansys/Aqwa [18] was used to perform hydrody-
namic analyses under the incident wave loadings from three directions: 0◦ (x-direction),
45◦, and 90◦ (y-direction). Figure 3 shows the panel elements for the buoys and PV modules.
Wetted structures are necessary for the hydrodynamic analysis under wave loadings, but
the PV modules were included for the structure analysis application of wind-induced drag
forces. The support frames were not included in the hydrodynamic model because buoys
and PV modules were considered to be a single rigid body. The number of diffraction and
non-diffraction panel elements are summarized in Table 2.
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Table 2. Summary of panel elements.

Member Number of Wet Panels
(Diffraction)

Number of Dry Panels
(Non-Diffraction)

PV module 0 270
PE buoy 21,312 6360

Total 21,312 6630

It is very reasonable that the mass distribution was uneven in the four sub-plants
because each was supported by different frames and has different PV module arrangements.
This uneven mass distribution would elevate shear loads between the sub-plants which
can induce bending moments at the hinge joints. Therefore, as listed in Table 3, two cases
were considered: M1 with uneven mass distribution and M2 with even mass distribution.
It was very difficult to reduce the weight of a heavier sub-plant, but it was easy to increase
the weight of a lighter sub-plant. Therefore, the mass of all sub-plants was modified to be
the same as that of the heaviest sub-plant. Ix, Iy, and Iz are the second moments of mass
with respect to three directions.

Table 3. Mass information according to two mass distribution cases.

Member M1
(Uneven Mass Dist.)

M2
(Even Mass Dist.)

Displacement (kg)

Sub-plant FRP-SHD 2817.4 3934.4
Sub-plant POS-SHD 3254.6 3934.4
Sub-plant FRP-GBL 3241.0 3934.4
Sub-plant POS-GBL 3934.4 3934.4

Center of mass in z-direction (m) 0.4083 0.3750
Ix (kg-m2) 8.6481 × 105 1.0284 × 106

Iy (kg-m2) 1.1313 × 106 1.3394 × 106

Iz (kg-m2) 1.9910 × 106 2.3669 × 106

In this study, it was not necessary to use many frequencies because a single design
wave was used, but a wide range of wave frequencies (0.1–7 rad/s) was used to observe
motion response amplitude operators (RAOs) comprehensively (refer to Table 3). The
number of frequencies was forty and ranged from 0.1 rad/s to 7.0 rad/s. Pastor and
Liu [19] presented that the number of frequencies was appropriate to adequately represent
most wave spectrums, and the range of frequencies was wide enough to avoid energy loss
in most wave spectrums. In order to consider the viscous damping effect for roll response
especially, some experimental or computational fluid dynamics simulations should be
performed to obtain the relative viscous damping ratios. Consideration of viscous damping
effect should reduce the motion, velocity, and acceleration of the real floating photovoltaic
power plant [20]. It leads to more conservative structural analysis results. However, the
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viscous damping was not taken into account in this study. Environmental conditions such
as water depth and seawater density are summarized in Table 4.

Table 4. Conditions for hydrodynamic frequency response analysis.

Member Value

Water depth (m) 4.0
Seawater density (kg/m3) 1025.0

Gravity (m/s2) 9.81
Wave frequency range (rad/s) 0.1–7.0

Number of wave frequency 40
Viscous damping ratio 0.0

3.3. Hydrodynamic Analysis Results

Figure 4 represents the wave elevation distribution against each incident wave angle
where the diffracted waves are observed out of the global PV power plant as well as
between the floater units. The trapped-wave modes between the inside floating units are
highly developed when the incident waves are following and beam seas (see Figure 4a,c).
The reason is that the front buoys are aligned with the rear buoys. In the case of 45◦, the
trapped waves hardly occur because the front and rear buoys are not perfectly aligned.
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Figure 4. Wave elevation contour: (a) incident angle = 0◦; (b) incident angle = 45◦; (c) incident
angle = 90◦.

If the RAOs for the twelve floaters are collected into a graph, they become too com-
plicated. For this reason, assuming the twelve floaters as a single body, additional hy-
drodynamic frequency response analysis was performed, and the results are presented
in Figure 5 for the more readable motion RAO presentation. The heave, roll, and pitch
motion RAOs are presented in Figure 5. The roll motion was not excited by the following
sea (angle = 0◦), while the beam sea (angle = 90◦) can slightly develop the pitch motion at
a quite high frequency of 4 rad/s. As expected, the quartering sea (angle = 45◦) excited
heave, roll, and pitch motions, simultaneously.
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The impulse response functions for heave, roll, and pitch motion were listed in Figure 6,
which represents the wave radiation damping force at the time t resulting from a unit
impulse in velocity at the time zero. Then, the wave radiation damping force decays to
zero at 30 s. The convolution between the impulse response functions and velocity gives
wave loads to structural analysis.
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4. Structural Analysis
4.1. Structural Analysis Model

The PE buoys were modeled using solid elements, while the beam elements were
used for the frame structures. The solar modules were presented by elastic shell elements.
Structural analysis models were generated on the basis that twelve floater units were
connected with the pin-type hinge joint elements. The hinge joint elements play a very
important role to allow relative rotations between successive floater units so that generation
of the bending moments between the floater units could be minimized. The kinematic
coupling elements to bond the buoys and frames avoid probable stress concentration at
the hinge joints [21,22]. In reality, the joints were quite firmly fastened with a couple of
bolts and nuts. We assumed that the fairlead points at which mooring lines are tied were
supported by grounded spring elements [23–26]. One end of the ground spring element is
fixed to the earth and the other end is connected to the structure. The spring elements had
three degrees of freedom in three directions. A very small stiffness was uniformly assigned
to the spring elements to avoid rigid body motion in the structural analyses. Therefore, no
boundary conditions were applied, and the inertia relief technique was not employed. The
thickness of the PV modules was assumed to be 5 mm from the reference survey [27]. The
element information is summarized in Table 5 with the number of elements used. The B31
is a 3D Timoshenko beam element with 6 degrees of freedom. The S4 is a shell element with
a full-integration scheme with five degrees of freedom. The last degree of freedom provides
drilling stiffness. The C3D8 is a hexahedron solid element with a full-integration scheme
with three degrees of freedom. They can be used with elastic or elastic–plastic material
properties, but only elastic material properties were assigned to the elements in this study.

Table 5. Element information for structural frequency response analysis.

Member Types of Elements Number of Elements

Frame Beam (B31) 11,955
PE buoy Solid (C3D8) 30,6175

PV module Shell (S4) 3456 and 59,166
Hinge joint Pin-type MPC 86

Fairlead point Spring 140
Bonding bet. frame and buoy Kinematic coupling 1476

Sum 382,454

The structural analysis model was built as shown in Figure 7, where some PV modules
were intentionally masked to provide better visibility of the FEA model. The density, elastic
modulus, Poisson ratio, and yield strength of each material are delineated in Table 6. Some
of them were taken from web searches [28]. The yield strength of the POSMAC ranged
broadly from 200 MPa to 600 MPa; thus, the highest one was assumed in this study. The
density of the M2 model which has even mass distribution was scaled up uniformly for all
materials until the masses specified in Table 3 were obtained.

The panel pressure RAOs were transferred to the finite elements using Equation (4)
and (5) where pi and pw

j are ith panel pressure and weighted pressure exerted to jth finite
element. n denotes the number of panels sharing edges with the panel that overlays the
most with the considered finite element. The weighting exponent α is used to increase
weighting factor wi at ith panel. The weighting factor is inversely proportional to the ratio
of distances. If the distance from ith panel to jth finite element is close, the weighting factor
approaches unity based on Equation (5). In this study, the pressure transfer was performed
using an in-house code developed by the authors [29].

Still water buoyancy and gravity loads were applied to the wet elements and all ele-
ments, respectively. Acceleration RAO components were also transferred to the FEA model
where the rotation components were applied with respect to the center of mass (COM).
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Table 6. Material information for structure analysis.

Member Density (M1)
(kg/m3)

Elastic Modulus
(GPa) Poisson Ratio Yield Strength

(MPa)

FRP Frame 1.878 × 102 25 0.4 600
POSMAC frame 7.850 × 102 206 0.3 600

PE buoy 3.000101 × 101 0.043 0.2 n/a
PV panel 2.188 × 102 50 0.2 n/a

pw
j =

∑n
i=1 pi × wα

i
∑n

i=1 wα
i

(4)

wi = 1 − di
dmax

(5)

The Korea Hydrographic and Oceanographic Administration [30] have provided the
metocean data at the Saemangeum Seawall Lake. In this study, the environmental data for
last three years was collected to determine the design regular wave with the maximum
wave height of 1.5 m and a period of 18.9 s based on the 100 year-return period. A scale
factor of 0.75 was applied to the panel pressure and acceleration RAOs because the wave
amplitude ratio was 0.

In addition, the corresponding current and wind speeds were 0.32 m/s and 36.16 m/s
as delineated in Table 7. The wind- and current-induced drag forces F and moments M were
also taken into account using Equations (6) and (8), respectively. As shown in Equation (7),
the drag coefficient Cd of a flat surface with an angle of attack φ can be estimated based
on a reference [31–33]. vx, vy, and vz in Equation (6) are velocity components of either
current or wind, while Ax, Ay, and Az are projected area components of incident current
or wind. As long as the distance vector r from the COM to a considered area is identified,
drag moment can be drawn using Equation (8).

F =
1
2

Cdρ
(

Axv2
xi + Ayv2

yj + Azv2
zk
)

(6)

Cd =

{
2π tan φ f or φ < 8

◦

1
0.222+0.283 sin φ f or φ ≥ 8

◦ (7)

M = r × F (8)
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Table 7. Environmental conditions for structural frequency response analysis.

Item Value

Wave height (m) 1.50
Wave period (s) 18.90

Current speed (m/s) 0.32
Wind speed (m/s) 36.16

Cases for the structural analyses are summarized in Table 8 according to the applied
loads where ρsea, g, and z are seawater density, gravity, and vertical location of wet structure.
The wave and current directions were assumed to be the same, but the wind directions
were 90◦ to maximize the wind-induced drag force and moment. Therefore, six structural
analysis cases such as M1-S1, M1-S2, etc. were generated considering even and uneven
mass distributions of M1 and M2.

Table 8. Cases for structural frequency response analysis.

Case Wave Dir
(Deg)

Current Dir
(Deg)

Wind Dir
(Deg)

Gravity
(G)

Buoyancy
(N)

M1-S1 or
M2-S1 0 0 90 1 ρseagz

M1-S2 or
M2-S2 45 45 90 1 ρseagz

M1-S3 or
M2-S3 90 90 90 1 ρseagz

4.2. Structural Analysis Result

Frequency response analyses were conducted using a commercial finite element anal-
ysis (FEA) code, Abaqus/Standard [34]. There were negligible unbalance forces and
moments were witnessed with only hydrodynamic loads. This means that the load RAOs
from the hydrodynamic frequency response analyses were normally transferred to the
structural frequency response analysis models.

Unlike other commercial FEA codes, Abaqus allows one to view shear stresses in beam
elements after assigning effective shear stiffness factor to each beam section. It is used
to prevent the shear stiffness from becoming too large in slender beam elements. For the
typical beam sections listed in the Abaqus beam library, the Timoshenko stiffness factors
were used [34].

In this paper, normal stress magnitude σ and shear stress magnitude τ were calcu-
lated using real components of σr and τr and imaginary components of σi and τi (refer to
Equations (9) and (10)). Equation (11) was used to produce von Mises equivalent stress σv.

σ =
√

σ2
r + σ2

i (9)

τ =
√

τ2
r + τi (10)

σv =
√

σ2 + 3τ2 (11)

Figures 8 and 9 include normal, shear, and von Mises stress distributions in the frame
structures under uneven and even mass conditions. The uneven mass distribution involves
not only extremely high stress concentration in way of the hinge joints as seen in Figure 8,
but also less uniform displacement along the wave direction of 0◦. Meanwhile, as depicted
in Figure 9, the stresses were quite relieved and the relative rotations at the hinge joints
were found to be following the incident wave pattern after the mass distribution was
evenly adjusted.
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The maximum von Mises stress in the FRP structure was reduced from 4436 MPa to
86 MPa after the even mass distribution (refer to Figure 10). The solid red cells in Figure 10
imply the floater unit where the maximum stress occurred. Very huge stresses in the
POSMAC frame are found in Figures 8c and 11a. After mass distribution was changed
uniformly between the floater units, these stresses were reduced to 339 MPa which is less
than the yield strength of the POSMAC sheet of 600 MPa. The maximum von Mises stresses
were summarized in Table 9. These dramatic reductions in the stresses were possible by
equally modifying the distribution of mass between floaters.
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Table 9. Maximum von Mises stress.

Case FRP (MPa) POSMAC (MPa)

M1-S1 4754 22,390
M1-S2 4436 20,550
M1-S3 4485 20,100
M2-S1 22 104
M2-S2 86 288
M2-S3 34 339

Even if the maximum von Mises stresses in the POSMAC frames became less than the
yield strength, they were quite larger than those in the FRP frames. The POSMAC sheet is
mechanically formed into the channel section, which is categorized into asymmetric open
sections, thus laborers can assemble POSMAC beams into frame structures and dismantle
them into beam members again. For this reason, asymmetric open sections have been
preferred over closed sections or I-sections. From the point of view of structural safety, it
can be concluded that the use of asymmetric open sections is not recommended.

5. Conclusions

In this study, the effect of the mass distribution between floating units was evaluated
for a floating PV power plant with four sub-plants. The diffraction panel pressure and
acceleration RAOs obtained from the hydrodynamic frequency response analyses were
transferred to the finite element model through the distance-weighted method. The cal-
culation procedure was called the spectral fatigue analysis, which was proposed in some
classification societies for application to ships and offshore units [35–37]. The method
had been applied to a range of marine structures, such as a jacket platform [38], wind
turbines [39,40], floating offshore oil/gas unit [41], etc. The frequency response structural
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analyses under the design wave, wind, and current based on 100-year metocean data
yielded the following conclusions:

First, even though asymmetric open sections such as channels are preferred due to the
convenience of in situ assembly of frame structures, they would lead to very high bending
and shear stresses and be less commonly recommended than symmetric open sections of
I-shape. Second, mass distributions in multiple floating units must be controlled equally
and evenly. Otherwise, there would be huge stresses by way of the hinge joints because of
the shear loads due to relative displacements between successive floating units.

Not only is checking maximum stresses over yield strength important, but also, buck-
ling stability should be verified through national or international standards [5,42,43]. It was
difficult to carry out the buckling checks by those standards because the load RAOs which
were in harmonic form should be presented in the quasi-static form. A new technique to
cover the buckling code checks should be developed in the near future.
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