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Abstract: This study aims to solve the issue of the safe navigation of autonomous underwater
vehicles (AUVs) in an unknown underwater environment. AUV will encounter canyons, rocks,
reefs, fish, and underwater vehicles that threaten its safety during underwater navigation. A game-
based soft actor–critic (GSAC) path planning method is proposed in this study to improve the
adaptive capability of autonomous planning and the reliability of obstacle avoidance in the unknown
underwater environment. Considering the influence of the simulation environment, the obstacles
in the simulation environment are regarded as agents and play a zero-sum game with the AUV.
The zero-sum game problem is solved by improving the strategy of AUV and obstacles, so that the
simulation environment evolves intelligently with the AUV path planning strategy. The proposed
method increases the complexity and diversity of the simulation environment, enables AUV to train
in a variable environment specific to its strategy, and improves the adaptability and convergence
speed of AUV in unknown underwater environments. Finally, the Python language is applied to write
an unknown underwater simulation environment for the AUV simulation testing. GSAC can guide
the AUV to the target point in the unknown underwater environment while avoiding large and small
static obstacles, canyons, and small dynamic obstacles. Compared with the soft actor–critic(SAC)
and the deep Q-network (DQN) algorithm, GSAC has better adaptability and convergence speed in
the unknown underwater environment. The experiments verifies that GSAC has faster convergence,
better stability, and robustness in unknown underwater environments.

Keywords: autonomous underwater vehicle; optimal path planning; deep reinforcement learning;
unknown underwater environment; particle swarm optimization

1. Introduction

Autonomous underwater vehicles have gained growing attention due to their irre-
placeable role in marine data collection, subsea pipeline repair, subsea oil exploration,
working in collaboration with divers, and thermocline analysis [1–7]. Path planning and
dynamic obstacle avoidance enable AUVs to reach the mission target safely without col-
liding with obstacles, which is an important guarantee for AUVs to perform the mission,
and is the core technology of AUV autonomy. Path planning is divided into global path
planning of known electronic charts and local path planning with unknown obstacles. The
ability of AUV local path planning in a dynamic or uncertain underwater environment
is crucial [8]. In recent years, a variety of local path planning methods have been pro-
posed. These methods improve the autonomy of AUVs, which mainly includes traditional
methods and methods with learning capability.

The traditional local path planning methods mainly include Rapidly-exploring Ran-
dom Tree (RRT), Artificial Potential Field (APF), and Fuzzy Logic Algorithm. It enables
the AUV to avoid static and dynamic obstacles, and its path planning methods designed
for specific working conditions is effective. However, these methods need to design the
parameters of the algorithm according to underwater conditions, and the design of the
algorithm depends more on the designer’s understanding of the underwater environment.
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Moreover, these methods do not have a learning capability and cannot improve the AUV
path planning capability with task execution, so their performance is limited by the de-
signer’s parameter design level. Traditional local path planning methods are listed below.
Li et al. [9] proposed an automatic ground map building and path planning algorithm in
unmanned aerial/ground vehicles’ (UAV/UGV) cooperative systems, which outperforms
the genetic algorithm and A star algorithm in path cost. Hermand et al. [10] proposed
a constrained control scheme based on the Explicit Reference Governor framework. The
experiment verified that this method can control UAV while avoiding obstacles in the
laboratory environment. Nie et al. [11] proposed an improved RRT algorithm, which
simplifies the environment model by simplifying the representation of space, thus avoiding
the dimensional catastrophe during computation and improving the computational speed.
Li et al. [12] combined rolling planning with node screening and applied the improved
RRT algorithm to underwater search and interception. Zacchini et al. [13] used RRT for
path planning and realized the submarine terrain inspection using forward-looking sonar.
Franco et al. [14] employed the APF algorithm to achieve the obstacle avoidance of AUV
using scanning sonar. Noguchi et al. [15] employed the APF algorithm to implement an
intervention of the autonomous underwater vehicle (I-AUV) in the process of catching sea
urchins. Considered the dynamic constraints of the UAV, Tang et al. [16] proposed a trajec-
tory planning algorithm based on the minimum snap trajectory method. The simulation
experiment verified that this method can optimize the time and length of the generated
trajectory in a simulation environment with simplified quay crane model. Meng et al. [17]
proposed the prediction planning interception (PPI) algorithm based on the APF algorithm.
This method determines the interception position by the motion tracking of the target and
employs the APF algorithm to plan the interception route, so as to achieve the moving
target interception in the ocean current environment of the harbor. Fan et al. [18] proposed
an improved APF algorithm, and added a distance correction factor to the exclusion func-
tion to solve the local minimum problem. Lin et al. [19] realized the path planning of
multi AUVs through the APF method by considering potential underwater obstacles and
AUV dynamics. Li et al. [20] employed an improved APF algorithm to achieve obstacle
avoidance in the process of target tracking. Li et al. [21] designed a 3-input controller
based on the fuzzy logic algorithm with obstacle distance change as input, which can
achieve obstacle avoidance in the same direction as AUV. Traditional local path planning
algorithms achieve obstacle avoidance of AUVs for both static and dynamic obstacles.
However, these methods need to design the algorithm for different working conditions,
and the performance of the algorithm is constrained by the experience of the designer.
The algorithm does not have a learning capability and is easily trapped in local minima.
Therefore, an algorithm with learning capabilities is subsequently proposed.

The Reinforcement Learning (RL)-based path planning method is a typical algorithm
with learning capability. Distinguishing from traditional methods, the RL-based local path
planning method does not need guidance signal in the unknown environment, and adapts
to the environment by online learning and continuous trial and error. Reinforcement learn-
ing enables the AUV to gradually adapt to the environment and make decisions through
training. It has a good generalization ability, and is suitable for complex and variable
application scenarios. Li et al. [22] combined the heuristic search strategy with Q-learning
to reduce the energy consumption of mobile robot paths. Duguleana et al. [23] implemented
the path planning of mobile robots with Q-learning. This method realizes the obstacle
avoidance of moving obstacles when global information is available. Taghavifar et al. [24]
combined the chaotic metaheuristic optimization with Q-learning to solve the obstacle
avoidance path planning for robots under mobile obstacles. Singla et al. [25] combined the
DQN method. Ref. [26] with UAV to achieve an obstacle avoidance of UAV in an unknown
indoor environment. Sun et al. [27] combined the hierarchical deep Q network (HDQN)
with a prioritized experience replay to propose an AUV path planning method for 3D ocean
conditions. The path planning was divided into three layers to reduce the dimensionality
of the path planning task and avoid dimensional disaster. Simulation experiments and
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realistic tests verified that the algorithm can reduce the reinforcement learning training
time and is safe and effective. Zhang et al. [28] proposed the deep interactive RL method
by adding human rewards on the basis of DQN. This method possesses faster conver-
gence and better performance than DQN. Yuan et al. [29] proposed an improved method
based on the double deep Q-network (double-DQN) method [30], which outperforms the
double-DQN algorithm in terms of the success rate and obstacle avoidance performance.
The RL-based local path planning method can perform obstacle avoidance in unknown
or dynamic environments without modeling the environment. Pei et al. [31] proposed the
Dyna-Q algorithm by combined Q-learning based on Dyna architecture with simulated
annealing mechanism, heuristic search strategies, and the reactive navigation principle.
The practical experiment conducted by MATLAB and the robot operating system verified
that this method can fulfill autonomous navigation tasks in the real world. Cui et al. [32]
proposed a multi-layer Q-learning path planning method. The method used a two-layer
structure to handle local global information. Simulation experiments demonstrate the
effectiveness of this path planning method. Considering the policy selection in the early
search process of Q-learning, Ma et al. [33] proposed the continuous local search Q-Learning
(CLSQL) method. In this method, global environment was divided into independent local
environments. The search between each intermediate point in the local environment was
realized to reach the destination. This method outperforms Q-Learning, SARSA(λ), and
DQN in convergence speed and computation time. Focused on the slow convergence
speed of UAV path planning, Boming et al. [34] proposed the guided Sarsa algorithm. This
method enhanced the convergence speed due to the return function based on the position
information and improved status update strategy. Khamidehi and Sousa [35] combined the
double-DQN with a graph-based global path planning algorithm. This method improved
the safety of the UAV path planning in a dynamic environment. Cao et al. [36] proposed a
new asynchronous advantages actor–critic (A3C) method [37] based on the asynchronous
variant of the actor–critic, which completes the target search in the simulation environment.
Biferale et al. [38] focused on the path planning in a ship sailing in a 2D turbulent sea
and implemented the actor–critic (AC) method [39] for ship path planning. Sun et al. [40]
proposed the Sum Tree-DDPG method based on the deep deterministic policy gradient
(DDPG) [41] method. This method improves the replay memory in the DDPG method and
sets the reward function with reference to the APF method, which increases the stability of
the AUV path planning method in an underwater canyons environment. Hong et al. [42]
combined the twin-delayed deep deterministic policy gradient (TD3) method [43] with
the frame stacking technique. This method can reduce the energy consumption of drones
with the global energy-efficient path. Lan et al. [44] improved the DDPG algorithm to
solve the path planning of the underwater glider (UG) in an ocean current environment.
This method integrated the UG kinematic motion into MDP in DDPG. The simulation
experiment verified that this method can fulfill the UG autonomous navigation tasks in
the ocean current environment based on the Tokyo Bay geography and the unacquainted
ocean. The RL algorithm requires a lot of exploration to adapt to the environment, and
therefore has high demands on the environment.

Due to the unknown and complex underwater environment, AUV needs to be explored
in various environments. The high risk and cost of AUV field experiments determine that the
simulation environment needs to be constructed to train AUV. The obstacle parameters (size,
shape, number and location) in the simulation environment are generally designed based on
human experience, so it is difficult to guarantee the exploration of RL. The game theory is
introduced to SAC to meet the requirement of exploration in the simulation environment.

The study is organized, as follows: in Section 2, the framework of the AUV path
planning method is introduced and the mathematical model of the underwater environment
is defined. The components of the AUV path planning method are presented in Section 3.
In Section 4, the AUV path planning and obstacle avoidance method are discussed for
path planning experiments in an unknown simulation environment. Section 5 draws
the conclusions.



J. Mar. Sci. Eng. 2022, 10, 2018 4 of 22

2. Materials and Methods

To enhance the exploration capacity and training speed, Haarnoja et al. [45] proposed
the SAC method. Compared with other RL methods, the SAC adds action entropy to
ensure the exploration ability of agent strategies and improve the randomness of agent
actions. To solve the problem of insufficient diversity of the simulation environment, we
introduce game theory into the training of SAC and propose game-based SAC (GSAC) path
planning method. GSAC method treats obstacles as agents and makes a zero-sum game
with AUV. The obstacle size, shape, number and location are updated by particle swarm
optimization (PSO) [46]. As the gaming process proceeds, the level of obstacle placement
improves intelligently with the AUV path planning strategy, which enhances the diversity
of the simulation environment and improves the training effect.

2.1. Preliminaries

The GSAC method consists of the simulation environment, decision agent, environ-
ment agent and AUV reward function, as shown in Figure 1. The environment agent is
an update strategy for the obstacle parameters (number, size, shape and location), so that
the environment evolves gradually from simple to complex with the training process. The
decision agent is used to generate a path planning policy applicable to the environment.
The reward function aims to help the update of the decision agent and environment agent.
It gives a reward to AUV after the performing action. There is a zero-sum game between
the environment agent and decision agent. The decision agent aims to increase the action
value Qauv obtained in the simulation environment by changing the AUV path planning
strategy. The environment agent aims to increase the action value Qenv is obtained by
changing the parameters of the obstacles in the simulation environment. The AUV reward
is the connection of the game relationship between the two sides of the game.

Environment 

agent

Reward 

function

1( , , )t t tr s a s +

Decision  

agent

Simulation environment

state     act t ts a 1state  t ts s +

act ta

calculate
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Figure 1. GSAC framework.

The decision agent consists of a path planning strategy (using the SAC method) and
environment adaptation function. The environment adaptation function is responsible for
judging the adaptation of the path planning strategy to the current simulation environment.
It can make the update of the decision agent turn off when the adaptation degree reaches
the requirement. The environment agent consists of the obstacle parameter optimizer (using
the PSO method) and the obstacle parameter judgment function. The obstacle information
judgment function is responsible for counting the number of updates of the environment
agent and calculating the obstacle size and number. The obstacle information optimizer
optimizes the obstacle positions and shapes according to the obstacle sizes and numbers. It
can generate the obstacle parameters that make itself obtain the most reward. The decision
agent and environment agent are updated alternately during the game.
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2.2. Underwater Environment Model

The underwater environment includes the obstacles, goal, and starting point, as shown
in Figure 2. The coordinate system of the underwater environment employs the geodetic
coordinate system. The underwater environment is a two-dimensional space with a square
boundary (the side length is 500 m), and the starting point is the coordinate center O.
The positive direction of x-axis is the longitude increment direction, and the x-axis passes
through the coordinate point O. The positive direction of y-axis is the latitude increment
direction, and the y-axis passes through the coordinate point O. To prevent the AUV path
planning method from being blocked by obstacles and reaching the target, a square centered
on the starting point and a square centered on the target point are set as the area without
obstacles (the side length is 100m). χenv =

{
On, Sp, Ep, δ

}
is defined as the underwater

environment. On represents the number of obstacles. Considering that the shape of the
obstacle is only rectangular, the maximum number of obstacles is set as two to form a more
complex shape. Sp represents the starting point position. Ep represents the goal position.
δ =

⋃On
i=1 δi is defined as obstacles in the environment. δi =

{
ex, ey, eθ , eϕ, el

}
is defined

as a single obstacle in the environment. ex represents the relative distance between the
center of the obstacle and the coordinate point O on the x-axis. ey represents the relative
distance between the center of the obstacle and the coordinate point O on the y-axis. el
represents the diagonal length of the obstacle. The dashed rectangle in the figure represents
the obstacle without the rotation transformation, which becomes the final obstacle after
rotating eθ around the center point, as shown in the solid rectangle. eth represents the
length-width ratio of the rectangular obstacle.
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Figure 2. Environment schematic.

AUV state is the input of the path planning method, including environment and
sensor information. st = {et, ot} is defined as the AUV state at time t, as shown in Figure 3.
et =

{
sθ

t , sx
t , sy

t , sv
t

}
is defined as the environment information of AUV. sθ

t represents the
angle between the AUV direction and the target direction. The target direction refers to the
direction in which the AUV center points to the target, and the navigation direction refers
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to the current velocity direction of the AUV. sx
t represents the relative distance between the

AUV and coordinate point O on the x-axis, sy
t represents the relative distance between the

AUV and coordinate point O on the y-axis, and sv
t represents the velocity of the AUV in the

path planning space.

goal

obstacle

sonar

AUV

sailing direction

ts


x

ts

y

ts

x

y

O

2

t

4

td

Figure 3. Environment schematic.

ot denotes the observed information of the AUV in the current environment, satisfying
the following assumptions:

(1) The environmental information of the AUV is part of the current environment
observed by the AUV sensor, and includes all the information required for the AUV path
planning decision.

(2) The AUV sensor samples once per sampling cycle (1s) to acquire the current envi-
ronmental information. The AUV path planning method outputs the action after acquiring
the current environment information et and observing information ot, and executes it until
obtaining the environmental information of the next sampling cycle.

ot =
6⋃

i=1

(
di

t, θi
t

)
(1)

ot is the sensor information in the real underwater environment. It is the observed
value calculated based on the obstacles in simulated environment, as shown in Equation (1).
The AUV sonar is carried in front of the AUV, and the detection area of the sonar is from the
northwest to the northeast of the AUV sailing direction. The detection range of the sonar is
50 m. To speed up the training of the AUV path planning method, the sonar detection area
is discretized. It is uniformly divided into six blocks, which are named as zones 1 to 6 in a
clockwise direction. θi

t represents the angles of the nearest obstacle detected in the zone i at
time t. di

t represents the distances of the nearest obstacle detected in the zone i at time t. If
no obstacle is detected in the block i, the di

t and θi
t are constant.

AUV action is the output of the path planning method, including velocity and yaw
angle. at = {vt, θt} is defined as the AUV action in the current state st. vt represents AUV
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current velocity in the range [−1 kn, 5 kn]. θt represents AUV current yaw angle in the
range [−15°,15°].

3. GSAC Algorithm
3.1. Game-Based Optimization Objective

The SAC algorithm object to discover the strategy with the optimal action value
Q(st, at), as shown in Equation (2).

JSAC = arg max
π

[Q(st, at)− αtlogπ(at|st)] (2)

where αt denotes the adaptive weight called the entropy parameter, logπ(at+1|st+1 ) de-
notes the action entropy of the AUV at the moment st+1. The expected reward after the
agent performs the action is represented by the action value function Q(st, at), and its
update target is shown in Equation (3).

Q̂(st, at) = Ep∼pδ(st+1|st ,at )rauv(st, at, st+1) + γQ(st+1, at+1)− γαtlogπ(at+1|st+1 ) (3)

where Q̂(st, at) denote the update target of Q(st, at), rauv(st, at, st+1) denote the reward
obtained by the AUV after performing action at in the current state st, γ is a constant called
the discount rate, Q(st+1, at+1) is the value of the action value function at the next moment,
and pδ(st+1|st, at ) denote the probability of the environment transfers to state st+1 when
the obstacle parameter is δ.

The action value Q(st, at), strategy π(at|st), and action entropy αt in Equation (3) are
updateable parts updated with SAC. rauv(st, at, st+1) is designed by the designer. Due to
the high risk and cost of the AUV field experiments, the AUV path planning needs to be
trained in the simulation environment; therefore, obstacle parameters δ in the simulation
environment need to be designed based on the designer’s experience. Due to the complexity
and diversity of the marine environment and the limitation of the human cognition of the
ocean, the manually designed obstacle parameters δ are difficult to ensure the diversity of
the simulation environment and meet the requirements of reinforcement learning methods.
To solve this problem, a game-based optimization objective is proposed, as shown in
Equations (4) and (5).

Jenv = arg max
δ

Ep∼pδ(st+1|st ,at ),t∈τ,at∼arg maxπ Jauv

[
Qenv(st, at)

]
(4)

Jauv = arg max
π

Ep∼pδenv(st+1|st ,at )[Qauv(st, at)− αtlogπ(at|st)] (5)

where δ env denotes the obstacle parameters generated by environment agent, Jenv denotes
the decision agent target, τ denotes the AUV trajectory, Jauv denotes the environment agent
target,

[
Qenv

]
denotes the average of Qenv. Qenv(st, at) denote the action value function of

AUV, as shown in Equation (6). Qauv(st, at) denote the action value function of environment
agent, as shown in Equation (7).

Qenv(st, at) = Ep∼pδenv(st+1|st ,at ),t∈τ,at∼π

n

∑
t=1

γt−1renv(st, at, st+1)− αtlogπ (6)

Qauv(st, at) = Ep∼pδenv(st+1|st ,at ),t∈τ,at∼π

n

∑
t=1

γt−1rauv(st, at, st+1)− αtlogπ (7)

where renv(st, at, st+1) denotes environment agent reward, rauv(st, at, st+1) denotes AUV
reward.

In the game-based optimization objective, the action value Q(st, at), strategy π(at|st),
action entropy αt, and simulation environment are the updateable parts updated with
GSAC. In the update objective, GSAC considers both sides of the game, so that the environ-
ment agent is adaptively updated based on the AUV path planning method. The improved
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environment agent creates more intelligent obstacle parameters to increase the simula-
tion environment’s diversity and enhance the training effect of the AUV path planning
technique. The environment reward renv(st, at, st+1) and the AUV reward rauv(st, at, st+1)
need to be designed. The design of the AUV reward is the same as that of SAC. The sum
of the environment reward and AUV reward is zero due to the zero-sum game between
the environment agent and decision agent. GSAC is proposed to increase the diversity
of the simulation environment through a zero-sum game between the environment agent
and the decision agent, thus enhancing the simulation environment’s training effect. As
shown in Equation (4), the obstacle parameters are updated according to the AUV strategy
π(at|st) and the environment action value Qenv(st, at). When the AUV strategy is weak at
the start of training, the obstacle arrangement is simple. The obstacle arrangement becomes
more complex as the enhance of AUV strategy. In the process of solving the zero-sum
game, the AUV is trained in a simulation environment that changes with its own strategy.
The proposed method enhances the adaptability and convergence speed of the AUV in
unknown environments.

3.2. Environment Agent

The environment agent optimizes the obstacle parameters according to Equation (4).
The optimization objective JG requires the total environment reward of the AUV path
planning trajectory in the simulation environment with obstacle parameters’ δ. The compu-
tational cost of each update of the obstacle parameters is the same as that of the AUV to
complete a path planning task. Since RL requires a lot of trial and error, it is computationally
too expensive for the environmental agent to use the RL-based approach. Since the particle
swarm algorithm (PSO) requires low computational cost and high optimization capability
for this problem, it is used as the optimization method for the environment agent.

The obstacle parameters in the simulation environment are divided into obstacle size,
shape, number and location. The values of obstacle size and number are calculated by the
obstacle parameter judgment function. The calculation of the obstacle parameter judgment
function is shown in Equation (8).  el = dl ∗

⌊
n
nl

⌋
no =

⌊
n

nn

⌋ (8)

where n is the number of updates of the environment agent, dl is the obstacle size update
weight, nl is the obstacle size update threshold, nn is the obstacle number update threshold,
bc is the downward rounding function.

The PSO algorithm is used to optimize the obstacle parameter δ the during environ-
ment agent update. It inputs the size and number of obstacles obtained according to the
environmental agent update process, and outputs the optimal obstacle parameter δmin. The
environment agent starts the update when the decision agent ends the update. After the np
times update, environment agent output δmin.

The environment agent initializes the first generation of obstacle parameters x1 and
velocity v1. nx sets of the initialized obstacle parameters are included in the obstacle
parameters’ x1. Velocity v1 is an adaptive parameter responsible for x1 update. The
environment agent calculates the target value JG according to each group of obstacle
parameters in x1, respectively, and updates xpb and xgb according to the target value JG.
The dimension of xpb is the same as x1, which is the statistics of the individual with the
optimal target value in each group of obstacle parameters. xgb is the obstacle parameter
with the optimal target value in this update of the environment agent. The environment
agent updates the obstacle parameters xt+1 and velocity vt+1 based on xt and vt, which are
calculated as shown in Equation (9).{

vt+1 = vt + c1r1

(
xpb − xt

)
+ c2r2

(
xgb − xt

)
xt+1 = xt + vt+1

(9)
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where c1 and c2 are the update weights, and r1 and r2 are the random numbers.
The update pseudo code of the environment agent is shown in Algorithm 1.

Algorithm 1 Environment Agent Update

Input: Environment agent update times n
1: Compute:el = dl ∗

⌊
n
nl

⌋
,no =

⌊
n

nn

⌋
2: Initialize x1 according to el , no

Initialize v1,xpb, xgb, JG(x0), JG(g), i = 1, j = 1
3: while j < np do
4: for each obstacle parameter in xi, compute JG(xi

n) do
5: if JG(xi−1

n ) > JG(xi
n) then

6: xi
pb ← xi

n,JG(xi−1
n )← JG(xi

n)

7: end if
8: if JG(g) > JG(xi

n) then
9: xgb ← xi

n,JG(g)← JG(xi
n)

10: end if
11: end for
12: Randomly initialize r1, r2

13: Compute: vi+1 = vi + c1r1

(
xpb − xi

)
+ c2r2

(
xgb − xi

)
, xi+1 = xi + vi+1

14: i← i + 1, j← j + 1
15: end while
Output: δmin ← xgb

3.3. Reward Function

Reward function is crucial in RL. The AUV path planning reward is typically the
sparse reward because it mainly focused on the end of mission. Sparse rewards have a
bad effect to the SAC train. To solve the sparse reward problem in AUV path planning, a
continuous modular reward function is designed in the GSAC. The reward function takes
into account several aspects such as AUV obstacle avoidance, arrival at the target, and
stability of AUV control. The reward function is calculated as shown in Equation (10).{

rauv(st, at, st+1) = τ1r1 + τ2r2 + τ3r3 + τ4r4 + τ5r5
renv(st, at, st+1) = −(τ1r1 + τ2r2 + τ3r3 + τ4r4 + τ5r5)

(10)

where rauv(st, at, st+1) denotes AUV reward, renv(st, at, st+1) denotes environment reward,
τ1, τ2, τ3, τ4, and τ5 denote the weight of each reward module, r1, r2, r3, r4, and r5 denote
the reward module.

The reward of AUV safety is mainly reflected in the safety reward module r1. After
the AUV performs the action, the reward is calculated based on the distance to the nearest
obstacle detected by sonar. If the nearest obstacle distance is less than the safety threshold
d1 but greater than the warning threshold d2, the fixed penalty is obtained; if the nearest
obstacle distance is less than the warning threshold d2, the fixed penalty is obtained. The
calculation of the target reward module r1 is shown in Equation (11).

r1 =


0, if ds > d1
−0.5, if d2 > ds ≥ d1
−1, if d2 ≥ ds

(11)

where ds is the distance between AUV and the nearest obstacle detected by perception
module at state st+1 , d1 is a constant called the safety threshold, and d2 is a constant called
the warning threshold.

The reward of AUV speed is mainly reflected in the speed reward module of r2. After
the AUV performs the action, if the AUV is closer to the target point, it will get a reward
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proportional to the current speed. The calculation of the speed reward module r2 is shown
in Equation (12).

r2 =

{ vnow
5 , if dt > dt+1
0, if dt ≤ dt+1

(12)

where vnow is the current speed of AUV, dt is the distance between AUV and target point at
state st, and dt+1 is the distance between the AUV and target point at state st+1.

The reward of the AUV target is mainly reflected in the target reward module r3. After
the AUV performs the action, the AUV will obtain a fixed reward and additional rewards
if it is closer to the target, otherwise it will obtain a fixed punishment. Additional rewards
are calculated according to the contribution of the current AUV action to the target. The
smaller the difference between the course of the AUV and the direction of the target point
after the action is executed, the greater the contribution of the current action to the target,
so the more additional rewards the AUV will receive. The calculation of the target reward
module r3 is shown in Equation (13).

r3 =

{
4− ∆θ

π × 6, if dt > dt+1
−1, if dt ≤ dt+1

(13)

where ∆θ is the difference between the course of the AUV and the direction of the tar-
get point.

The reward of the AUV mission completion is mainly reflected in the mission comple-
tion module r4. After the AUV performs the action, if the distance from the target point is
less than the target point range, it reaches the target point area and obtains a fixed reward;
if the nearest obstacle detected by sonar is less than the dangerous distance, it will be
judged as colliding with the obstacle, the task failure, and s fixed value will be given. The
calculation of the target reward module r4 is shown in Equation (14).

r4 =

{
100, if reach goal
−100, if touch collision

(14)

The reward of AUV stability is mainly reflected in the stability module r5. In order to
make the AUV navigation process more stable, this study set up a stability reward. The
more the AUV’s action at affects its speed and direction, the smaller the stability reward.
The calculation of the stability reward module r5 is shown in Equation (15).

r5 = −2×
(
(∆θ)2 + (

∆v
6
)2
)

(15)

where ∆θ is the change of AUV direction after perform action at, and ∆v is the change of
AUV speed after perform action at.

3.4. Decision Agent

The schematic of the decision agent is shown in Figure 4. The decision agent is divided
into five components, namely Actor, Critic, Entropy term, Replay buffer and environment
adaptation function. Actor is responsible for making path planning decisions, generating
the policy π

(
at

∣∣∣sk
t , θπ

)
based on the current environment state st, and sampling the action

at according to the policy. Critic is responsible for evaluating the actions generated by Actor
and assisting Actor in updating. The purpose of the Entropy term is to calculate the action
entropy αtlogπ

(
at

∣∣∣sk
t , θπ

)
of the current moment action and assist the update of Actor and

Critic. The components of the AUV path planning agent can be divided into two modules,
namely decision module and training module. The decision-making module is the most
critical module and is mainly responsible for AUV decision making. The decision-making
module performs the functions of Actor, as shown in the red solid box in Figure. The
training module is mainly used to assist the update of decision-making module, as shown
in the blue solid box in the figure.
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Figure 4. Decision agent schematic.

The environmental fitness function can control the training of the decision agent to
turn off and the update of the environmental agent to turn on. It is shown in Equation (16).
When the output value of the environment adaptation function is 1, the training of the
AUV path planning agent is turned off, and the update of the environment agent is turned
on. When the output value of the environment fitness function is 0, the AUV path planning
agent continues training.

fs =


1, if es ≥ em1
1, if ee ≥ em2
0, else

(16)

where es is the number of times the AUV has reached the target in the past 100 episodes, ee
is the number of times the AUV has been trained in the current environment, and em1 and
em2 are constants.

The update details of the AUV path planning agent are shown in Figure 5. The AUV
path planning agent is mainly divided into a decision-making module and training module.
The decision-making module, as shown by the black arrow in Figure, mainly includes the
decision making and the acquisition of the training samples when completing the task. The
training module mainly uses the samples obtained from the decision-making module for
training, as shown by the red arrow in figure. The Replay buffer is an important connection
between the decision-making module and the training module. It is responsible for storing
the training samples collected by decision-making module, and sampling m data during
the training process to train the RL method. Replay buffer sets the maximum amount ∅
of stored data. When the maximum data storage capacity is exceeded, the new data will
replace the original data.

Actor adopts a policy network with parameters θπ to represent the stochastic policy
of the AUV. The policy network is the core of the AUV path planning method. As a
neural network, it inputs the current environment information of the AUV, and outputs
the Gaussian distribution of action strategies. When making path planning decisions, the
policy network outputs the current strategy based on the current environment information,
and the AUV obtains the current action based on the current strategy distribution. The goal
of the policy network update is to minimize the objective Jπ(θπ). The calculation of Jπ(θπ)
is shown in Equation (17).

Jπ(θ
π) = Eat∼π,p∼pδenv(st+1|st ,at )

[
Q
(

sk
t , anew

t

)
− αtlogπ

(
anew

t

∣∣∣sk
t , θπ

)]
(17)

where θπ is a policy network parameter, and anew
t is the newly generated action of the

policy network according to the current state.
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Figure 5. Decision agent update schematic.

Critic includes two neural networks, the Soft-Q network and Target-Q network. They
have the same initial parameters and network structure. The input is the current envi-
ronment information of the AUV and the current action of the AUV, and their outputs
are the action value functions. The Soft-Q network is used to update the policy network.
The Target-Q network aims to reduce the effect of the estimation bias on the update of the
Soft-Q network.

The Soft-Q network with parameters estimates the action value function with entropy
terms based on the current state and action. The goal of the soft-q network update is to
minimize the target JQ

(
θQ). The calculation of JQ

(
θQ) is shown in Equation (18).

JQ

(
θQ
)
= Ep∼pδenv(st+1|st ,at )

[(
Q(sk

t , ak
t |θ

Q)− Q̂
)2
]

(18)

where δenv is the obstacle parameter generated by the environment agent, θQ is the Soft-
Q network parameter, and Q̂ is the update target. The calculation of Q̂ is shown in
Equation (19).

Q̂ = rk
t + γEp∼pδenv(st+1|st ,at )

[
Q′
(

sk
t+1, anew

t+1

∣∣∣θQ′
)
− αtlogπ

(
anew

t+1

∣∣∣sk
t+1 , θπ

)]
(19)

where rk
t is AUV reward at time t, Q′

(
sk

t+1, anew
t+1

∣∣θQ′
)

is an estimate of the Target-Q network,

θQ′ is the Target-Q network parameter, π
(

anew
t+1

∣∣∣sk
t+1 , θπ

)
is a new policy generated by the

policy network based on the state, and anew
t+1 is a current action obtained by sampling from

the new policy.
Target-Q network with parameters estimates the target of Soft-Q network based on

states and actions. The target-Q network has the same initial parameters as the Soft-Q
network, but the update method is different. It performs a soft update with the Soft-Q
network parameters as the target. The soft update of the Target-Q network is shown in
Equation (20).

θQ′ = τsθQ + (1− τs)θ
Q′ (20)

where τs is a weight called the soft update rate.
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To improve the exploration ability of path planning strategies, action entropy and
entropy parameters are introduced. Action entropy is the information entropy of the AUV
strategy, which represents the randomness of the AUV strategy. Entropy parameter is a
coefficient of action entropy. As an adaptive parameter, it indicates the importance of the
action entropy in the update of Actor and Critic updates. Entropy parameter represents
the randomness of the strategy and is updatable. The larger the entropy parameter is, the
greater is the randomness of the actions generated by the AUV path planning method. The
goal of the entropy parameter update is to minimize the objective Jα. Jα is calculated as
shown in Equation (21).

Jα = −αtlogπ
(

anew
t

∣∣∣sk
t , θπ

)
− αtH (21)

where H is a constant.
GSAC method (Algorithm 2) is obtained by combining the SAC method with

Algorithm 1.

Algorithm 2 GSAC Algorithm

1: Randomly initialize Policy network π(at|st , θπ), Soft-Q network Q(st, at|θ Q)
2: Initialize entropy parameter αt = − log(2), fs = 0

Initialize Target-Q network Q′
(
st, at

∣∣θQ′ ), initialize θQ′ = θQ

3: while not converge do
4: while fs = 0 do
5: Initialize simulation environment for exploration
6: while not reach goal do
7: Receive initial observation state st
8: Select action at π(at|st, θπ ) according to current policy
9: Take action at and observe state st+1

10: Compute rauv(st, at, st+1) according to Equation (10)
11: Store (st, at, rauv, st+1) into Replay buffer
12: Update Policy network, Soft-Q network, Entropy parameter, Target-Q network

according to Equations (17)–(21)
13: end while
14: Optimize δmin according to Algorithm 1
15: Update simulation environment according to δmin
16: Compute fs according to Equation (16)
17: end while
18: end while
Output: Policy network, Soft-Q network, Entropy parameter, Target-Q network

4. Simulation Results

To verify the feasibility of the GSAC method, a simulation training environment and a
test environment are set up with the Python programming language. Meanwhile, different
training environments are set up for GSAC and comparison algorithms based on different
training methods. Comparison algorithms include SAC and DQN [26]. DQN’s policy is the
ε-greedy policy. After training in the training environment, put GSAC, SAC and DQN into
the same test environment for testing.

4.1. Train Environment

In this study, a simulation training environment is constructed for GSAC. The AUV
is modeled as a mass with controllable velocity in the simulation environment. The size
of the simulation training environment is 500 × 500 m, the initial position of the AUV is
located at the coordinate point (50 m,50 m) in the figure, and the target center is located
at the point (450 m, 450 m). The environment is clear with a boundary. When the GSAC
method is trained, the environment agent adds obstacles to the environment or transforms
the size, shape and position of obstacles. The obstacles in the environment are rectangular.
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The hyperparameters of GSAC, SAC and DQN are determined based on
references [27,29,40,46,47] and engineering experience, as shown in Table 1.

Table 1. Hyperparameters of GSAC, SAC and DQN.

Hyperparameter Value

Learning rate α1, α2 0.0001
Discount factor γ 0.99

Replay buffer size ∅ 102400
Mini batch size m 128

Soft update frequency τs 0.01
Max episode num M 6000

Reward weight τ1,τ2,τ3,τ4,τ5 1
PSO weight c1 0.49445
PSO weight c2 1.49445

Population size nx 150
Explore rate ε 0.9

The parameters of the environment agent in GSAC are determined based on engineer-
ing experience, as shown in Table 2.

Table 2. Parameter of environment agent.

Parameter Value

Game success episode em1 15
Game max episode em2 45

Size update threshold nl 12
Amount update threshold nn 240

Size update weight dl 20

Figure 6 demonstrates the training process of GSAC. At episode 1, the AUV fails to
reach the target in the open environment. With the training of the decision agent, the
AUV can reach the target at episode 31, while the environment agent adds obstacles to
the environment. With the training process, the environment agent adds small obstacles
to the environment at episode 294, which result in the AUV being unable to reach the
target under the interference of the obstacles. The AUV path planning agent updates and
improves its strategy, and is rid of the interference of obstacles. After that, the environment
agent keeps upgrading the obstacle size along with the game between it and the path
planning agent. When the obstacle size exceeds the threshold, it indicates that it is difficult
for a single obstacle to prevent the AUV from reaching the target, and the number of
obstacles will be increased to 2. At episode 3726, the AUV cannot reach the target due
to the interference of two obstacles. With the updating of AUV path planning agent and
the improvement of strategy, the AUV can reach the target under the interference of two
obstacles at episode 3742.

4.2. Simulation Test Results

To verify the path planning capability of AUV path planning strategy in unknown
underwater environment, two 2D underwater simulation environments were constructed in
a high performance computer using Python programming language, as shown in Figure 7.
The continuous unknown underwater test environments were designed by referring to
the common scenarios such as canyons, large rocks and reef clusters, mainly including the
static test environment and dynamic test environment.
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Figure 6. Training process of GSAC. •: AUV; •: Goal; �: Obstacle; —: Border; —: Sonar range; —:
AUV trajectory.

Figure 7. Test environment. (a) Static environment. (b) Dynamic environment. •: AUV; •: Goal;
�: Obstacle; •: Dynamic obstacle; —: Dynamic obstacle trajectory.

The static environment is used to test the path planning performance of the AUV in
the unknown static underwater environment. It mainly includes a narrow canyon area
located on the left, a large underwater rocky area in the middle, and a submerged reef
area on the right. The black lines in the environment are obstacles, the red dots are AUVs,
and the green dots are targets. The dynamic environment is a dynamic test environment,
which adds small moving obstacles represented by blue circles on the basis of the static
environment. It is used to test the path planning performance of the AUV in an unknown
dynamic underwater environment. The blue solid line in the environment is the trajectory
of the moving obstacle, and the dynamic obstacles move reciprocally in the trajectory. The
size of the test environment is 400 × 1600 m, the initial position of the AUV is located at
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the point (50 m, 50 m), and the target center point is located at the point (1550 m, 200 m).
The parameters of moving obstacles are shown in Table 3.

Table 3. Parameters of dynamic obstacles.

Obstacle End Point 1 (m)
Starting Point End Point 2 (m) Speed (m/s)

1 (120, 60) (220, 60)

0.5

2 (460, 140) (460, 240)
3 (600, 210) (700, 210)
4 (1220, 250) (1220, 350)
5 (1220, 150) (1550, 50)
6 (230, 135) (330, 135)
7 (1490, 150) (1490, 250)

After constructing the test environment, this paper tests GSAC, SAC and DQN, and
compares the advantages and disadvantages of these methods.The SAC and the DQN are
tested after the pre-training, as shown in Figure 8, and the training parameters of them
are the same as those in Table 1. SAC and DQN cannot guide AUV to reach the target at
episode 1. With continuous training, SAC and DQN can successfully guide AUV to reach
the target.

Figure 8. Pretraining process of SAC and DQN. •: AUV; •: Goal; �: Obstacle; —: SAC training
episode 1 trajectory; —: SAC training episode 6000 trajectory; —: DQN training episode 1 trajectory;
—: DQN training episode 6000 trajectory.

To verify the adaptability of GSAC, SAC and DQN to unknown underwater environ-
ments, they are tested in static and dynamic environments, and their test performance
is counted. According to the principle of variable control, the hyperparameters of these
methods during the test are the same as Table 1. The test performance is divided into two
main parameters and three secondary parameters. The main parameters included Success
Episodes and Training Episodes. Success Episodes refers to the number of AUV tasks
successfully executed in the test. The larger this number, the better the stability of the AUV
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path planning strategy. Training Episodes refer to the current number of training rounds.
The smaller the number, the faster the training speed of the AUV path planning strategy.
The secondary parameters include the Truly Shortest Path Length, Average Length and Yaw
Angle. The Truly Shortest Path Length refers to the length of the shortest path found by the
AUV during the test. The smaller the number, the better the AUV path planning strategy
in finding the optimal path. The Average Length refers to the average path length of the
AUV successfully reaching the target during the test. The smaller the number, the more
stable the AUV path planning strategy in finding the optimal path. Yaw Angle refers to
the average yaw angle of each step in the path of the AUV successfully reaching the target
during the test. The smaller the number, the smoother the AUV path planning strategy and
the lower the control difficulty.

4.2.1. Static Environment Simulation

The test data of GSAC, SAC and DQN in the static environment are shown in Table 4.

Table 4. Static environment simulation result.

Algorithm Training Episode Truly Shortest
Path Length (m)

Average Length
(m) Yaw Angle (◦) Success Episodes

GSAC 1–500 1636.61 1680.52 4.97 496
GSAC 501–1000 1630.19 1643.17 4.92 500
SAC 1–500 1620.26 1672.65 4.96 417
SAC 501–1000 1631.23 1671.48 4.96 499
DQN 1–500 1633.29 1718.19 4.20 446
DQN 501–1000 1623.93 1683.59 4.36 387

At the same training episodes, the GSAC performs better than SAC and DQN in
the Success Episodes. The Truly Shortest Path Length of GSAC at 501–1000 episodes is
1630.19 m, which is 1.04m shorter than that of SAC and 6.26 m and longer than that of
DQN. At 501–1000 episodes, the average length of GSAC is 1643.17 m, which is 28.31 m
shorter than that of SAC and 40.42 m shorter than that of DQN. At 501–1000 episodes, the
Yaw Angle of GSAC is 4.92◦, which is 0.04◦ less than that of SAC and 0.56◦ more than that
of DQN. Due to the influence of αtlogπ in Equation (17), GSAC and SAC have larger action
randomness, so they have a larger yaw angle than DQN.

The curves of GSAC, SAC and DQN in the static test environment are shown in
Figure 9. Figure 9a shows the task completion rate curves for the last 100 episodes. After
a small amount of trial and error in the initial exploration, GSAC can quickly adapt to
the environment and reach the goal. The SAC need 400 episodes to adapt to the static
environment. DQN can quickly adapt to the static environment before 400 episodes, but it
does not converge at 400-1000 episodes. Figure 9b shows the average reward per step curves.
Compared with SAC, GSAC earns higher rewards and has a smoother reward curve. After
convergence, SAC’s reward curve still exhibits fluctuations. DQN does not converge at
400–1000 episodes, its reward curve still exhibits fluctuations. Figure 9c shows the average
yaw angle curves per step. The yaw angle of GSAC is more stable at the convergence.
Figure 9d shows the path length curves. A path length of 0 indicates that the AUV did
not successfully reach the target in this episode. GSAC has faster convergence, stable task
performance, and shorter planned paths. After converge, the SAC’s path length curve
still exhibits small fluctuations. The DQN’s path length curve exhibits fluctuations at 400–
1000 episodes. The optimal paths of GSAC, SAC and DQN in the static test environment are
shown in Figure 10. Compared with the SAC algorithm, the GSAC can obtain more rewards
in the static underwater environment with faster convergence, stability, and robustness.
Compared with the DQN algorithm, the GSAC has faster convergence, stability, and
robustness in the static underwater environment.
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Figure 9. Static environment simulation curves. (a) Success rate (last 100 episodes).(b) Reward per
step. (c) Yaw angle. (d) Path length.

Figure 10. Static environment trajectory. •: AUV; •: Goal; �: Obstacle.

4.2.2. Dynamic Environment Simulation

The test data of GSAC, SAC and DQN in static environment are shown in Table 5. Due
to GSAC having a faster convergence speed in a dynamic environment, SAC and DQN are
trained in more episodes to compare with GSAC.

The Success Episodes of GSAC at 501–1000 episodes is 496, which exceeds the test per-
formance of SAC and DQN. The Truly Shortest Path Length of GSAC at 501–1000 episodes
is 1631.30 m, which is 18.06 m less than that of SAC at convergence and 4.8 m more than
that of DQN at 501–1000 episodes. The Average Length of GSAC in 501–1000 episodes
is 1645.61 m, which is shorter than that of SAC and DQN. The Yaw Angle of GSAC at
501–1000 episodes is 4.92◦, which is 0.06◦ more than that of SAC at converge and 0.74◦

more than that of DQN at 501–1000 episodes. At 1–1000 episodes, the difference in yaw
angles between the three algorithms is negligible for path planning.
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Table 5. Dynamic environment simulation result.

Algorithm Training Episode Truly Shortest
Path Length (m)

Average
Length(m) Yaw Angle (◦) Success Episodes

GSAC 1–500 1630.04 1686.88 5.02 386
GSAC 501–1000 1631.30 1645.61 4.92 496
SAC 1–500 1642.20 1679.64 5.03 166
SAC 501–1000 1637.83 1695.90 4.88 223
SAC 1001–1500 1660.33 1776.35 5.25 198
SAC 1501–2000 1649.36 1693.83 4.86 468
DQN 1–500 1649.53 1735.75 4.20 381
DQN 501–1000 1626.50 1698.14 4.18 425
DQN 1001–1500 1641.92 1696.27 3.57 393
DQN 1501–2000 1623.21 1658.26 3.17 168

The curves of GSAC, SAC and DQN in the dynamic test environment are shown in
Figure 11. The red axes in figure represent GSAC’s test episodes, and the black axes represent
test episodes of SAC and DQN. Figure 11a shows the task completion rate curves for the
last 100 episodes. After 500 episodes of testing, GSAC can adapt to the environment and
reach the goal stably, outperforming SAC and DQN. Figure 11b shows the average reward
per step curves. The average reward curve of GSAC is smoother than that of SAC and DQN.
Figure 11c shows the average yaw angle curves per step. The yaw angle of GSAC is smaller
and more stable than that of SAC. Figure 11d shows the path length curves. The performance
of GSAC in the 600-800 episodes outperforms the overall performance of SAC and DQN.
GSAC has faster convergence, stable task performance, and shorter planned paths. The
SAC and DQN curve have significant fluctuations. The optimal paths of GSAC, SAC and
DQN in the dynamic test environment are shown in Figure 12. Compared with the SAC
algorithm, GSAC can obtain more rewards in the dynamic underwater environment with
faster convergence, stability, and robustness. Compared with the DQN algorithm, GSAC has
faster convergence, stability, and robustness in the dynamic underwater environment.

Figure 11. Dynamic environment simulation curves. (a) Success rate (last 100 episodes). (b) Reward
per step. (c) Yaw angle. (d) Path length.
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Figure 12. Dynamic environment trajectory. •: AUV; •: Goal; �: Obstacle; •: Dynamic obstacle;
—: Dynamic obstacle trajectory; —: Border.

5. Conclusions

To improve the adaptability of autonomous planning and the reliability of obstacle
avoidance of AUVs in unknown underwater environments, the GSAC method is proposed
in this paper. Considering the influence of the simulation environment, the obstacles in
the simulation environment are regarded as agents and play a zero-sum game with the
AUV. The zero-sum game problem is solved by improving the strategy of AUV and the
obstacles, so that the simulation environment evolves intelligently with AUV path planning
strategy. The proposed method increases the simulation environment’s complexity and
diversity, enables AUV to be trained in a variable environment specific to its strategies, and
improves AUV’s adaptability and convergence speed in unknown environments. Through
simulation experiments in an unknown underwater simulation environment written in the
Python language, the study verifies that GSAC can guide AUV to reach the target point
in an unknown underwater environment, while avoiding large and small static obstacles
(AUV sonar detection range is less than 1/6 of the large obstacle diameter), underwater
canyons, and small dynamic obstacles in the simulated environment. In this study, modular
reward rules are designed for multiple objectives of the AUV path planning problem to
solve the sparse reward problem in AUV path planning. GSAC outperforms SAC and
DQN in stability, convergence speed, and robustness.
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