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Abstract: In the present study, breaking focused wave groups were simulated using open-source
Computational Fluid Dynamics model REEF3D in order to investigate the breaking wave impact
on scaled (1:10) two-dimensional coastal deck structure with girder. The effect of environmental
parameters, such as bottom slope and wave steepness on the breaking and geometric properties of
high-crested spilling breakers, was investigated. The effect of the wave breaking location on the
impact forces acting on the deck structure located at different airgap positions was studied for three
wave impact scenarios: (i) when the wave breaking starts, (ii) when a slightly overturning crest is
formed, and (iii) when the wave breaks and a fully overturning crest is formed just before hitting the
preceding trough. The peak horizontal impact force was found to be higher when the wave breaks
ahead of the structure and the overturning wave crest hits the deck positioned above the still water
level. Additionally, the peak vertical impact force attains the peak when the deck is placed at the
still water level for different stages of breaking. The peak horizontal impact force shows a parabolic
trend, whereas the peak vertical impact forces show a decreasing linear trend with an increase in
airgap. Finally, force coefficients are derived for calculating the peak impact force on deck with
girders subjected to high-crested spilling breakers.

Keywords: breaking wave; impact force; coastal deck; focused wave; numerical wave tank; REEF3D

1. Introduction

Breaking waves can cause an enormous impact on coastal structures due to the sudden
impingement of water mass against the structure and due to complex free surface trans-
formations during the breaking process. An insight into the velocity and impact pressure
variation can help us to obtain a deep understanding of the wave breaking process. Coastal
structures are subjected to damages arising from sudden slamming caused by breaking
waves. Wave breaking effects on vertical structures such as seawalls and breakwater were
widely investigated [1,2]. The Indian Ocean Tsunami (2004) caused severe damage to the
seawall, wharf deck, jetties and bridges. The wave impact on bridge decks was widely
studied after hurricane Katrina which alone damaged 44 bridges along the Gulf Coast
region [3,4].

Similarly, various hurricanes [Wilma and Rita (2005), Ike (2008), Irma (2017), and
Michael (2018)] and tsunamis [Great East Japan Tsunami (2011), and Palu Tsunami (2018)]
caused tremendous damage to the bridge decks, which demands detailed research in this
area [5]. The storm surges were associated with a sudden rise in water level increasing the
water depth over which extreme waves propagate and hit the decks, causing an impact.
Large-crested waves on top of the surge impact the bridge decks during storm surges. The
wave impact on submerged, partially submerged and completely elevated bridge decks
were investigated both experimentally and numerically in the past [6–10]. The wave breaks
on the structure when the deck is above the water level compared to submerged decks. The
impact on the submerged deck showed a smooth force–time history and exhibited large
fluctuations for decks located above the still water level [11]. An arbitrary Lagrangian–
Eulerian (ALE) numerical method with a multi-phase compressible formulation is used for

J. Mar. Sci. Eng. 2022, 10, 768. https://doi.org/10.3390/jmse10060768 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse10060768
https://doi.org/10.3390/jmse10060768
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-2907-0470
https://doi.org/10.3390/jmse10060768
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse10060768?type=check_update&version=2


J. Mar. Sci. Eng. 2022, 10, 768 2 of 27

the development of three-dimensional hydrodynamic models by [12], which is validated
for fluid structure interaction involving two-phase flow. Solitary [13], regular Stokes and
focused waves were widely used experimentally and numerically to study the impact on
coastal structures. Extreme waves with high crests were found to be better represented
by focused waves [14] and used to investigate the impact on coastal decks [15]. These
large-crested waves break due to shoaling as they approach the shore and may break due
to the action of wind. The breaking of such waves creates spilling breakers during storm
scenarios. Thus, it is crucial to understand the breaking wave impact on the coastal decks,
as the large-crested waves undergoing spilling breakers are common.

The breaking wave geometry and kinematics were studied using solitary [16], reg-
ular [8] and irregular waves [17] over beach slopes for different wave steepness. These
studies consider spilling and plunging breakers and their impact on vertical cylinders. The
environmental parameters such as water depth, beach slope and wave steepness effects
were investigated both experimentally and numerically. The limiting steepness for Stokes
waves in deep water goes up to 0.443 as per Stokes theory. Ref [18] observed the limiting
steepness up to 0.41 for spilling breakers generated in a convergent channel. The local
wave geometry was also found to be a better alternative to define breaking, which includes
the wave crest front steepness, wave crest rear steepness, and vertical and horizontal
asymmetry. These parameters defining the local geometry were first introduced by [19].
According to their study, breaking crest front steepness was reported to vary between
0.32 and 0.78, whereas the vertical and horizontal asymmetry factors are 2.0 and 0.9, respec-
tively. Ref [20] also observed the breaking wave profiles and found the crest front steepness
between 0.25 and 0.55, whereas the vertical and horizontal asymmetry parameters are
2.14 and 0.77, respectively. Additionally, the averaged value of crest front steepness was
reported to be 0.38 for spillers and 0.61 for plungers. The wave steepness and the local
wave parameters were in different ranges for Stokes, solitary and irregular wave breaking.
For Stokes second-order waves in deep water, the crest front and rear steepness were 0.40,
whereas the vertical and horizontal asymmetry parameters were 1.0 and 0.61, respectively.
Experimental investigations of breaking wave impact on vertical cylinders [21–23] suggest
that the impact force due to breaking wave depends on the breaking wave geometry and
wave kinematics. Additionally, the position of the structure with respect to the breaking
location induces higher impulsive impact pressure. Similarly, understanding of the wave
kinematics during the impact on deck with girders can help in understanding the impact
pressure and forces acting on the structure, which require detailed investigation.

Numerical modelling of the breaking wave can be carried out by adopting suitable
sea bed slopes or by using the focused wave concept [24,25]. The focused wave generated
using nonlinear wave–wave interaction was used for generating larger wave heights by
constructive interference. These large waves generated using wave focusing were used for
breaking wave generation [26–28]. A detailed review of breaking studies using the focused
wave concept was described in [29]. Ref [30] performed experiments on wave groups
and observed that the breaking of wave groups depends on the local wave geometry. A
detailed investigation was further carried out [31] to study the wave characteristics of wave
groups and local breaking waves. The time and length scale of active breaking, the energy
dissipation and the strength of breaking were numerically investigated. The numerical
studies were carried out mainly using the Reynolds Averaged Navier–Stokes equations
with suitable free surface capture methods. Breaking wave impact due to focused wave
generated using the JONSWAP spectrum as input was investigated by [32] using open-
FOAM. Ref [33] computed breaking wave impact pressures on a tripod structure subjected
to breaking focused waves under three impact conditions using the commercial software
ANSYS CFX. The same concept of the focused wave was used to generate wave breaking in
intermediate water to study the breaking wave kinematics on monopile structures [32,34]
and flat bridge deck structures of rectangular cross section [35,36].

An open source CFD model, REEF3D has been successfully used by many researchers
to simulate breaking waves and investigate the impact on structures [37,38]. Ref [11] used
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this model to study the solitary wave impact (including slamming and quasi-static force)
on a coastal bridge deck with girder. The numerical model was further used for studying
the non-breaking and breaking focused wave impact on an offshore deck [39]. However,
studies of breaking wave impact on complex coastal decks with girders are not available.
Hence, it is important to investigate the breaking wave kinematics during the non-linear
interaction of a breaking wave and coastal deck with girders to estimate the horizontal and
vertical impact forces with better accuracy.

The main objective of this study is to numerically investigate the impact pressure and
associated kinematics on a coastal deck located at different airgaps under the effect of large-
crested spilling breakers. The main focus of the investigation is to identify the variation
of larger pressure oscillations due to breaking events around the front wall and bottom
of deck with respect to varying airgap. Firstly, spilling breakers were generated in the
numerical wave tank with gentle slopes using focused wave groups. The characteristics and
geometry of the breaking waves [19] are analysed based on different breaking parameters.
Three impact locations were considered in the breaking process to investigate the impact of
breaking waves on a coastal deck: (i) when the wave breaking starts, (ii) when the slightly
overturning crest is formed, and (iii) when the wave breaks and the fully overturning crest
is formed just before hitting the preceding trough. The deck structure is placed at these
locations with the varying airgap. The breaking impact pressure and velocity variation in
the vertical direction from the free surface for varying structural locations are analysed.
Finally, the horizontal and vertical impact forces at different impact locations and airgaps
on a coastal deck under spilling breakers are analysed. Past studies [8,40–43] showed that
the entrapped air between the diaphragms below the deck undergoes nonlinear interaction
with wave affecting the uplift forces and can be better captured in 3D models. The present
study assumes negligible lateral transmission of the wave energy and investigates the
impact of focused breaking waves on coastal deck structures using 2D models, considering
the computational cost relative to the 3D model that has been quite common in past
numerical investigations as well. However, a 3D model study may be carried out in future
to verify the improvement in the results.

2. Materials and Methods
2.1. Numerical Model

A numerical investigation was carried out using the open-source CFD model REEF3D [44]
to study the breaking wave impact on a coastal deck with girders. The incompressible
unsteady Reynolds-Averaged Navier–Stokes (URANS) equations (Equation (2)), along with
the continuity equation (Equation (1)), were used to model highly nonlinear events such as
wave breaking. The process of wave breaking and displacement of air pockets are captured
by the numerical model.

∂ui
∂xi

= 0 (1)
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where ρ is the fluid density, p is the pressure, u is the velocity, ν is the kinematic viscosity,
νt is the eddy viscosity, and g the acceleration due to gravity. Turbulence effects were
incorporated using the k-ω model, where the transport equations for the turbulent kinetic
energy (k), and the specific turbulent dissipation rate (ω) are:
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where νt = k/ω, Pk is the production rate and closure coefficients σk = 2, σw = 2, βk = 9/100,
β = 3/40 and α = 5/9. The k-ω model was used to capture the breaking process, including
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the spilling breakers along with the RANS equation [45]. The turbulence model affects
the free surface and flow characteristics due to unphysical turbulence production. The
large production of turbulence was controlled by limiting the turbulent eddy viscosity. The
overproduction of turbulence during breaking can be controlled by using a limiter proposed
by [46]. Additionally, using the turbulence model with the RANS equations in a two-phase
flow leads to overproduction of turbulence at the free surface, as the turbulence intensity
is overestimated at the surface. This overestimation can be controlled by incorporating a
turbulence damping scheme proposed by [47] at the air–water interface. The near-wall
effects were accounted through wall functions for the velocities and the variables of the
turbulence model.

The first step to solve the fluid flow problems represented by differential equations
was to discretise the convective terms. The convective terms were discretised using the
finite difference method in terms of conservative finite differences. The present study
employed the Hamilton–Jacobi formulation of the WENO scheme. This scheme helps to
provide numerical stability with high order accuracy and avoid any discontinuities at the
interface. The time-dependent terms were discretised using the Total Variance Diminishing
(TVD) third-order Runge–Kutta explicit scheme. The projection method proposed by [48]
solved the pressure term in the Navier–Stokes equation. To maintain an adequate time
step size using explicit methods, CFL (Courant–Frederick–Lew) criteria were adopted. The
CFL number has been maintained at 0.1 throughout the simulations. The adaptive time-
stepping method was adopted, where the time step gets calculated at each iteration [49].
This method includes the effects of velocity (u) and the source term S in calculating the
time step (∆t) of each iteration along with the meshes in all directions (∆x, ∆y and ∆z). The
following criteria should be satisfied while calculating the time step:

∆t ≤ 2

((
|u|max

∆x + D
)
+

√(
|u|max

∆x + D
)2

+ 4|Smax|
∆x

)−1

where, D = max(ν + νt).
(

2
(∆x)2 +

2
(∆y)2 +

2
(∆z)2

) (4)

The Level Set method was employed in REEF3D to model the free surface in a two-
phase fluid problem. A signed distance function called the level set function captures the
interface (ε′) between air and water, which is crucial during the process of breaking. The
interface was modelled as zero level set function throughout the computational domain.
This allows for resolving the flow field in the air phase. The level set function for the
computational domain is defined as follows:

φ(x, t) =


> 0, i f x is in phase 1(water)
= 0, i f x is at the inter f ace

< 0, i f x is in phase 2 (air)

(5)

The movement of the interface was characterised by the convection of the level set
function (Equation (6)). The level set function is maintained for the moving interface by
redistributing it at each time step, for which the partial differential equation (PDE)-based
reinitialization technique was adopted [50].

∂φ

∂t
+ Uj

∂φ

∂xj
= 0 (6)

There is a large instability at the interface (air–water) with the values changing from
positive to negative. The solution to this problem is to define a transition zone with
thickness 2ε (where ε = 1.6∆x) at the interface and to smooth the region at the interface
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using a regularized Heaviside step function H(φ). The density and viscosity smoothing at
the interface and Heaviside function are given as follows:

ρ(φ) = ρwater H(φ) + ρair(1− H(φ))

ν(φ) = νwater H(φ) + νair(1− H(φ))

H(φ) =


0 i f φ < −ε

0.5
(

1 + φ
ε + 1

π sin
(

πφ
ε

))
i f |φ| < ε

1 i f φ > ε

(7)

The total wave force on the structure was computed by integrating the pressure (p),
and the normal component of the stress tensor (τ) over the surface (Ω) of the structure.
Horizontal and vertical forces are obtained by integrating the pressure over all the vertical
and horizontal surfaces, respectively. The impact forces are normalized with a factor
1/ρgHm A, where A is the deck area. ‘A’ can be replaced with Ah for projected area in
horizontal plane and Av for projected area in vertical plane to compute the vertical and
horizontal impact forces, respectively. The maximum forces include the impact force as
well as the hydrostatic force due to the surge.

The integrated force is then calculated at each time step for the individual cell surfaces,
which again depends on the Courant number and maximum velocity in the computational
domain. The equation used for computing the force is given as

F =
∫
Ω

(−np + n.τ)dΩ (8)

2.2. Focused Wave Generation

Focused waves were generated in the numerical wave tank (NWT) using the phase
speed method, following [51]. In this method, the phases of individual wave components
at discrete frequencies were adjusted to focus on a particular location and time. To achieve
wave energy focusing at a specified position and time, the phases of wave components are
modulated as zero. This helps to generate large wave heights in the numerical wave tank,
which then propagate into shallower water depths. As the water depth reduces, it results
in a massive redistribution of energy which may lead to the breaking of waves.

The wave elevation is given by

η(x, t) =
N

∑
i=1

ai cos
[
k′ i(x− x0)−ωi(t− t0)

]
(9)

The amplitude of each wave component ai of frequency, fi is defined as

ai = A S( fi)∆ f
N
∑

i=1
S( fi)∆ f

where A =
√

2m0 ln(N)

(10)

where η is the instantaneous free surface elevation; (x0, t0) are the predefined focal location
and time, respectively; k′ is the wave number and ω′ is the angular frequency; S(fi) is
the spectral density; m0 is the zeroth moment of input spectrum; ∆f is the frequency step
depending on the number of wave components N and bandwidth and ‘A’ is the target
theoretical linear wave amplitude of the focused wave.

3. Results and Discussions
3.1. Model Validation

The numerical wave tank modelled was divided into two zones; zone 1 represents the
wave generation zone, and zone 2 is the working zone, as shown in Figure 1. The wave
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generation zone and the working zone are fixed at two and six times the peak wavelength,
respectively. The wave generation zone is a relaxation zone, where the velocities and free
surface are ramped up to match the wave theory. The active wave absorption method was
used at the end of the numerical wave tank to prevent the reflected waves. The initial
boundary condition was the velocity inlet with Schaffer’s second order focused wave as
input. A symmetry boundary condition was used for the 2D wave tank whereas the bottom
has a wall boundary condition. The coastal deck structure has been placed in the working
zone for calculating the wave impact forces.

Figure 1. Schematic diagram of numerical wave tank showing the position of deck (All dimensions
in cm).

The numerical wave tank used has a length of 25 m, height of 1.5 m with one mesh size
as the width. The height and width are maintained same for all the numerical simulations,
whereas the length varies with the input peak wave length. The coastal deck structure is
scaled down (1:10) to fit into the numerical tank dimensions. The scaling is in accordance
with the Froude’s Law. The prototype dimensions considered for the present study are
detailed as in Table 1. The significant wave height and peak wave period are given as input
and the wave length has been calculated using wave dispersion relationship. The initial
wave length reduced with an increase in the wave height as the wave travels along the
numerical wave tank. The impact forces obtained are scaled up to the prototype scale and
normalized in the presented results. As the simulations are two-dimensional, the results
are not highly influenced by the scale [52]. The forces obtained from the two-dimensional
simulations are presented as the total force on the entire bridge deck, i.e., they are multiplied
by the bridge span length.

Table 1. Prototype Dimensions.

Specifications Prototype Model

Length, L (m) 11 m 1.1 m
Deck thickness, tg (m) 0.2 m 0.02 m
Girder height, dg (m) 1 m 0.1 m

Girder spacing, Sg (m) 2.6 m 0.26 m
Significant wave height, Hs (m)

Peak wave period (Tp)
1.5–1.9 m
6.32–7.9 s

0.15–0.19 m
2–2.5 s

Airgap, S (m) 0–1 m 0–0.1 m
Deep water depth, d (m) 4.5 m 0.45 m

Breaking water depth, db (m) 2.8 m 0.28 m
Wave length, Lp (m) ~28–40 m ~2.8–4 m

The two-phase CFD model (REEF3D) based on the Reynolds-Averaged-Navier–Stokes
(RANS) equations coupled with the level set method (LSM) and k-ω turbulence model was
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used to simulate spilling breakers over a sloping bed using Cnoidal and Solitary waves
by [53] Their study validated the numerical model with the experimental data measured
by [54]. The model was proven to capture the prominent features such as motion of air
pockets in the water, formation of a forward moving jet, the splash up phenomenon and
mixing of air and water in the breaking region. The simulated horizontal velocities and
free surface elevations are in good agreement with the experimental measurements.

The present section deals with the validation of numerical model for focused wave
breaking [31]. The breaking of focused wave groups was carried out for two breaking wave
scenarios and the surface elevations are compared. The breaking of focused wave on the
deck was numerically simulated and compared with the experimental results of [36] by [55].
Additionally, the present study does not consider the breaking of waves on the shore.

The breaking of wave groups carried out experimentally by [31] was considered a
bench mark study for the validation of the numerical model. They simulated the breaking
of the wave groups by dispersive wave focusing by specifying constant wave steepness
and gain factor. The experiments were carried out in a 2D wave tank with 35 m length,
0.7 m width and 0.62 m water depth (Figure 2). Both breaking and extreme breaking wave
groups were generated and the surface elevations were plotted. Two cases of [31] with
wave id W4G4 and W5G2 having peak frequencies of 1.025 and 1.245 Hz and constant
steepness of 0.669 and 0.483, respectively, were considered in the present validation. The
surface elevations during the breaking is recorded by placing three wave gauges (Probe 1,
Probe 2 and Probe 3) in the breaking region of the wave tank [31]. The surface elevations
are recorded for one upstream and two downstream locations relative to wave breaking.
The position of probes is varied depending on the breaking location for different cases
considered in the experiment. The breaking scenarios generated for the two cases (W4G4
and W5G2) were considered to validate numerical model REEF3D. The surface elevations
are plotted at locations, x = 13.94, 15.7 and 18 m for W4G4 and locations, x = 11.4, 12.59 and
14.73 m for W5G2.

Figure 2. Experimental set up of [31] showing wave probe arrangement.

Figure 3 shows the comparison of surface elevation obtained numerically using
REEF3D at three probe locations with the experimental results of [31]. The magnitude and
phases of surface elevation time history are in good agreement, and the numerical model
can be further used for focused wave group breaking studies. The present validation was
performed for the breaking focused wave in constant water depth, whereas the simulation
using REEF3D of the breaking process in varying water depth forming the spilling and
plunging breakers was validated by [53].



J. Mar. Sci. Eng. 2022, 10, 768 8 of 27

Figure 3. Comparison of surface elevations from the numerical model REEF3D with the experimental
results of [31] for wave ids W4 and W5 (i) W5-Probe 1 (ii) W4-Probe 1 (iii) W5-Probe 2 (iv) W4-Probe
2 (v) W5-Probe 3 and (vi) W4-Probe 3.

A mesh refinement study was carried out using four different mesh sizes, ∆x = 0.005,
0.01, 0.025, and 0.05 m using a desktop workstation in a parallel computing environment. It
is observed (Figure 4) that the computational time increases exponentially when the mesh
size is reduced from 0.01 to 0.005 m whereas the accuracy increases only by 8 %. Hence,
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a mesh size of 0.005 m was considered for all further numerical investigations. Figure 5
shows the comparison of wave profiles at different meshes at three probe locations for the
two wave ids (W4 and W5) mentioned above. The mesh size of 0.01 and 0.005 m are able to
the capture the wave elevation and the phases for the different probe locations. The mesh
size of 0.05 m is found to be not suitable for capturing the breaking phenomenon and is not
considered further. The relative errors on the peak wave elevation for wave id, W4G4 at
three probe locations considering mesh size of 0.005 m are found to be 2.6%, 0.35 % and
1.2%. Similarly, the relative errors for wave id, W5G2 at three probe locations are found to
be 2.7%, 0.36% and 1.3%. The errors related to the phase are not investigated further, as the
breaking wave characteristics and locations (Section 3.2) are determined prior to locating
the structure.

Figure 4. Mesh size vs. computational time and accuracy for breaking focused wave simulation in
numerical wave tank modelled using REEF3D.

3.2. Breaking Wave Generation in the Numerical Wave Tank

This section demonstrates the numerical wave tank capability for generating breaking
waves with varying input conditions. Spilling breakers were generated in the numerical
wave tank by breaking high-crested focused waves with larger wave heights on mild
slopes. Numerical simulations were carried out in a water depth of 0.45 m for different
input significant wave height, peak wave period and mild slopes to generate the breaking
condition in the numerical wave tank (as detailed in Table 2). The results are used to select
the locations to place the deck structure in order to analyze the effect of breaker location on
the impact forces. A surf similarity parameter of less than 0.5 is taken as input to generate
spilling breakers. Figure 6 shows the wave breaking process and free surface transformation
with velocity magnitude variation at different time steps along the length of the numerical
wave tank. These spilling breakers are similar to those obtained by [56]. The focused
wave generated travels along the length of the tank and breaks on the slope at larger water
depths, whereas the breaking on the shore is not considered here. The symmetrical wave
reaches maximum wave height and starts deforming due to shoaling as it rides over the
mild slope (Figure 6i,ii). The wave crest becomes vertical with the increase in velocity as
the trough depth decreases. As the crest velocity exceeds the celerity, the focused wave
crest on the slope overturns (Figure 6iii) with a small-scale jet of water moving forward and
hits the trough of the preceding wave (Figure 6viii). The wave crest falling down encloses
a pocket of air as it hits the water surface, similar to a plunging breaker. The maximum
velocity is seen at the wave crest above the water surface and increases as the wave front
propagates, attaining larger steepness. The velocity increases and attains maximum value
as the wave crest begins to overturn and plunges to the preceding trough. The wave height
increases during the spilling breakers and reaches a maximum of 1.3H0 before breaking
(H0 = maximum deep water wave height before breaking starts). The simulations show
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that the wave height slowly reduces over the mild slopes for the spilling breakers. The
reduction indicates that the potential wave energy decreases gradually for the high-crested
spilling breakers. Figure 7 shows three breaking wave impact scenarios (WI) occurring
over a short time span that are selected for further studies on a coastal deck structure
with girders. Wave impact 1 (WI-1) is selected when the wave crest steepens and becomes
vertical; WI-2 is the wave impact scenario where the focused wave crest just overturns;
WI-3 is the wave impact scenario where the crest plunges before hitting the preceding
trough. The location of the three impact events change according to the input significant
height, peak wave period and slope.

Figure 5. Comparison of experimental results of [31] with different mesh sizes of 0.025, 0.01, 0.005 m
from wave ids W4 and W5 (i)W4-Probe 1 (ii) W5-Probe 1 (iii) W4-Probe 2 (iv) W5-Probe 2 (v) W4-
Probe 3 and (vi) W5-Probe 3.
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Table 2. Input wave parameters for breaking wave generation.

Hs (m) 0.15 0.16 0.17 0.16 0.17 0.18 0.19 0.18 0.175 0.19

Tp (s) 2.5 2.5 2.5 2.2 2.2 2.2 2.2 2 2 2

ξ 0.14 0.12 0.12 0.13 0.11 0.11 0.1 0.1 0.12 0.1

Figure 6. Velocity variation at different time steps showing the stages of breaking (i) t = 15.75 s,
(ii) t = 16.05 s, (iii) t = 16.15 s, (iv) t = 16.30 s (v) t = 16.40 s (vi) t = 16.45 s (vii) t = 16.50 s and
(viii) t = 16.60 s (NWT dimensions in m).

Figure 7. Schematic diagram showing different breaking wave impact scenarios (i) The high-crested
wave steepens and becomes vertical (WI-1) (ii) the breaking wave slightly overturns (WI-2) and (iii)
the overturned crest plunges to hit the preceding trough (WI-3).

The characteristics and geometry of the breaking waves are analysed and defined
based on different breaking parameters given by [19]. Figure 8 shows the breaking focused
wave profile and the parameters (ηb, Hb, L′ and L”) taken as per [19]. The characteristics
and geometric properties of the breaking waves are defined based on the wave height
and water depth at breaking. The slopes are provided in the wave tank based on the
surf similarity parameter (ξ = m/

√
H0/L0), which is a function of seabed slope (m) and

deep-water wave steepness (H0/L0). The breaker depth index, breaker height index and
relative breaker depth are plotted as shown in Figure 9i with respect to the surf similarity
parameter (for different wave steepness, H0/L0 and slopes). The local wave geometry was
said to be better represented by other wave parameters such as wave crest front steepness,
wave crest rear steepness and horizontal asymmetry factor. Figure 9ii show the above wave
parameters varying with wave steepness (H0/L0) and slopes (m). The steepness (ak) of
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the focused wave also governs the breaking process. The average limiting steepness (ak)
obtained for the focused spilling breakers is found to be 0.38, compared to 0.44 for second
order Stokes waves in deep water. The study by [20] suggests an average steepness of 0.38
for spilling breakers, while many other researchers also suggested a similar range varying
from 0.38 to 0.55.

Figure 8. Definitions of local wave parameters [19].

Figure 9. Computed breaking wave parameters vs. surf similarity parameter for varying slope
and varying wave steepness (i) Relative breaker depth (db/d), breaker depth index (γb) and breaker
height index (Ωb) vs. surf similarity parameter (ξ), (ii) wave crest front steepness (ε), wave crest rear
steepness (δ) and horizontal asymmetry factor (µ) vs. surf similarity parameter (ξ).

The relative breaker depth (Figure 9i) shows a decreasing trend with the increase in
surf similarity parameter with varying H0/L0 and milder slopes. The possible reason for
this is that wave shoaling is higher in mild slopes and the wave breaks faster. As we have
considered milder slopes, the wave with higher steepness breaks at higher breaker depth,
db. The average value of relative breaker depth (db/d) for different breaking scenarios is 0.7.
The breaker depth index (γb) increases with the surf similarity parameter and an average
value of 0.65 is seen for different simulations. The breaker height index (Ωb) also shows an
increasing trend with the surf similarity parameter with an average of 1.2. The maximum
value of breaker depth index, γb and breaker height index, Ωb is obtained for H0/L0 = 0.03
and slope, m = 1/40. It is interesting to note that at this point of offshore wave steepness
(H0/L0), db reduces, causing the wave to break at shallower depth (db/d = 0.6). This shows
that the waves with higher wave steepness break with higher Hb at milder slopes, resulting
in higher values of breaker depth index. Breaker depth index is more influenced by Hb
than the breaker depth, whereas breaker height index is dependent mainly on Hb.

Figure 10i shows the relative breaker depth, breaker height index, breaker depth index
varying with the surf similarity parameter for constant H0/L0 (0.035) and varying slopes



J. Mar. Sci. Eng. 2022, 10, 768 13 of 27

(1/57, 1/50, 1/44.4, 1/40, 1/36.36, 1/33.33). The results show that the relative breaker
depth and breaker depth index are in the range of 0.7 and 0.66, respectively. The average
breaker height index is in the range of 1.22, where the index shows a decreasing trend for
the values of the surf similarity parameter larger than ξ = 0.12. This shows that the increase
in the slope in the range from 0.12 to 0.16 reduces the breaker height, Hb. It is evident that
larger breaker height is obtained for milder slopes than steep slopes with higher shoaling
and less refection. Additionally, the steeper waves break first at larger water depth whereas
the waves with lesser steepness break further onwards at lesser water depths.

Figure 10. Computed breaking wave parameters vs. surf similarity parameter for varying slope and
constant wave steepness (H0/L0) (i) Relative breaker depth (db/d), breaker depth index (γb), and
breaker height index (Ωb) vs. surf similarity parameter (ξ); and (ii) wave crest front steepness (ε),
wave crest rear steepness (δ), and horizontal asymmetry factor (µ) vs. surf similarity parameter (ξ).

The breaking characteristics are better represented by the wave crest front steepness,
which is plotted along with wave crest rear steepness and horizontal asymmetry factor for
different surf similarity parameters as shown in Figure 10ii (for varying H0/L0 and slope, m).
The average wave crest front steepness comes is in the range 0.62, whereas wave crest rear
steepness and horizontal asymmetry factor are in the range of 0.26 and 0.73, respectively.
The wave crest front and rear steepness is higher for larger wave steepness (H0/L0 = 0.035 to
0.05), whereas the horizontal symmetry factor is higher for lower wave steepness in milder
slopes (m = 0.0225 and 0.025). This means that the input wave with larger wave steepness
breaks faster with smaller crest and trough deformation whereas the lower steepness waves
break with larger deformation of crest and trough with larger overturning crest resembling
plunging breakers. Figure 10ii show the variation of parameters (ε, δ, µ) with respect to the
surf similarity parameter for constant H0/L0 and varying slope, m. The wave crest front
steepness and the horizontal asymmetry factor are in the range of 0.7 and 0.71, respectively.
The wave crest rear steepness is in the range of 0.22 for increasing steepness. The wave
crest front steepness increases with the seabed slope, whereas wave crest rear steepness
and horizontal asymmetry decreases with the seabed slope. This means that the waves
undergo more crest deformation and overturning at milder slopes. The breaking waves
generated with the above characteristics are further used for studying the impact on decks
located at varying airgap positions.

3.3. Breaking Focused Wave Impact on Deck

The breaking focused wave at three impact scenarios (WI-1, WI-2 and WI-3) are
forced on a coastal deck structure with girders as shown in Figure 1. The deck structure
is modelled to a scale of 1:10 with five girders. The high-crested spilling breaker at three
impact scenarios interact with the deck structure, resulting in horizontal and vertical impact
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forces. The deck is placed at different airgaps (S = 0, 0.02, 0.04, 0.06, 0.08 and 0.1 m) to
investigate the interaction of the breaking waves with the structure. Table 3 shows the peak
horizontal and vertical impact forces for the different input conditions at three stages of
breaking. The db/H0 for different input conditions are also in the same range showing the db
changes according to the input wave height. The peak horizontal and vertical impact forces
are normalised by the factor 1/ρgAH0, where A can be the horizontal (Ah) and vertical (Av)
deck area, respectively.

Table 3. Different wave impact scenarios and the impact forces obtained.

SI WI db/H0 Fh * Fv *

1
Hs = 0.15 m

Tp = 2.5 s

WI-1

1.8

1.026 0.546

WI-2 1.52 0.548

WI-3 1.98 0.546

2
Hs = 0.16 m

Tp = 2.5 s

WI-1

1.8

1.28 0.443

WI-2 1.32 0.535

WI-3 1.85 0.42

3
Hs = 0.16 m

Tp = 2.2 s

WI-1

1.79

1.3 0.519

WI-2 1.5 0.518

WI-3 1.1 0.532

4
Hs = 0.18 m

Tp = 2.2 s

WI-1

1.84

0.626 0.486

WI-2 0.88 0.450

WI-3 1.57 0.44

5
Hs = 0.175 m

Tp = 2.0 s

WI-1

1.82

0.945 0.46

WI-2 1.6 0.458

WI-3 0.855 0.4678

6
Hs = 0.19
Tp = 2.0 s

WI-1

1.83

0.85 0.404

WI-2 0.976 0.473

WI-3 1.46 0.413
* Positive peak normalised force values.

Figure 11 shows the velocity variation during breaking wave impact (Hs = 0.16 m,
Tp = 2.5 s) with the deck placed at WI-1 (the first wave impact location where the crest
is focused and became vertical). The steep focused wave moving towards the structure
(Figure 11i) interact with the girders (Figure 11ii,iii) allowing water to enter the chambers.
The wave then hits the deck sides (Figure 11iv) and the wave rises up (Figure 11v). The
wave interaction is seen in the first and second chamber with large variation of velocity
compared to the other chambers. The wave then hits on top of the deck (Figure 11vi) and
water starts leaving the deck and chambers from the trailing edge (Figure 11vii).

For the second impact scenario, the velocity variation at different time steps along
the length of the wave tank is shown in Figure 12. The wave slightly overturns and hits
the deck sides with a slight plunge (Figure 12iv). For the third impact scenario, the wave
overturns and plunges to hit the deck sides and impact the deck structure (Figure 13). The
overturned wave hitting the sides of the deck can be seen in Figure 13iv. For all three impact
events, the interaction of the incoming wave with the deck girders occurs before the larger
crest hits the deck front. It is observed that the interaction of larger wavelength with the
deck bring out changes to the incoming crest before hitting the deck. The breaking events
are sequenced for the three impact scenarios (Figures 11–13).
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Figure 11. Velocity variation during breaking wave impact scenario WI-1 with the coastal deck struc-
ture at normalized airgap (S/d = 0.18) at different time steps (i) t = 15.7 s (ii) t = 15.8 s (iii) t = 15.95 s
(iv) t = 16.05 s (v) t = 16.15 s (vi) t = 16.25 s and (vii) t = 16.4 s.

The impact forces on the coastal deck structure varies with respect to the increasing
airgap from the still water level. The horizontal velocity (u), vertical velocity (w) and
pressure (P) variation along the vertical z-direction of the leading edge of the model (first
girder) is plotted. The contribution of three wave impact events to the horizontal force from
all the vertical girder surfaces are considered. The maximum values are determined by
scanning the distributions over all the vertical surfaces of the structure, which shows that
the peak values are at the leading edges of the model. Figure 14 shows the peak variations
of velocities and pressure in the vertical z-direction for the first wave impact scenario (WI-1).
The velocities are normalised with the corresponding celerity values, whereas the pressure
is normalised by the stagnation pressure (ρC2). The vertical axis represents the distance
‘z′ measured from the SWL, which is normalised with the breaking wave amplitude (ηb).
Thus, the plots (Figure 14) show the peak values of velocity and pressure above the SWL
with respect to the breaking wave amplitude. The normalised peak horizontal and vertical
velocity increase with the increase in airgap (S/d = 0.18 and 0.2). The peak values of the
velocities are maximum above the SWL, when the z/ηb ratio is nearer to 1. This means the
velocities are maximum at the tip of the crest, as is evident from Figure 6. The peak pressure
values at the SWL are higher when the structure is placed at higher airgaps (S/d = 0.18 and
0.2, Figure 14iii).
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Figure 12. Velocity variation during breaking wave impact scenario WI-2 with the coastal deck struc-
ture at normalized airgap (S/d = 0.18) at different time steps (i) t = 15.9 s (ii) t = 16.05 s (iii) t = 16.15 s
(iv) t = 16.3 s (v) t = 16.4 s (vi) t = 16.5 s and (vii) t = 16.7 s.

Figure 13. Velocity variation during breaking wave impact scenario WI-3 with the coastal deck struc-
ture at normalized airgap (S/d = 0.18) at different time steps (i) t = 16.1 s (ii) t = 16.2 s (iii) t = 16.25 s
(iv) t = 16.35 s (v) t = 16.45 s (vi) t = 16.5 s (vii) t = 16.7 s.
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Figure 14. The variation of normalized wave parameters (i) horizontal velocity (ii) vertical velocity
and (iii) pressure variation from SWL for different normalized airgaps (S/d = 0, 0.04, 0.09, 0.13, 0.18,
0.22) for WI-1.

Figure 15 shows a comparison of pressure, vertical and horizontal velocities for the
three breaking wave impact scenarios for structure located at SWL (S/d = 0). The vertical
and horizontal velocities are maximum for the WI-3 compared to WI-1 and WI-2. The
horizontal velocity is higher at z/ηb ratio of 0.6 as the crest plunges, whereas the vertical
velocity is higher at z/ηb = 0.8. The pressure is maximum at SWL and varies almost linearly
to the top of the breaking wave crest (Figure 15iii). The peak velocities and pressure varying
with the increasing normalised airgap, S/d for the three breaking wave impact scenarios are
plotted as in Figure 16. The horizontal and vertical velocities (Figure 16i,ii) increase with
the increasing normalised airgap, S/d and reduces after reaching the maximum. The particle
velocity increases at the wave crest when the water jet grows, moves forward, and plunges
the deck located at higher airgap close to the crest. Additionally, the velocity decreases
when the structure located above the plunging crest. The peak values of velocities and
pressure are also higher for WI-3 compared to WI-2 and WI-1. This increase is because
the wave plunges and breaks on the deck for WI-3. The normalised pressure (stagnation
pressure) values are higher than 1, which is possible for breaking wave impact conditions
(Figure 16iii). The maximum pressure values in the zone of impact are two times higher
than ρC2 at higher airgaps. The peak vertical velocity and pressure variation with increase
in normalised airgap show a similar pattern for the three wave impact scenarios.
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Figure 15. The variation of peak normalised wave parameters in the vertical z-direction (i) horizontal
velocity (ii) vertical velocity and (iii) pressure in the vertical z-direction for three wave impact
scenarios: WI-1, WI-2 and WI-3 at S/d = 0.

Figure 16. Comparison of maximum horizontal, vertical and pressure variation with the normalised
airgap, S/d for three wave impact scenarios, WI-1, WI-2 and WI-3 (i) normalised horizontal velocity
vs. S/d (ii) normalised vertical velocity vs. S/d and (iii) normalised pressure vs. S/d.
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The pressure time history for the three breaking wave impact scenarios at normalised
airgap, S/d = 0 is plotted in Figure 17. The maximum pressure is observed for WI-1
compared to the W1-2 and WI-3. The time history of horizontal and vertical velocities
for S/d = 0 is also plotted as shown in Figure 18. The normalized horizontal and vertical
velocity varying with time at z/ηb = 0.26 (Figure 18i,ii) and z/ηb = 0.8 (Figure 18iii,iv) are
plotted. The velocity time history is higher for z/ηb = 0.8 and it occurs within a short time
span whereas the velocity time history profile is wider for z/ηb = 0.26. This shows that the
velocity profile becomes narrower, and the peak occurs in a short time span as measured
above the SWL. The velocity profile becomes wider when the water jet grows faster, and the
particle velocity increases as the wave front grows further, narrowing the velocity profile.
A portion of the wave crest with higher velocity overturns and impinges the water surface,
resulting in a higher peak.

Figure 17. The normalised pressure time history for the three-wave impact scenarios, WI-1, WI-2 and
WI-3 at normalised airgap, S/d = 0 and z/ηb = 0.

The normalised pressure values are plotted for different airgaps for WI-2 and WI-3
and shown in Figure 19. As the airgap increases, it is seen that the peak pressure is higher
above the SWL. This shows that for rectangular objects above SWL, the pressure is found
to be higher above the SWL for different stages of wave breaking.

Figure 20 shows the horizontal (Figure 20i,iii,v) and vertical (Figure 20ii,iv,vi) impact
force time history at three different increasing airgap positions (S/d = 0, 0.13, 0.22). At zero
airgap, the horizontal impact forces for the three impact scenarios are in the same range.
As the airgap increases (S/d = 0.13), a peak slamming force is seen in the horizontal force
time history for WI-3. With further increase in airgap (S/d = 0.22), a sudden rise is seen
in the horizontal force time history for all the impact conditions. The vertical force time
history at different airgaps shows a higher peak, when the structure is located at the SWL.
The vertical force reduces as the airgap increases. This illustrates that the high-crested
spilling breakers imparts higher horizontal impact force at higher airgaps. The short span
impulsive force (Figure 21) can induce dynamic fluid structure interaction on the stiff deck
structure causing vibrations or large responses. The present study neglects those dynamic
behaviour and the structure is considered to be rigid.
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Figure 18. Velocity time history at three breaking wave impact scenarios, WI-1, WI-2 and WI-3 for S/d
= 0.13 (i) normalized horizontal velocity at z/ηb = 0.26 (ii) normalized vertical velocity at z/ηb = 0.26
(iii) normalized horizontal velocity at z/ηb = 0.8 and (iv) normalized horizontal velocity at z/ηb = 0.8.

Figure 19. The variation of peak normalized pressure for structure placed at different normalized
airgaps (S/d = 0, 0.04, 0.09, 0.13, 0.18 and 0.22) during the wave impact scenarios: (i) WI-2 and
(ii) WI-3.
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Figure 20. The horizontal (i,iii,v) and vertical (ii,iv,vi) force time history at three wave breaking
scenarios: WI-1, WI-2 and WI-3 at different normalised airgaps (S/d = 0, 0.13 and 0.22).

Figure 21. (i) Peak horizontal and (ii) Peak vertical impact force at different airgaps (S/d = 0, 0.04,
0.09, 0.13, 0.18 and 0.22) for three different breaking wave impact scenarios: WI-1, WI-2 and WI-3.
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The horizontal and vertical peak impact forces at different airgaps for three breaking
wave impact scenarios are shown in Figure 21. The horizontal peak impact force increases
with increase in airgap and the maximum value is observed for WI-3. The vertical impact
force is maximum at the SWL and then decreases with increase in airgap. The force variation
also shows a similar trend as the pressure and velocity profiles.

3.4. Estimation of Force Coefficients Based on Varying Airgap and Wave Height

The present investigation of breaking focused wave impact on deck structures shows
that the peak horizontal and vertical impact forces are dependent on both airgap and
wave height. The results obtained in the present study are used to derive force coefficients
for both horizontal and vertical impact forces based on the Coastal Engineering Manual
(CEM). The impact forces are calculated by the reference equation given by the Coastal
Engineering Manual [57] for emergent structures, where the force coefficients are derived
based on laboratory experiments. The reference equation (given in Equation (11)) is
obtained by integrating the pressure over the surface of the emergent structure to compute
the forces [58].

Fh = Cu Azγw

(
w2

2g

)
Fv = Cu Anγw

(
u2

2g

) (11)

where Cu is the laboratory derived coefficient, Az and An are the projected area in horizontal
plane and vertical plane, respectively, u and w are horizontal and vertical velocities at level
of object, γw is specific weight of water.

The present investigation of breaking focused wave impact on deck structures shows
that the peak horizontal and vertical impact forces are dependent on both airgap and
wave height. Thus, the constant force coefficients given by the Coastal Engineering Manual
(CEM) is not sufficient for computing impact forces on elevated deck structures and requires
establishing more suitable coefficients. The results obtained in the present study are used to
derive force coefficients for both horizontal and vertical impact forces. The breaking focused
wave groups interacting with the deck structure at three impact scenarios (WI-1, WI-2 and
WI-3) were considered to investigate the wave structure interaction due to breaking waves.
The high-crested spilling breaker at three impact scenarios interact with the deck structure
resulting in horizontal and vertical impact forces. The deck is placed at different airgaps
(S = 0, 0.02, 0.04, 0.06, 0.08 and 0.1 m) normalised with breaking wave height (Hb) for
investigating the interaction of the breaking waves.

When the wave hits the structure, a sudden change in particle velocities is observed
both in the horizontal and vertical directions, making it difficult to choose reference horizon-
tal and vertical velocities to derive the respective coefficients in the practical field. Hence,
unlike the CEM reference equation where u & w are used for computing the horizontal and
vertical wave forces; wave celerity (C) is used for deriving peak impact force coefficients.
The revised formulations for horizontal and vertical force coefficients for breaking wave
impact are given as

Ch = Fh
0.5ρAvC2

Cv = Fv
0.5ρAhC2

(12)

The variation of force coefficients with respect to varying S/Hb ratios is shown in
Figures 22 and 23. Linear regression was carried out for the data sets and best-fit curves rep-
resenting peak impact forces are plotted. The best-fit polynomials for horizontal and vertical
force coefficients for breaking focused wave impact are given in Equations (13) and (14),
respectively. The total vertical impact force due to breaking focused wave is the sum
of the peak force (Equation (11)) obtained using the modified vertical force coefficients
(Equation (14)) and the hydrostatic force due to the surge. The peak horizontal impact
force is calculated using the projected vertical area (Av), which is the length of the bridge
multiplied by total height of bridge (deck thickness + height of girder). Additionally, the
peak vertical impact force is calculated using the horizontal projected area (Ah), which is



J. Mar. Sci. Eng. 2022, 10, 768 23 of 27

obtained by multiplying the length of the bridge with the first chamber width (which is the
total width divided by number of girders). Only the first chamber width is considered as
the peak is obtained when the wave interacts with the first and second girder. The impact
forces using the modified coefficients are estimated to predict the peak forces for different
wave heights and airgaps.

Figure 22. Variation of horizontal force coefficients at three wave impact scenarios for different
S/Hb ratios.

Figure 23. Variation of vertical force coefficients at three wave impact scenarios for different S/Hb ratios.

The relationships between the horizontal and vertical force coefficient with varying
airgap and wave height are given as follows:

Horizontal force coefficient (Ch) for breaking focused wave impact on deck structures:

Ch = −85
(

S
Hb

)3
+ 113.6

(
S

Hb

)2
− 21.72

(
S

Hb

)
+ 3.68 (13)
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The vertical force coefficients (Cv) for breaking focused wave impact on deck structures:

Cv = 17.7
(

S
Hb

)3
− 11.36

(
S

Hb

)2
− 3.5

(
S

Hb

)
+ 3.68 (14)

where S is the airgap measured from SWL to the top of the deck and Hb is the breaking
wave height.

The use of the proposed coefficients in the CEM equation is expected to give the peak
horizontal and vertical impact force when the high-crested breaking wave hits the deck
located at different airgaps. These peak forces are occurring when the wave impacts the
first girder or when the wave interacts with the first chamber. Thus, the peak impact forces
will depend on the airgap, wave height and the area, Ah and Av. The horizontal projected
area takes into account the girder width and spacing whereas the vertical projected area
considers the deck thickness and the girder depth. Therefore, the deck thickness, girder
depth, deck width, girder width and spacing are considered in the present equations. This
makes the modified equations suitable for different structure designs as well.

4. Conclusions

The present study investigated the breaking wave interaction on coastal deck struc-
tures at different airgaps on mild slopes using the opensource numerical model REEF3D.
The main objective was to investigate the effect of different impact conditions on the pres-
sure, velocity and finally the vertical and horizontal impact forces. Three wave breaking
scenarios were considered in the present study where the impact pressure and velocity kine-
matics are analysed in the vertical direction. Based on the detailed numerical investigations,
the following significant conclusions are made:

• The average value of relative water depth for different spilling breaking scenarios of
focused wave groups is 0.7 and found increase with the steepness.

• The high-crested focused wave groups generating spilling breakers on mild slopes for
different input conditions indicate the breaking wave steepness is approximately 0.38.

• The impact pressure, horizontal and vertical velocities are highest when the overturn-
ing wave crest hits the deck. For all impact conditions, the peak impact pressure and
velocities increase for the structure located above SWL.

• The peak pressure variation and the horizontal velocity variation are showing similar
pattern along the vertical z-direction when the wave breaks and the overturning crest
hits the deck located above the SWL.

• As the steep wave front becomes vertical and impacts the structure, the peak horizontal
and vertical velocities are near the crest region. As the wave breaks and the crest
overturns, the position of the peak velocities moves near to the SWL.

• The breaking wave velocities show significant instantaneous increase near the crest
when the breaking wave impacts the deck.

• Maximum impact pressure occurs above the still water level for rectangular objects
placed above the SWL under breaking wave impact.

• The peak horizontal impact force is higher when the wave breaks ahead and the
overturning wave crest hits the deck positioned above SWL. Additionally, the peak
vertical impact force is higher when the deck is placed at the water level. The breaking
wave forces on the coastal deck structure are dependent on the breaking impact
positions in case of spilling breakers.

• The peak horizontal impact force increases with increasing airgap and follows a
parabolic profile with increasing airgap, whereas the peak vertical impact force shows
a linear decreasing trend with increasing airgap.

• The force coefficients are derived for peak vertical and horizontal impact forces in
relation with varying wave height and airgap for breaking focused wave impact.

This study presented the breaking focused wave characteristics and the impact forces
on coastal deck structures with a girder at different airgaps, which provide insight to under-
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take further studies on breaking wave impact on complex deck structures. The condition
for peak vertical and horizontal impact forces due to breaking focused waves was obtained,
which will help in assessing damage to the structures. The numerical investigation is
performed in a scaled model, which can lead to overestimation of peak forces. The present
study neglected the air compressibility, which might play a significant role in modelling
air entrapment and the resulting forces. As the breaking scenario is focused, testing the
efficiency of different turbulence model can also be carried out. Incorporating the following
limitations and comparison with the presented results can give more insight to the breaking
phenomenon on decks.
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Nomenclature

ρ Fluid density
p Pressure
u Velocity
ν Kinematic viscosity
νt Eddy viscosity
g Acceleration due to gravity
k Turbulent kinetic energy
ω Specific turbulent dissipation rate
Pk Production rate
∆t Time step
ε′ Interface
φ(x, t) Level set function
H(φ) Heaviside step function
∆x, ∆y and ∆z Meshes in x, y and z directions
η Instantaneous free surface elevation;
(x0, t0) Predefined focal location and time, respectively
k′ Wave number
ω′ Angular frequency
S (fi) Spectral density
mo Zeroth moment of input spectrum
N Number of wave components
A Target theoretical linear wave amplitude of the focused wave.
Tp Peak wave period
Hs Significant wave height
S Airgap
d Deep water depth
ξ Surf similarity parameter
Ωb Breaker height index
γb Breaker depth index
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zw Vertical z direction from origin
z Vertical distance from SWL
Cu Laboratory derived coefficient
Ch Horizontal force coefficient
Cv Vertical force coefficient
ε Wave crest front steepness
δ Wave crest rear steepness
µ Horizontal asymmetry factor
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