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Abstract: The role that underwater image translation plays assists in generating rare images for
marine applications. However, such translation tasks are still challenging due to data lacking,
insufficient feature extraction ability, and the loss of content details. To address these issues, we
propose a novel multi-scale image translation model based on style-independent discriminators
and attention modules (SID-AM-MSITM), which learns the mapping relationship between two
unpaired images for translation. We introduce Convolution Block Attention Modules (CBAM)
to the generators and discriminators of SID-AM-MSITM to improve its feature extraction ability.
Moreover, we construct style-independent discriminators that enable the discriminant results of
SID-AM-MSITM to be not affected by the style of images and retain content details. Through
ablation experiments and comparative experiments, we demonstrate that attention modules and
style-independent discriminators are introduced reasonably and SID-AM-MSITM performs better
than multiple baseline methods.

Keywords: underwater image translation; generative adversarial network; convolution block
attention module; style-independent discriminator

1. Introduction

Underwater images play critical roles in diverse marine-related military and scientific
applications, such as seabed sediment classification [1], submarine cable detection [2], and
mine recognition [3]. However, the complex underwater environment limits the use of
camera devices, including Kinect units [4] and binocular stereo cameras [5], which makes
it difficult to obtain real underwater images. Intuitively, image translation [6] provides a
viable direction to obtain such scarce data. Specifically, image translation methods translate
source-domain non-underwater images into target-domain underwater ones, which re-
assigns particular attributes of underwater images. The translated underwater images are
valuable for advanced visual tasks such as target detection, 3D reconstruction, and target
segmentation [7,8].

Existing image translation methods are generally categorized into two groups, i.e.,
conventional and Generative Adversarial Network (GAN)-based [9] methods. First, conven-
tional methods [10,11] extract low-level features to transfer input images’ texture or devise
various Convolutional Neural Network-based (CNN) [12], such as image style transfer [13],
to make use of semantic content for image translation. Second, GAN-based methods, such
as supervised models including Pix2Pix [14] and Pix2PixHD [15], and unsupervised models
including StyleGAN [16] and StarGAN [17], use generators to translate images from one
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image domain to another image domain. By comparison, GAN-based methods do not
require researchers to design complex loss functions, which saves manpower.

In view of the immense potential of GAN, researchers attempt to apply it to underwater
image translation tasks. Li et al. [18] propose an unsupervised WaterGAN that uses in-
air RGB images and depth maps to generate corresponding realistic underwater images.
Wang et al. [19] use an unsupervised image translation method that also takes in-air RGB-D
images to generate realistic underwater images. Li et al. [20] work to generate images with
underwater style using in-air RGB images.

Although existing methods have achieved a certain success, they still face multiple
challenges. (1) Data lacking. The necessary paired in-air and depth images are too scarce
to train translation models. In the absence of data, using the general image translation
methods, it is difficult to achieve good results. (2) Insufficient feature extraction ability.
Underwater optics images and underwater sonar images present obvious colors, which
reduce the visibility of objects in translated images and reduce the quality of the translated
images. These translated images limit the performance of subsequent advanced computer
vision tasks [21]. Therefore, the colors of the underwater images pose challenges to the
feature extraction ability of image translation. (3) Loss of content details. GAN models
are sensitive to the style of images (such as color and texture) [22], which makes image
translation models ignore the content information of images. Similar to the lack of feature
extraction ability, the loss of content details also limits the performance of subsequent
advanced computer vision tasks.

With the aim of addressing the above challenges, in this paper, we propose a multi-
scale underwater image translation model based on style-independent discriminators and
attention modules (SID-AM-MSITM). Specifically, our contributions mainly include the
following:

1. In response to the data lacking challenge, we construct the backbone model of SID-AM-
MSITM based on a fundamental image translator, TuiGAN [23]. TuiGAN conducts
image translation tasks based on only two unpaired images, and we thus make further
improvements on its encoders and decoders.

2. In response to the challenge of insufficient feature extraction ability, we propose
to apply Convolution Block Attention Modules (CBAM) [24] to the generators and
discriminators of SID-AM-MSITM. CBAM assigns the weight distribution of fea-
ture maps in the two dimensions of channel and space and increases the weight
of important features, so as to make SID-AM-MSITM pay attention to meaningful
information.

3. In response to the loss of content details, we further improve SID-AM-MSITM by
constructing style-independent discriminators. The discriminators give similar results
when discriminating images with the same content and different styles, so as to make
SID-AM-MSITM focus on the content information instead of the style information.

4. We conduct systematical experiments based on multiple datasets, including subma-
rine, underwater optics, sunken ship, crashed plane, and underwater sonar images.
Compared with multiple baseline models, SID-AM-MSITM improves the ability to
access effective information and retain content details.

The rest of this paper is organized as follows: Section 2 details the methodology of
SID-AM-MSITM. Section 3 presents our ablation and comparative experiments, and their
corresponding analysis. Section 4 concludes this work.

2. Methodology

In this section, we will present our proposed SID-AM-MSITM in detail. Based on
TuiGAN as a backbone architecture, SID-AM-MSITM improves its generators and dis-
criminators by introducing CBAM and makes further improvements by devising style-
independent discriminators. Figure 1 shows the architecture of SID-AM-MSITM and the
process of translating a non-underwater image into an underwater image.
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In the underwater image translation task, the source domain image means the non-
underwater image IX , and the target domain image means the underwater image IY. We use
SID-AM-MSITM to translate non-underwater images into underwater images, also known
as generating underwater images. Using SID-AM-MSITM, we also reconstruct translated
underwater images into non-underwater images. The original image represents the initial
image that has not been processed by SID-AM-MSITM.

1Source domain image N

X
I

1Generation image N

XY
I

1Reconstructed image N

XYX
I

1Target domain image N

Y
I

1Generator  with CBAMN

XY
G 1Generator  with CBAMN

YX
G

1

Style-independent Discriminator 

 with CBAMN

Y
D

Figure 1. The architecture of SID-AM-MSITM (the process of translating a non-underwater image
into an underwater image).

As in TuiGAN, generally, SID-AM-MSITM downsamples two images into different
scales {I0

X , I1
X , ...IN

X . I0
Y, I1

Y, ...IN
Y }, and each scale corresponds to two generators {Gn

XY, Gn
YX}

and two discriminators {Dn
Y, Dn

X}. The generators {G0
XY, G1

XY, ...GN−1
XY } utilize the down-

sampled source domain images {I0
X , I1

X , ...IN−1
X } as well as their previous-scale upsampled

generated images {I1↑
XY, I2↑

XY, ...IN↑
XY} to generate new images. At the lowest scale N, the

previous-scale upsampled generated image is replaced with an image with pixel values of 0.
The discriminators {D0

Y, D1
Y, ...DN

Y } learn the distribution of the target domain using
a variety of loss functions for model training, including adversarial loss WGAN-GP [25],
cycle-consistency loss, identity loss, and total variation loss [26]. Among them, the cycle-
consistency loss helps SID-AM-MSITM to avoid the mode collapse, the identity loss helps
it to align colors and textures, and TV loss smooths the generated images. Finally, the trans-
lated underwater image I0

XY is obtained at the highest scale. In Figure 1, the discriminator
processes images translated by a generator of the same color as it.

In order to obtain the generators {G0
YX, G1

YX, ...GN
YX}, we also train the generators

{G0
YX , G1

YX , ...GN
YX} and discriminators {D0

X , D1
X , ...DN

X } in a similar way.

2.1. Generators and Discriminators with CBAM Modules

We start with presenting generators and discriminators with CBAM modules. CBAM
enables SID-AM-MSITM to focus on critical features in a given image, so as to improve the
quality of generated images [27].

As illustrated in Figure 2, each CBAM contains two modules, a channel attention
module [28] and a spatial attention module. Specifically, the channel attention module
enables SID-AM-MSITM to focus on critical features in a given image, so as to obtain
accurate weights of channel features. The spatial attention module performs Max Pooling
and Average Pooling on the spatial dimension of compressed features. The yellow blocks
represent the input features of the source domain, and the blue blocks represent the input
features of the target domain.
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MaxPool

SigmoidConv ReLU Conv Add
or

AvgPool

MaxPool

AvgPool

SigmoidConvMultiply Concat Multiply or

Input feature Output feature

Figure 2. The structure of CBAM modules. CBAM represents the Convolution Block Attention
Module. Conv represents convolution operations.

Figure 3 shows the generator and discriminator of SID-AM-MSITM, where the gener-
ator Gn

XY implements the translation of a source domain image In
X to a generated image

In
XY. Firstly, SID-AM-MSITM simply processes In

X from source domain X to obtain an
intermediate image In

XY,φ through the CBAM module and convolution operations. Then,
SID-AM-MSITM utilizes In

XY,φ, In
X, and an upsampled image after generating at the pre-

vious scale In+1↑
XY to concatenate in the direction of the channel, and obtain a mask image

Xn through the CBAM module and convolution operations. Finally, a generated image
In
XY is obtained using the linear combination of Xn, In

XY,φ, and In+1↑
XY . In

XY and the target
domain image In

Y are input into the discriminator Dn
Y to obtain discriminant results for

model training, where 0 ≤ n < N.

Result
Linear

Combination

Source domain image n

X
I

,Intermediate image n

XYI 

Source domain image n

XI

1Upsampled image after generating at the previous scale n

XYI  

Mask image nX

Mask image nX

,Intermediate image n

XYI 

Generation image at the current scale n

XYI

Target domain image n

YI

通道注意力机制

风格无关判别器

CBAM

CBAM Convolution CBAM ConvolutionConvolutionConvolution

Convolution Convolution

1

Upsampled image after generating

at the previous scale n

XYI  

Figure 3. Generator and discriminator of SID-AM-MSITM (the process of translating a source domain
image In

X to a generated image In
XY).

Gn
XY and Gn

YX share the same architecture but with different weights. The working
principle of Gn

XY is as follows:
In
XY,φ = φ(In

X), (1)

Xn = An
(

In
XY,φ, In

X , In+1↑
XY

)
, (2)

In
XY = Xn ⊗ In+1↑

XY + (1− Xn)⊗ In
XY,φ, (3)

where 0 ≤ n < N, ⊗ represents pixel-level multiplication. At the lowest scale N, In+1
XY is

replaced with an image with pixel values of 0. First, SID-AM-MSITM uses the encoder φ to
preprocess In

X to In
XY,φ. Then, SID-AM-MSITM uses the encoder An to generate mask Xn.

Finally, SID-AM-MSITM uses the linear combination to obtain output In
XY.
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Similarly, the implementation of the translation of IY → IYX at scale n is as follows:

In
YX,φ = φ′(In

Y), (4)

Yn = A′n
(

In
YX,φ, In

Y, In+1↑
YX

)
, (5)

In
YX = Yn ⊗ In+1↑

YX + (1−Yn)⊗ In
YX,φ, (6)

where 0 ≤ n < N. At the lowest scale N, In+1
YX is also replaced with an image with pixel

values of 0.
In this way, the generators focus on the regions that synthesize current scale details in

the images. Meanwhile, it maintains the previously learned global structures as unaffected.

2.2. Style-Independent Discriminators

Next, we present our proposed style-independent discriminators, which focus on the
images’ content information rather than their style information, so as to enable SIM-AM-
MSITM to avoid losing the content details in non-underwater images.

When two sets of images share the same content but different styles, it is ideal to make
discriminators give similar discriminant results to the images. Thus, SID-AM-MSITM uses
instance-level as well as vector-level style difference losses to train style-independent discrimina-
tors.

Figure 4 illustrates style and content differences. As illustrated in the figure, the
first two generated images share the same content information, while the latter two share
the same style information. sx and sy represent the style information of images x and y
respectively. cx and cy represent the content information of images x and y, respectively.
G(s, c) indicates the image generated using style information s and content information c.
D(G(s, c)) represents the discriminant result of G(s, c) given by a discriminator.

 ,
x x

G s c

 ,
y x

G s c

 ,
y y

G s c

Style 
Difference

Content
Difference

xc

ys

yc

xs

  ,
x x

D G s c

  ,
y x

D G s c

  ,
y y

D G s c

Generator Discriminator

Figure 4. The illustration of style and content differences.

Figure 5 shows a style-independent discriminator Dn
Y of SIM-AM-MSITM, which

requires a source domain image In
X , a generation image at current scale In

XY, an instance-level
mixed style image În

X , and a vector-level mixed style image In′
X to make the discriminator

Dn
Y style-independent.
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ResultSource domain image n

X
I

ˆInstance-level mixed style image n

X
I

Vector-level mixed style image n

X
I

风格无关判别器CBAMConvolution Convolution

 Regularization

Generation image at the current scale n
XY
I

Figure 5. The training process of SID-AM-MSITM’s style-independent discriminator Dn
Y .

Discriminator Dn
X has a similar structure and requires a target domain image In

Y, a
generation image at current scale In

YX, an instance-level mixed style images În
Y, and a

vector-level mixed style image In′
Y , where 0 ≤ n ≤ N.

Then, we will describe how style-independent discriminators eliminate style differ-
ences at the instance level as well as the vector level, respectively. Instance-level style
difference refers to the style difference between the image obtained by stylizing its pixels
and the original image. Vector-level style difference refers to the style difference between
the image obtained by stylizing its encoded vectors and the original image.

2.2.1. Instance-Level Style-Independent Discriminators

Instance-level style-independent discriminators use a special regularization term, so
as to reduce style differences between the images obtained by stylizing its pixels and the
original images.

We first adjust weight α to gradually increase the proportion of generated images
among the mixed ones at multi-scales. Then, we make discriminators to reduce the differ-
ences between the original non-underwater images or the underwater images and the final
mixed images, which are constrained by a consistency loss. Such progress is formulated
as follows:

În
X = αIn

X + (1− α)In
XY, 0 ≤ n ≤ N, (7)

Lcon =
∥∥Dn

Y(In
X)− Dn

Y
(

În
X
)∥∥

1, (8)

În
Y = αIn

Y + (1− α)In
YX , 0 ≤ n ≤ N, (9)

Lcon =
∥∥Dn

X(In
Y)− Dn

X
(

În
Y
)∥∥

1, (10)

where 0 ≤ n ≤ N, 0 ≤ α < 1. In
X and In

Y represent the source-domain and target-domain
images at the current scale, respectively. In

XY and In
YX denote the generation images at the

current scale. α indicates the weight of the linear combination and gradually becomes
smaller as the scale rises. Lcon uses an L1 paradigm to process the instance-level style-
independent loss, and D(·) represents the discriminant results of discriminators.

As the scale rises, the style of instance-level mixed-style images În
X is closer to the

target-domain ones and away from the source-domain ones. The style of instance-level
mixed-style images În

Y is closer to the source-domain ones and away from the target-domain
ones. Discriminators penalize the distances between the source-domain image outputs or
the target-domain image outputs and the mixed-style image outputs.

Figure 6 shows the training process of instance-level style-independent discriminators
DY. ↑ and ↓ indicate the value rising and descending as the scale rises, respectively.
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Linear
Combination

Generator

The Final Generated Image

Discriminator

The Generated Image

The Source-Domain Image

The Source-Domain Image

The Target-Domain Image The Source-Domain Image

 

 1

Figure 6. The training process of instance-level style-independent discriminators.

2.2.2. Vector-Level Style-Independent Discriminators

Based on the above instance-level discriminators, it is not enough to generate images
since this is limited by style-independent pixels. Therefore, we devise vector-level style-
independent discriminators that further mix the encoded vectors of the source-domain and
target-domain images at each scale. We put the mixed encoded vectors into a decoder, and
utilize its generated images as well as the source-domain ones or the target-domain ones
for model training.

First, we encode the source domain-images and the target-domain images, respectively
using VGG 19 [29] and then process them using AdaIN [30]. The results obtained are
linearly combined with the encoded vectors of the source- or target-domain images. Then,
we put the results of the linear combinations into a decoder to get the vector-level mixed-
style images In′

X and In′
Y . The decoder is a convolutional network that is symmetric to VGG

19 and upsamples the mixed encoded vectors into images. Finally, we utilize discriminators
to penalize the distances between the source-domain image outputs or the target-domain
image outputs and the mixed-style image outputs. Such progress is formulated as follows:

In′
X = Decoder(αEncoder(In

X) + (1− α)AdaIN(Encoder(In
X), Encoder(In

Y))), (11)

Lcon =
∥∥∥DY(In

X)− DY

(
In

X
′
)∥∥∥

1
, (12)

In′
Y = Decoder(αEncoder(In

Y) + (1− α)AdaIN(Encoder(In
Y), Encoder(In

X))), (13)

Lcon =
∥∥∥DX(In

Y)− DX

(
In

Y
′
)∥∥∥

1
, (14)

where 0 ≤ n ≤ N, 0 ≤ α < 1. In
X and In

Y represent the source-domain and target-domain
images at the current scale, respectively. Encoder(·) is VGG 19 and Decoder(·) is symmetric
to VGG 19. α is the weight coefficient that becomes smaller as the scale rises. Lcon uses
an L1 paradigm to process the vector-level style-independent loss. D(·) represents the
discriminant results of discriminators.

Figure 7 shows the training process of vector-level style-independent discriminators.
↑ and ↓ indicate the value rising and descending as the scale rises, respectively.
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The Mixed 
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The Style 
Encoder
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Encoder
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AdaIN
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Vector
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Vector

Linear 
Combination

 

 1

The Temporary 
Feature Vector

Figure 7. The training process of vector-level style-independent discriminators.

2.3. Implementation

To implement SID-AM-MSITM, we utilize Adam [31] as its optimizer and LeakyReLU [32]
as its activation function. At the lowest scale, images of the model are 100 × 100-pixel ones.
And at the highest scale, the size of images is 250 × 250 pixels. The model uses 6 scales.

3. Experiment and Result Analysis

In this section, we will present our experiments and the corresponding results analysis.
We first introduce the evaluation metrics and then present the ablation and comparative
experiments, respectively.

3.1. Evaluation Metric

We utilize four metrics for quantitative evaluation, including peak signal-to-noise
ratio (PSNR) [33], structure similarity index measure (SSIM) [34], information entropy
(Entropy) [35], and single image Fréchet Inception distance (SIFID) [36].

(1) PSNR: PSNR measures the distance between the distributions of two images. We use
PSNR to calculate the distance between the source-domain images and reconstructed
images. A larger PSNR value indicates a smaller difference between the two images.

(2) SSIM: SSIM measures the similarity of two images. The value of SSIM is between 0 and 1,
and a larger SSIM indicates a better reconstruction effect, which suggests the transla-
tion effect of an image translation model.

(3) Entropy: Information entropy measures the complexity of an image. Larger informa-
tion entropy indicates complex images that contain more information.

(4) SIFID: Single Image Fréchet Inception Distance (SIFID) is a special type of Fréchet
Inception distance (FID) [37]. It measures the deviation between the feature distribu-
tion of two single images, and smaller SIFID indicates the better effect of generated
images.

3.2. Ablation Experiment

We use five different datasets, including submarine, underwater optics, sunken ship,
crashed plane, and underwater sonar datasets. The underwater optics images are from the
URPC2020 dataset [38]. These images are difficult to collect and are not large in number.
Specifically, the submarine, sunken ship, and crashed plane images are content categories,
and the underwater sonar and underwater optics images are style ones. Meanwhile, the
submarine, sunken ship, and crashed plane images are non-underwater images, and the
underwater sonar and underwater optics images are underwater ones.

Figure 8 presents the utilized datasets, which are grouped into six different combi-
nations, i.e., (1) sunken ships with underwater sonars, (2) sunken ships with underwater
optics, (3) crashed planes with underwater sonars, (4) crashed planes with underwater
optics, (5) submarines with underwater sonars, and (6) submarines with underwater optics.
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Sunken ship

Crashed plane

Submarine

Underwater sonar

Underwater optical

Figure 8. Datasets.

Based on the above six combinations of images, we perform ablation experiments on
four modules, including (1) TuiGAN only, (2) TuiGAN with CBAM, (3) TuiGAN with style-
independent discriminators, and (4) SID-AM-MSITM, so as to comprehensively evaluate
the improvements we have made.

Figures 9–14, respectively, present the generated and reconstructed images based on
different combinations of datasets. In the figures, the first-column and second-column
images are source-domain and target-domain ones, respectively. The third to the tenth
columns, respectively, present the images generated or reconstructed using TuiGAN, Tu-
iGAN with CBAM modules, TuiGAN with style-independent discriminators, and
SID-AM-MSITM.

Source-
Domain

Target-
Domain

Module (1)
Generated

Image

Module (1)
Reconstructed

Image

Module (2)
Generated

Image

Module (2)
Reconstructed

Image

Module (3)
Generated

Image

Module (3)
Reconstructed

Image

Module (4)
Generated

Image

Module (4)
Reconstructed

Image

Figure 9. Generated and reconstructed images using the sunken ships and the underwater sonars.
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Source-
Domain

Target-
Doamin

Module (1)
Generated

Image

Module (1)
Reconstructed

Image

Module (2)
Generated

Image

Module (2)
Reconstructed

Image

Module (3)
Generated

Image

Module (3)
Reconstructed

Image

Module (4)
Generated

Image

Module (4)
Reconstructed

Image

Figure 10. Generated and reconstructed images using the sunken ships and the underwater optics.

Source-
Domain

Target-
Doamin

Module (1)
Generated

Image

Module (1)
Reconstructed

Image

Module (2)
Generated

Image

Module (2)
Reconstructed

Image

Module (3)
Generated

Image

Module (3)
Reconstructed

Image

Module (4)
Generated

Image

Module (4)
Reconstructed

Image

Figure 11. Generated and reconstructed images using the crashed planes and the underwater sonars.
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Source- 
Domain

Target-
Domain

Module(1)
Generated 

Image

Module(1)
Reconstructed 

Image

Module(2)
Generated 

Image

Module(2)
Reconstructed 

Image

Module(3)
Generated 

Image

Module(3)
Reconstructed 

Image

Module(4)
Generated 

Image

Module(4)
Reconstructed 

Image

Figure 12. Generated and reconstructed images using the crashed planes and the underwater optics.

It is observed that SID-AM-MSITM has the ability to translate non-underwater im-
ages into underwater sonar images and underwater optics images, and objects such as
submarines, crashed planes, and sunken ships are evident in underwater images. Mean-
while, SID-AM-MSITM is also capable of reconstructing translated underwater images into
non-underwater images with little difference from the original non-underwater images.

Source-
Domain

Target-
Domain

Module (1)
Generated

Image

Module (1)
Reconstructed

Image

Module (2)
Generated

Image

Module (2)
Reconstructed

Image

Module (3)
Generated

Image

Module (3)
Reconstructed

Image

Module (4)
Generated

Image

Module (4) 
Reconstructed

Image

Figure 13. Generated and reconstructed images using the submarines and the underwater sonars.
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Source-
Domain

Target-
Domain
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Figure 14. Generated and reconstructed images using the submarines and the underwater optics.

Table 1 presents the PSNR results of each model. It is observed that the PSNR values of
the images reconstructed using the TuiGAN with CBAM modules on the three combinations
of the datasets are higher than that of TuiGAN, and the maximum difference reaches 8.63.
The PSNR values of the images reconstructed using TuiGAN with style-independent
discriminators on the five combinations of datasets are higher than that of TuiGAN, and the
maximum difference reaches 4.7. The PSNR values of the images reconstructed using SID-
AM-MSITM on all combinations of the datasets are not less than that of TuiGAN, and the
maximum difference reaches 4.58. The promising results indicate that the combination of
CBAM modules and style-independent discriminators significantly improves the effective
information acquisition ability of backbone TuiGAN and is suitable for all combinations
of datasets.

Table 1. Ablation experiments on different datasets (PSNR).

Category TuiGAN TuiGAN with
CBAM Modules

TuiGAN with Style-
Independent Discriminators SID-AM-MSITMSID-AM-MSITMSID-AM-MSITM

Sunken Ship + Sonar 17.20 20.28 19.53 22.77
Sunken Ship + Optics 21.24 18.91 19.98 22.87

Crashed plane + Sonar 20.02 23.00 20.50 24.26
Crashed plane + Optics 26.46 25.04 29.17 26.46

Submarine + Sonar 27.27 25.88 31.11 31.85
Submarine + Optics 23.20 31.83 27.90 25.96

Table 2 presents the SSIM results of each model. SSIM is also a metric to measure the ef-
fect of model reconstruction. It is observed that the SSIM results of the images reconstructed
using TuiGAN with CBAM modules on four combinations of datasets are higher than that
of TuiGAN, and the maximum difference reaches 0.17. The SSIM results of the images
reconstructed using TuiGAN with style-independent discriminators on all combinations of
datasets are not less than that of TuiGAN, and the maximum difference reaches 0.09. The
SSIM values of the images reconstructed using SID-AM-MSITM on all combinations of
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datasets are higher than that of TuiGAN, and the maximum difference reaches 0.15. These
promising results also indicate that CBAM modules and style-independent discriminators
improve the ability to access effective information.

Table 2. Ablation experiments on different datasets (SSIM).

Category TuiGAN TuiGAN with
CBAM Modules

TuiGAN with Style-
Independent Discriminators SID-AM-MSITMSID-AM-MSITMSID-AM-MSITM

Sunken Ship + Sonar 0.68 0.82 0.75 0.83
Sunken Ship + Optics 0.85 0.88 0.87 0.90

Crashed plane + Sonar 0.83 0.91 0.83 0.90
Crashed plane + Optics 0.91 0.89 0.92 0.92

Submarine + Sonar 0.85 0.84 0.88 0.89
Submarine + Optics 0.70 0.87 0.79 0.84

Table 3 presents the Entropy results of each model. It is observed that the Entropy re-
sult of the images generated using TuiGAN with CBAM modules on only one combination
of datasets is higher than that of TuiGAN, and the difference reaches 0.21. The Entropy
results of the images generated using TuiGAN with style-independent discriminators on
four combinations of datasets are higher than that of TuiGAN, and the maximum difference
reaches 0.86. The Entropy results of the images reconstructed using SID-AM-MSITM on
all combinations of datasets are higher than that of TuiGAN, and the maximum difference
reaches 0.78. These promising results indicate that style-independent discriminators im-
prove the diversity of generated images. The style-independent discriminators improve
TuiGAN’s ability to retain content details and are suitable for the combinations of all
datasets.

In summary, based on the above ablation results, our proposed SID-AM-MSITM
achieves promising underwater image translation performance in terms of PSNR, SSIM,
and Entropy. The ablation experiments demonstrate that CBAM modules enhance the
feature extraction ability of the network, so as to enhance the ability to access effective
information. Moreover, we prove that style-independent discriminators improve the
diversity of the generated images without weakening the reconstruction performance,
which indicates SID-AM-MSITM retains the content details of non-underwater images.

Table 3. Ablation experiments on different datasets (Entropy).

Category TuiGAN TuiGAN with
CBAM Modules

TuiGAN with Style-
Independent Discriminators SID-AM-MSITMSID-AM-MSITMSID-AM-MSITM

Sunken Ship + Sonar 6.75 6.70 7.12 7.00
Sunken Ship + Optics 6.00 6.21 6.86 6.78

Crashed plane + Sonar 7.31 6.53 7.23 7.38
Crashed plane + Optics 5.57 5.53 5.70 5.63

Submarine + Sonar 6.47 5.54 6.96 6.59
Submarine + Optics 6.32 6.29 5.44 6.33

3.3. Comparative Experiment

The above ablation experiments demonstrate the overall effect of SID-AM-MSITM.
In the following, we further compare it with multiple advanced image translation models,
including CycleGAN [39], FUNIT [40], AdaIN [30], and SinDiffusion [41]. These models are
selected as baselines since they present promising performance and cover general image
translation models, CycleGAN, FUNIT, and AdaIN, as well as the emerging SinDiffusion.

(1) CycleGAN: CycleGAN is one of the most typical translation models using cycle
consistency. The model assumes the potential correspondence between source-domain
and target-domain images.
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(2) FUNIT: FUNIT is an unsupervised few-shot image translation model that achieves
satisfactory performance based on limited data.

(3) AdaIN: AdaIN is an image translation model that achieves real-time and arbitrary
style transfer.

(4) SinDiffusion: SinDiffusion is a diffusion model that works on a single natural image.

Figure 15 presents the comparison results between the images translated using
SID-AM-MS- ITM and other baseline models. Through visual effect comparison, it is
observed that SID-AM-MSITM has learned the style of target-domain images and retains
the content of source-domain images. Moreover, the images translated using SID-AM-
MSITM show little difference between adjacent pixels as well as excellent smoothness,
which is superior to CycleGAN which shows obvious adjacent pixels difference after am-
plification. Compared with FUNIT and AdaIN, SID-AM-MSITM retains the content of
source-domain images and learns better texture and color information from the target
domain.

Next, we use SIFID to quantitatively compare SID-AM-MSITM with these baselines.
Table 4 shows the SIFID results. It is observed that SID-AM-MSITM achieves the best
(smallest) SIFID values. For example, the SIFID values of the images translated using
SID-AM-MSITM are roughly 0.02× 10−2 to 0.058× 10−2 smaller than that of CycleGAN,
17.408× 10−2 to 17.55× 10−2 smaller than that of FUNIT, 9.31× 10−2 to 9.418× 10−2

smaller than that of AdaIN, 0.002× 10−2 to 0.018× 10−2 smaller than that of TuiGAN,
and 1.118× 10−2 to 1.25× 10−2 smaller than that of SinDiffusion. This demonstrates that
the images translated using SID-AM-MSITM are closer to the source-domain images and
retain more content information than other models.

Source-
Domain

Target-
Domain

SID-AM-

MSITM
CycleGAN FUNIT AdaIN TuiGAN  SinDiffusion

Figure 15. The comparison results of the images generated using SID-AM-MSITM and other models.
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Table 4. SIFID comparison of underwater images generated using SID-AM-MSITM and other baseline
models (×10−2).

Our Model CycleGAN FUNIT AdaIN TuiGAN SinDiffusion

0.092 0.130 17.5 9.51 0.101 1.21
0.054 0.080 17.6 9.41 0.072 1.23
0.050 0.108 17.6 9.36 0.052 1.30
0.015 0.035 17.5 9.35 0.017 1.20

In summary, SID-AM-MSITM is superior to multiple baseline models in improving
the ability to access effective information and avoiding the loss of content details.

4. Conclusions

In this work, we propose a novel multi-scale image translation model with atten-
tion modules and style-independent discriminators (SID-AM-MSITM), to complete the
underwater image translation task. We use a multi-scale generative adversarial network,
TuiGAN, to construct a backbone architecture, which translates images from low scales
to high scales. We introduce CBAM modules into the generators and discriminators at
multi-scales and devise style-independent discriminators to improve the generative and
discriminant effects. Based on systematical ablation and comparative experiments, we
demonstrate that SID-AM-MSITM has the ability to acquire effective information and retain
the content details of non-underwater images during the underwater image translation
process, and it requires only two unpaired images to complete the image translation.

However, there are still some problems in the current research. In the use of style-
independent discriminators, SID-AM-MSITM uses the number between 0 and 1 in the linear
combination to achieve the translation from the source domain to the target domain. We will
continue to study whether there is a more appropriate interval to train style-independent
discriminators. We only select several source-domain and target-domain images as the
dataset, which has certain limitations. In order to measure the performance of the model
comprehensively, we will use other underwater target images to verify the versatility of
SID-AM-MSITM, such as the UIEB database [42].
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Abbreviations
The following abbreviations are used in this manuscript:

SID-AM-MSITM multi-scale image translation model based on style-independent discriminators
and attention modules

CBAM convolution block attention module
GAN generative adversarial network
CNN convolutional neural network
LeakyReLU leaky rectified linear unit
CycleGAN cycle-consistent adversarial network
TV loss total variation loss
PSNR peak signal-to-noise ratio
SSIM structure similarity index measure
Entropy information entropy
AdaIN adaptive instance normalization
CycleGAN cycle-consistent adversarial networks
FID the Fréchet Inception distance
SIFID single image Fréchet Inception distance
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