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Abstract: This paper proposes an algorithm that performs the task of tracking the desired trajectory
for underactuated marine vehicles (primarily underwater) that move horizontally. The control
scheme, which takes into account model inaccuracies and external disturbances, was designed using
the quantities obtained after the transformation of the dynamic equations of motion resulting from
the decomposition of the inertia matrix. This, in turn, led to the equation of dynamics with a diagonal
inertia matrix. A specific feature of the offered controller is its dual role. It not only allows tracking the
desired trajectory, but at the same time, makes it possible to estimate the impact of dynamic couplings
when the vehicle is in motion. Such an approach to the tracking task is important at the initial design
stage when the choice of the control algorithm has not yet been decided and experimental tests have
not been performed. This is feasible because the new variables after the velocity transformation
include not only vehicle parameters, but also actual velocities and forces. Therefore, it is also
possible to track the original variables. The theoretical results were followed up with simulation tests
conducted on a model with three degrees of freedom for two underwater vehicles.

Keywords: underactuated marine vehicle in horizontal motion; trajectory tracking; backstepping;
integral sliding mode control; robustness; velocity transformation; control algorithm simulation

1. Introduction

The issues of the control of underactuated marine and especially underwater vehicles
have been of interest to researchers for many years. The problems that arise are not only
the lack of at least one control signal, but also the limitations of the remaining propulsion,
speed, and uncertainty of the parameters and external disturbances. Among the various
solutions to the problems of controlling the motion of various marine vehicles, tracking
control that allows the system to achieve the desired trajectory with acceptable efficiency
seems attractive. The present work was limited only to the implementation of trajectory
tracking in planar motion; hence, the literature cited relates to this class of vehicles.

Very often, tracking controllers are designed under the assumption that the model has
a diagonal inertia matrix with, therefore, no inertial couplings. Since such a model is very
approximate, the control strategy must guarantee the execution of the basic task despite the
partial lack of information about the model. Effective control methods are based on various
approaches, such as Lyapunov’s direct method [1], the Lyapunov-based technique [2],
backstepping [3,4], backstepping and the Lyapunov method [5], backstepping and sliding
mode control (SMC) [6,7]. Other solutions use SMC, e.g., [8,9], or terminal sliding mode
control (TSMC) [10]. However, the usage of methods based on SMC is broader, and one
can point to works in which different variants have been applied. For example, in [11],
SMC was bound with a thruster uncertainty dual-observer, whereas in [12], a dynamic
sliding mode controller for an overactuated underwater vehicle was proposed. Some
applications of robust sliding mode controllers can be found, e.g., in [13,14]. In [15],
a control scheme including an integral sliding surface as an adaptive control element was
shown and tested. Another group of methods used to control marine objects is those using

J. Mar. Sci. Eng. 2023, 11, 509. https://doi.org/10.3390/jmse11030509 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11030509
https://doi.org/10.3390/jmse11030509
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-8139-0236
https://doi.org/10.3390/jmse11030509
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11030509?type=check_update&version=2


J. Mar. Sci. Eng. 2023, 11, 509 2 of 24

artificial intelligence [16–20] or based on deep learning [21,22]. Neural networks (NNs)
have also been used for the design of tracking control algorithms, as in [23]. However,
NNs are mixed with other techniques, for example with backstepping and SMC [24], fuzzy
logic [25], or event-triggered control [26]. Fuzzy-observer-based control was presented
in [27]. Trajectory tracking control with prescribed performance is another solution of the
trajectory tracking problem [28]. From these examples, it is clear that the multitude of
control methods used for vehicle models that ignore inertial coupling demonstrates that,
even with this simplification, the trajectory tracking problem is non-trivial and requires
knowledge of a variety of potentially useful strategies.

More close to reality are models that account for vehicle asymmetry. When the ve-
hicle model is assumed to be asymmetric, the inertia matrix has non-diagonal elements,
so that interactions between accelerations are taken into account. This corresponds to
the situation where the vehicle is not sufficiently balanced to be considered symmetrical.
This can be caused by the vehicle design or by a shift in the center of mass due to ad-
ditional loads (e.g., cargo). Control algorithms are more difficult to implement than for
a symmetrical vehicle. Despite these difficulties, effective strategies exist for trajectory
tracking, although not as numerous as in the assumption of models with a diagonal inertia
matrix. One approach to accomplish the task of tracking a desired trajectory is to use a
backstepping technique, e.g., [29,30], or its combination with the Lyapunov method [31,32].
Control methods based on neural networks are also applied [33,34], sometimes with other
strategies, e.g., backstepping [35] and also SMC [36]. Other effective solutions to the prob-
lem of tracking a desired trajectory are based on either SMC [37] or TSMC [38]. A robust
control approach for trajectory tracking of uncertain USVs with external disturbances in
a band-limited networked environment using quantization was proposed in [39]. Some
approaches include a coordinate transformation to design a controller with satisfactory
performance [29,40–42].

The work’s motivation was as follows. It was noted that the most-commonly used
control algorithms concern a model fully symmetric with respect to two planes, less often
symmetric in one plane. Thus, the operation of the control scheme (often mathematically
complex) is checked. However, even when the controller is designed for a model with a
diagonal inertia matrix, it can prove ineffective when changing the parameters of such
a model, as pointed out in [43]. What is missing, however, is information on how the
couplings existing in the model affect the performance of the task. Such controllers do not
provide insight into vehicle dynamics during trajectory tracking.

This paper discusses a control method for a planar underactuated marine vehicle
(mainly underwater) with three DOFs (cf. Appendix A). In order to design the control
scheme, the inertia matrix was decomposed, obtaining equations of motion expressed in
inertial quasi-velocities. Controllers involving the IQV are known from the literature, but
are primarily applied to fully actuated systems. The main reason is that, with the IQV
(cf. Appendix A), for the velocity transformation resulting from the decomposition of the
inertia matrix, there are additional problems such as additional coupling coming from
the interaction of these velocities. One can find papers proposing manipulator controls,
e.g., [44,45], but also those that deal with the control of marine and other vehicles [46,47].
However, for underactuated marine vehicles, even moving in a plane, designing a control
scheme using the IQV is a challenging task. The present work is one attempt to address
this issue. An important benefit of IQV-based control algorithms is the ability not only to
perform the basic task, but also to obtain information about the vehicle behavior when
the dynamic parameters and the desired trajectory are changed. Such a procedure allows
insight into the vehicle dynamics and the preparation of the correct operating conditions or
the modification of the model parameters at the design stage. Some examples were given,
among others, in [46,47].

The contributions of the paper can be summarized as follows:

(1) The proposal of a control algorithm for tracking the desired trajectory in the variables
obtained after the velocity transformation resulting from the decomposition of the
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inertia matrix. The original dynamic model applies to a fully asymmetric vehicle
(in both axes), and after decomposition, the inertial couplings are included in the
quantities occurring in the controller.

(2) The tracking controller for an underactuated vehicle moving horizontally is based on
a combination of sliding mode control, backstepping techniques, and the IQV and
provides robustness against disturbances.

(3) A mathematical representation of the conditions of the algorithm and an indication of
some of the information that can be obtained using the IQV while tracking the desired
trajectory.

(4) Simulation studies were carried out on models of real vehicles and the possible values
of force and torque achieved by them, which distinguishes the proposed test from oth-
ers that do not take into account the technical capabilities, for
example [29,36,48,49], as well as the values of the speeds achieved.

The remainder of this paper is organized as follows. Section 2 presents the mathemati-
cal model of the vehicle, as well as the equations of motion using inertial quasi-velocities.
The adaptive trajectory tracking control scheme is proposed in Section 3. Numerical simu-
lations showing the performance of the controller are provided in Section 4. Finally, the
conclusions of this work are given in Section 5.

2. Mathematical Model of Vehicle Moving in Horizontal Plane

The underactuated marine vehicle position in the horizontal plane is shown in Figure 1.
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Figure 1. Underwater vehicle model sketch.

2.1. Equations of Motion

The kinematics and dynamics of the considered vehicle can be written as follows [50]:

η̇ = J(ψ)ν, (1)

Mν̇ + C(ν)ν + D(ν)ν = τ + fed, (2)

where η = [x, y, ψ]T is the position in the Earth-fixed frame, ν = [u, v, r]T is the velocity
vector (surge, sway, and yaw velocities in the body-fixed frame), J(ψ) is the transforma-
tion matrix, M is the vehicle inertia matrix, C(ν) is the Coriolis and centripetal matrix,
and D(ν) is the matrix containing hydrodynamic damping. Moreover, the control vector
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τ = [τu, 0, τr]T includes the thruster force τu and the yaw torque τr. The vector of external
disturbances is denoted as fed.

Other matrices and vectors are described as

J(ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

, M =

 m11 0 m13
0 m22 m23

m13 m23 m33

,
C(ν) =

 0 0 c13
0 0 c23
−c13 −c23 0

, D(ν) =

 d11 0 d13
0 d22 d23

d31 d32 d33

, fed =

 fu ed
fv ed
fr ed

, (3)

where the used symbols mean: m11 = m− Xu̇, m13 = m31 = −myg − Xṙ, m22 = m− Yv̇
m23 = m32 = mxg − Yṙ, and m33 = Jz − Nṙ—the inertial elements and added masses,
c13 = −m22v − m23r, c23 = m11u − m13r—the elements of the Coriolis and centripetal
terms, and d11 = Xu + X|u|u|u| + X|r|u|r|, d13 = Xr + X|r|r|r| + X|u|r|u|, d22 = Yv +
Y|v|v|v| + Y|r|v|r|, d23 = Yr + Y|v|r|v| + Y|r|r|r|, d31 = Nu + N|u|u|u| + N|v|u|v| + N|r|u|r|,
d32 = Nv + N|v|v|v|+ N|r|v|r|+ N|u|v|u|, and d33 = Nr + N|v|r|v|+ N|r|r|r|+ N|u|r|u|—the
hydrodynamic damping components. The damping terms contain the linear and quadratic
drag coefficients.

2.2. Inertial-Quasi-Velocity-Based Equations

To perform the decomposition of the matrix M and obtain the dynamic equation con-
taining the IQV, it is necessary to assume that the matrix is symmetric. Such an assumption
can be satisfied when all model inaccuracies fm and external disturbances fex are included
in the function fme = fm + fed. There are many decomposition methods, but this work used
the method known from [51], which has also been successfully implemented for marine
and other vehicles, e.g., in [46,47].

After decomposing the matrix M, one obtains the diagonal matrix N = Π̂T MΠ̂ (cf.
Appendix A), which is positive definite for the same defined matrix M. It also means that
M = Π̂−TNΠ̂−1. The Π̂ matrix contains nominal parameters, while any inaccuracies of
Π are shifted to the vector f = fme + ∆Π defined as f = [ fu, fv, fr]T . On the other hand,
the decomposition of the matrix M̂ with nominal parameters yields a matrix N̂ = Π̂T M̂Π̂
(cf. Appendix A).

The new equations, instead, of (2) are of the form:

Nζ̇ + Π̂TC(ν)ν + Π̂T D(ν)ν = Π̂Tτ + Π̂T f , (4)

ν = Π̂ ζ, (5)

Π̂ =

 1 0 Π̂13
0 1 Π̂23
0 0 1

, N = diag{N1,N2,N3}. (6)

The vector of the inertial quasi-velocities is defined as ζ = [ζ1, ζ2, ζ3]
T , whereas

N1 = m11, N2 = m22, N3 = m33 − (m2
13/m11) − (m2

23/m22), Π̂13 = −(m̂13/m̂11), and
Π̂23 = −(m̂23/m̂22) result from the decomposition of the matrix M.

The new equations of motion replacing (4) and (5) are as follows:

ζ1 = u− Π̂13r, (7)

ζ2 = v− Π̂23r, (8)

ζ3 = r, (9)

N1ζ̇1 = H1(ζ) + τu + fu, (10)

N2ζ̇2 = H2(ζ) + fv, (11)

N3ζ̇3 = H3(ζ) + τζ3 + fζ3 , (12)
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with τζ3 = Π̂13τu + τr, fζ3 = Π̂13 fu + Π̂23 fv + fr, and

H1(ζ) = (m22v + m23r)r− d11u− d13r,

H2(ζ) = (−m11u + m13r)r− d22v− d23r,

H3(ζ) = −(m22v + m23r)u + (m11u−m13r)v + Π̂13(m22v + m23r)r− Π̂23(m11u−m13r)r

−(Π̂13d11 + d31)u− (Π̂23d22 + d32)v− (Π̂13d13 + Π̂23d23 + d33)r.

For simplicity, the symbols are introduced as H1 = H1(ζ), H2 = H2(ζ), and
H3 = H3(ζ).

2.3. Assumptions

In order to simplify the considerations of the tracking problem, it was assumed that a
marine vehicle has three DOFs. These simplifications are summarized below. The first ones
(A1)–(A4) are similar to those in [52]:

(A1) The motion of the underwater vehicle in the roll, pitch, and heave directions is ne-
glected.

(A2) The vehicle has a neutral buoyancy, and the origin of the body-fixed coordinate is at
the geometric center.

(A3) The vehicle is asymmetrical with respect to two planes, which means that the distance
of the center of mass from the geometric center is nonzero in the x and y directions.

(A4) In the dynamic equations of the vehicle, the disturbance forces (external, but also
internal due to the inaccuracy of the model) are taken into account.

(A5) The reference signals and states are bounded: |ud| ≤ ud max, |u̇d| ≤ u̇d max, |rd| ≤ rd max,
|ṙd| ≤ ṙd max, |xd| ≤ xd max, |ẋd| ≤ ẋd max, |ẍd| ≤ ẍd max, |yd| ≤ yd max, |ẏd| ≤ ẏd max,
|ÿd| ≤ ÿd max, |ψd| ≤ ψd max.

(A6) The composite disturbances fu, fv, and fr are bounded, i.e., | fu| ≤ fu max, | fv| ≤ fv max,
and | fr| ≤ fr max. This means that the perturbations of the model parameters are also
bounded.

(A7) The thrust saturation effect is not serious, which makes it possible to assume that
τu and τr are bounded, i.e., τu min ≤ τu ≤ τu max and τr min ≤ τr ≤ τr max. The
assumptions about the control signals’ boundedness were used for marine vehicles,
e.g., in [53,54]. This is allowed when the control input values exceed the thruster limit
only sometimes [55]. The operating conditions and desired trajectories can ultimately
be selected to meet the above condition.

(A8) The yaw angle ψ is time varying and bounded and fulfills the condition |ψ| < π/2 or,
more practically, 0 < |ψ| < π/2.

3. Robust Adaptive Trajectory Tracking Controller

This section shows how the control algorithm using the equations expressed in the
IQV to track the desired trajectories in the horizontal plane while taking into account the
parameter perturbations and external disturbances was designed. The proposed control
scheme is shown in Figure 2.
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Figure 2. Proposed control scheme.

3.1. Kinematic Relationships

Define the desired trajectory ηd = [xd, yd, ψd]
T and the kinematic tracking error

[xE
e , yE

e , ψe]T = [x− xd, y− yd, ψ− ψd]
T assuming that the functions xd and yd are smooth

and continuous in the reference frame {E}. Next, apply the coordinate transformation as
follows [56,57]:

xe = cos ψ xE
e + sin ψ yE

e , (13)

ye = − sin ψ xE
e + cos ψ yE

e , (14)

ψe = ψ− ψd, (15)

where xe and ye are expressed in the body frame {B}, and the desired attitude angle
trajectory is determined from the desired trajectory from the equation [3]:

ψd = arctan(ẏd/ẋd). (16)

Calculating the time derivative of the kinematic tracking error and using (1), it can be
written that

ẋe = u−Ud cos ψe + rye, (17)

ẏe = v +Ud sin ψe − rxe, (18)

ψ̇e = r− rd, (19)

where the desired velocities have the form Ud =
√

ẋ2
d + ẏ2

d and rd = ψ̇d.

3.2. Backstepping- and Sliding-Mode-Combination-Based Control Scheme Design

The controller design procedure consisted of several steps.
Firstly, the following Lyapunov function candidate (LFC 1) in the form:

V1 =
1
2

x2
e +

1
2

y2
e , (20)

to stabilize the errors (xe, ye) is proposed. Making use of (17)–(19), one has its time
derivative:

V̇1 = xe ẋe + yeẏe = xe(u−Ud cos ψe + rye) + ye(v +Ud sin ψe − rxe). (21)

The use of minimal attitude descriptions, i.e., Euler angles, can lead to the occurrence
of representation singularities, so to avoid this, a virtual velocity variable is introduced [58]:

µv = Ud sin ψe. (22)



J. Mar. Sci. Eng. 2023, 11, 509 7 of 24

In order to obtain a negative V̇ value, i.e., V̇1 < 0, the desired virtual controls ud, µd
are introduced in the form:

ud = Ud cos ψe − k1xe − Π̂13re, (23)

µd = −ζ2 − k2ye, (24)

where k1 > 0 and k2 > 0 are positive gain parameters. Thus, the errors ue, µe can be
written as

ue = u− ud, µe = µv − µd. (25)

Because u = ue +ud, from (8) v = ζ2 + Π̂23r (with ζ2 = −µd− k2ye) and−µd = µe − µv,
then ẋe = ue − k1xe − Π̂13re + rye and ẏe = µe − k2ye + Π̂23re − rxe. Moreover, based on
(7), it is possible to define ζ1e = ue − Π̂13re (for constant Π̂13). Therefore, (21) can be
represented in the following form:

V̇1 = −(k1x2
e + k2y2

e ) + xe(ue − Π̂13re) + yeµe + yeΠ̂23r

= −(k1x2
e + k2y2

e ) + xeζ1e + yeµe + Π̂23yer. (26)

Stabilization of the error variable ζ1e: In order to stabilize the error ζ1e, its time derivative
is considered first using Equation (10):

ζ̇1e = ζ̇1 − ζ̇1d = N−1
1 (H1 + τu + fu)− ζ̇1d = N−1

1 (σ1 + τu), (27)

where σ1 = H1 + fu −N1ζ̇1d. From the relationship (7), one has also ζ1d = ud − Π̂13rd and
its time derivative ζ̇1d = u̇d − Π̂13ṙd. Taking into account the error variable ud (23), its time
derivative u̇d can be determined.

The second Lyapunov function is now selected (LFC 2):

V2 = V1 +
1
2
N1ζ2

1e +
1
2
(σ1 − σ̂1)

2. (28)

The quantity σ̂1 is an estimate of the component σ1. To solve the stabilization prob-
lem (27), the following sliding manifold is applied:

S1 = ζ1e + k3

∫ t

0
ζ1edι +N−1

1

∫ t

0
xedι−N−1

1

∫ t

0
(σ1 − σ̂1)dι, (29)

where k3 > 0 is a positive constant gain. The time derivative of S1 has the form:

Ṡ1 = ζ̇1e + k3ζ1e +N−1
1 xe −N−1

1 (σ1 − σ̂1) = N−1
1 (σ1 + τu) + k3ζ1e +N−1

1 xe −N−1
1 (σ1 − σ̂1). (30)

The error ζ̇1e is determined from (30):

ζ̇1e = Ṡ1 − k3ζ1e −N−1
1 xe +N−1

1 (σ1 − σ̂1). (31)

The time derivative of V2 (28) using (31) is

V̇2 = V̇1 +N1ζ1e ζ̇1e − ˙̂σ1(σ1 − σ̂1) = −(k1x2
e + k2y2

e ) + xeζ1e + yeµe + Π̂23yer +N1ζ1e Ṡ1

−k3N1ζ2
1e − xeζ1e + ζ1e(σ1 − σ̂1)− ˙̂σ1(σ1 − σ̂1) = −(k1x2

e + k2y2
e ) + yeµe + Π̂23yer

+N1ζ1e Ṡ1 − k3N1ζ2
1e + (ζ1e − ˙̂σ1)(σ1 − σ̂1). (32)

The next Lyapunov function candidate (LFC 3) is assumed as follows:

V3 = V2 +
1
2
N1S2

1. (33)
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Calculating its time derivative and inserting (30), one obtains

V̇3 = V̇1 +N1S1Ṡ1 = −(k1x2
e + k2y2

e ) + yeµe + Π̂23yer +N1ζ1e Ṡ1 − k3N1ζ2
1e

+(ζ1e − ˙̂σ1)(σ1 − σ̂1) +N1S1Ṡ1 = −(k1x2
e + k2y2

e ) + yeµe + Π̂23yer

+(ζ1e − ˙̂σ1)(σ1 − σ̂1)− k3N1ζ2
1e +N1Ṡ1(ζ1e + S1) = −(k1x2

e + k2y2
e ) + yeµe

+Π̂23yer + (ζ1e − ˙̂σ1)(σ1 − σ̂1)− k3N1ζ2
1e +N1

(
N−1

1 (σ1 + τu) + k3ζ1e +N−1
1 xe

−N−1
1 (σ1 − σ̂1)

)
(ζ1e + S1). (34)

Selecting now ˙̂σ1 = ζ1e and assuming τu in the form:

τu = −σ̂1 − k3N1ζ1e − xe + ζ1e − S1, (35)

it can be written that

V̇3 = −(k1x2
e + k2y2

e ) + yeµe + Π̂23yer− k3N1ζ2
1e +N1

(
N−1

1 (σ1 − σ̂1 − k3N1ζ1e

−xe + ζ1e − S1) + k3ζ1e +N−1
1 xe −N−1

1 (σ1 − σ̂1)
)
(ζ1e + S1)

= −(k1x2
e + k2y2

e ) + yeµe + Π̂23yer− (k3N1 − 1)ζ2
1e − S2

1. (36)

Stabilization of the virtual error µe: Taking into consideration (23)–(25), one obtains the
time derivative of µ̇e:

µ̇e = µ̇v − µ̇d = U̇d sin ψe +Ud cos ψe(r− ψ̇d) + ζ̇2 + k2ẏe

= U̇d sin ψe +Ud cos ψe(r− ψ̇d) +N−1
2 σ2 + k2ẏe, (37)

where σ2 = H2 + fv. Applying r = re + rd (19) and the virtual control rd:

rd = ψ̇d + (Ud cos ψe)
−1(−U̇d sin ψe −N−1

2 σ̂2 − k2ẏe − k4µe −N−1
2 ye), (38)

Equation (37) has the form:

µ̇e = reUd cos ψe − k4µe −N−1
2 ye +N−1

2 (σ2 − σ̂2), (39)

where k4 > 0 is a constant. At present, the following FLC 4 is proposed:

V4 = V3 +
1
2
N2µ2

e +
1
2
(σ2 − σ̂2)

2. (40)

Calculating the time derivative, inserting (36) and (39), one obtains

V̇4 = V̇3 +N2µeµ̇e − ˙̂σ2(σ2 − σ̂2) = −(k1x2
e + k2y2

e ) + yeµe + Π̂23yer− (k3N1 − 1)ζ2
1e

−S2
1 +N2µe

(
reUd cos ψe − k4µe −N−1

2 ye +N−1
2 (σ2 − σ̂2)

)
− ˙̂σ2(σ2 − σ̂2)

= −(k1x2
e + k2y2

e ) + Π̂23yer− (k3N1 − 1)ζ2
1e +N2µereUd cos ψe − k4N2µ2

e

+(µe − ˙̂σ2)(σ2 − σ̂2)− S2
1. (41)

By substituting ˙̂σ2 = µe, the above equation becomes

V̇4 = −(k1x2
e + k2y2

e )− (k3N1 − 1)ζ2
1e − S2

1 − k4N2µ2
e +N2µereUd cos ψe + Π̂23yer. (42)

Stabilization of the error variable ζ3e = re: This equality follows from the relation (9). It
can be written that ṙe = ṙ− ṙd or ζ̇3e = ζ̇3 − ζ̇3d. Therefore, using (12), one obtains

ζ̇3e = ζ̇3 − ζ̇3d = N−1
3 (H3 + τζ3 + fζ3 −N3ζ̇3d) = N−1

3 (σ3 + τζ3), (43)
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where σ3 = H3 + fζ3 − N3ζ̇3d. Next, the fifth Lyapunov function candidate (LFC 5)
is selected:

V5 = V4 +
1
2
N3ζ2

3e +
1
2
(σ3 − σ̂3)

2. (44)

In order to solve the stabilization problem (43), the sliding manifold has the follow-
ing form:

S2 = ζ3e + k5

∫ t

0
ζ3edι +N−1

3

∫ t

0
N2µeUd cos ψedι−N−1

3

∫ t

0
(σ3 − σ̂3)dι, (45)

where k5 > 0 is a positive constant. The time derivative of S2 has the form:

Ṡ2 = ζ̇3e + k5ζ3e +N−1
3 N2µeUd cos ψe −N−1

3 (σ3 − σ̂3). (46)

From the above equation, the variable ζ̇3e is expressed by the formula:

ζ̇3e = Ṡ2 − k5ζ3e −N−1
3 N2µeUd cos ψe +N−1

3 (σ3 − σ̂3). (47)

The time derivative of (44), after inserting (42) and (43), is

V̇5 = V̇4 +N3ζ3e ζ̇3e − ˙̂σ3(σ3 − σ̂3) = −(k1x2
e + k2y2

e )− (k3N1 − 1)ζ2
1e − S2

1 +N2µereUd cos ψe

−k4N2µ2
e +N3ζ3e

(
Ṡ2 − k5ζ3e −N−1

3 N2µeUd cos ψe +N−1
3 (σ3 − σ̂3)

)
− ˙̂σ3(σ3 − σ̂3)

+Π̂23yer = −(k1x2
e + k2y2

e )− (k3N1 − 1)ζ2
1e − S2

1 − k4N2µ2
e +N3ζ3e Ṡ2 − k5N3ζ2

3e

+(ζ3e − ˙̂σ3)(σ3 − σ̂3) + Π̂23yer. (48)

Now, the sixth candidate for the Lyapunov function (FLC 6) is chosen:

V6 = V5 +
1
2
N3S2

2. (49)

Its time derivative using (48) is as follows:

V̇6 = V̇5 +N3S2Ṡ2 = −(k1x2
e + k2y2

e )− (k3N1 − 1)ζ2
1e − S2

1 − k4N2µ2
e +N3ζ3e Ṡ2 − k5N3ζ2

3e

+(ζ3e − ˙̂σ3)(σ3 − σ̂3) + Π̂23yer +N3S2Ṡ2 = −(k1x2
e + k2y2

e )− (k3N1 − 1)ζ2
1e − S2

1

−k4N2µ2
e − k5N3ζ2

3e + (ζ3e − ˙̂σ3)(σ3 − σ̂3) + Π̂23yer +N3(ζ3e + S2)
(
N−1

3 (σ3 + τζ3 )

+k5ζ3e +N−1
3 N2µeUd cos ψe −N−1

3 (σ3 − σ̂3)
)
. (50)

In order to reduce some components of the function V̇6, ˙̂σ3 = ζ3e is chosen and a
controller of the form:

τζ3 = −σ̂3 − k5N3ζ3e −N2µeUd cos ψe + ζ3e − S2. (51)

Then, Equation (50) can be written as

V̇6 = −(k1x2
e + k2y2

e )− (k3N1 − 1)ζ2
1e − S2

1 − k4N2µ2
e − k5N3ζ2

3e + Π̂23yer

+N3(ζ3e + S2)
(
N−1

3 (−σ̂3 − k5N3ζ3e −N2µeUd cos ψe + ζ3e − S2 + σ3) + k5ζ3e

+N−1
3 N2µeUd cos ψe −N−1

3 (σ3 − σ̂3)
)
= −(k1x2

e + k2y2
e )− (k3N1 − 1)ζ2

1e − S2
1

−k4N2µ2
e − k5N3ζ2

3e + Π̂23yer + (ζ3e − S2)(ζ3e − S2)

= −(k1x2
e + k2y2

e )− (k3N1 − 1)ζ2
1e − S2

1 − k4N2µ2
e − (k5N3 − 1)ζ2

3e − S2
2 + Π̂23yer. (52)

The problem is the component Π̂23yer. Using (9), taking into account the Young
inequality in the form as in [5], i.e., for (a, b) ∈ R, ab ≤ (1/2)ε2|a|2 + (2ε2)−1|b|2, where ε
means a positive constant, one obtains

Π̂23yeζ3 ≤ Π̂23
( ε2

2
|ye|2 +

1
2ε2 |ζ3|2

)
. (53)
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Denoting W = −(k1x2
e + k2y2

e )− (k3N1 − 1)ζ2
1e − S2

1 − k4N2µ2
e − (k5N3 − 1)ζ2

3e − S2
2,

Equation (52) can be written as

V̇6 ≤ −
(

W − Π̂23
( ε2

2
|ye|2 +

1
2ε2 |ζ3|2

))
≤ 0, (54)

if the following conditions are met:

W > Π̂23
( ε2

2
|ye|2 +

1
2ε2 |ζ3|2

)
, k3N1 > 1, k5N3 > 1. (55)

Thus, under these conditions, V̇6 ≤ 0. This means that k3 and k5 must have large
enough values and ε must be chosen appropriately to ensure that Condition (55) is satisfied.
If this condition is not met, then assuming that ρ ≥ Π̂23yer (where ρ means a small
neighborhood of zero), then it will be

V6 ≤W + ρ. (56)

Comment: The Lyapunov functions, as well as sliding surfaces, unlike the usual ones, contain
the dynamic parameters of the vehicle model (or, more precisely, the couplings between the velocity
variables or mechanical couplings). Since the dynamic parameters will depend on the vehicle under
test, so their selection is obvious (e.g., Vehicle 1 has Set 1 and Vehicle 2 has Set 2). The designer has
no impact on this, as long as the displacement of the center of mass has already been determined.
However, he/she can decide how far the center of mass can be located from the geometric center.

Theorem 1. The considered underactuated marine vehicle is described by the kinematic Equation (1)
and the dynamic Equations (4)–(12). Assumptions (A1)–(A8) are also fulfilled. Using the adaptive
rules ˙̂σ1 = ζ1e, ˙̂σ2 = µ2e, ˙̂σ3 = ζ3e, as well as Controllers (35) and (51), the tracking error defined
as ze = {xe, ye, ζ1e, µe, ζ3e} converges to a small neighborhood of zero. Moreover, the equilibrium
(17)–(18) and (37) is uniformly ultimately bounded, while all intermediate variables are also
bounded.

Proof. Consider the following Lyapunov function candidate, which is a modification of
the previously proposed Lyapunov functions, but includes the error variables:

V =
1
2
(
x2

e + y2
e
)
+

1
2
N1ζ2

1e +
1
2
N1S2

1 +
1
2
N2µ2

e +
1
2
N3ζ2

3e +
1
2
N3S2

2. (57)

Recalling Equation (54), it can be seen that, if there are nonzero elements in the system
vector, then V̇ < 0 is satisfied as long as Condition (55) is satisfied. In this case, as follows
from (54), the error variables xe, ye, ζ1e, µe, ζ3e will be stabilized to zero. However, in a more
realistic case, that is (56), the error variables tend to a small neighborhood of zero when time
t goes to infinity. The Lyapunov function defined by Equation (57) is uniformly ultimately
bounded, which means that limt→∞ V = ρ. The proposed adaptive rules with the forms
˙̂σ1 = ζ1e, ˙̂σ2 = µ2e, ˙̂σ3 = ζ3e cause that, when t → ∞, there will also be ˙̂σ1 = 0, ˙̂σ2 = 0,
˙̂σ3 = 0. This, in turn, causes quantities σ̂1, σ̂2, σ̂3 to be bounded. Considering Equations (17)
and (18) and also Controllers (35) and (51), it can be deduced that the intermediate variables
of the control system ζ1d, µd, ζ3d, τu, and τζ3 are also bounded.

Remark 1. As can be seen from Equation (12), the control variable τζ3 is not the actual signal
applied to the system input. To determine the actual signal τr, it is necessary to use the relationship
given in (12), i.e., τr = τζ3 − Π̂13τu.
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4. Simulation Results
4.1. Vehicle Models and Test Conditions

In order to show the performance of the controller, vehicle models with different
dynamics were selected. The parameters of the vehicles used for the simulations are given
in Table 1. The tests used the software [59] modified based on the IQV and for SIRENE and
CETUS II vehicle models, respectively.

The SIRENE vehicle was described in [60,61]. The vehicle was Lv = 4.0 m long,
W = 1.6 m wide, and H = 1.96 m high. The maximum value of the longitudinal speed was
umax = 2 m/s. The force and torque limits |τu| ≤ 500 N and |τr| ≤ 600 Nm were applied
for all trajectories’ tracking.

In order to consider the matrix M with off-diagonal elements, it was assumed that
m13 = m31 = 200 kgm and m23 = m32 = −700 kgm (in the cited, references this quan-
tity was absent, but it was needed for this test). This parameters’ set allows calculat-
ing the elements of the diagonal matrix N, i.e., N1 = 2234.5 kg, N2 = 2234.5 kg, and
N3 = 1762.8 kgm2.

The other linear and quadratic coefficients were assumed as follows: Xr = 10,
X|r|r = 10, X|r|u = 10; X|u|r = 10, Yr = 10, Y|r|v = 10, Y|v|r = 10, Y|r|r = 10,
Nv = 10, N|r|v = 10, N|v|r = 10, N|v|v = 10, Nu = 10, N|u|u = 10, N|v|u = 10,
N|r|u = 10, N|u|v = 10, N|u|r = 10.

The CETUS II originally built by Lockheed-Martin was considered in [62,63]. The as-
sumed maximum value of longitudinal speed was umax = 1.25 m/s. The force and torque
limits |τu| ≤ 122 N and |τr| ≤ 13 Nm (for sine trajectory tracking) and |τu| ≤ 60 N and
|τr| ≤ 13 Nm (for linear and partial circle trajectory tracking) were used. In order to
consider the matrix M with off-diagonal elements, it was assumed that m13 = m31 = 8 kgm
and m23 = m32 = −12 kgm (in the cited references, this quantity was absent, but it was
needed for this test). This parameters’ set allows calculating the elements of the diagonal
matrix N, i.e., N1 = 117.02 kg, N2 = 117.02 kg, and N3 = 28.9616 kgm2.

The other linear and quadratic coefficients were: Xr = 10, X|r|r = 5, X|r|u = 10,
X|u|r = 5, Yr = 10, Y|r|v = 5, Y|v|r = 5, Y|r|r = 5, Nv = 5, N|r|v = 0.10, N|v|r = 0.10,
N|v|v = 0.10, Nu = 5, N|u|u = 0.10, N|v|u = 0.10, N|r|u = 0.10, N|u|v = 0.10, Nur = 0.10.

Table 1. Parameters of the SIRENE and CETUS II.

SIRENE CETUS II

Symbol Value Value Unit

m11 2234.5 117.02 kg
m22 2234.5 117.02 kg
m33 2000 30.7391 kg m2

Xu 0 0 kg/s
Yv 346 25.6701 kg/s
Nr 1427.2 15.525 kg m2/s

Xu|u| 35.4090 105.16 kg/m
Yv|v| 667.5552 70.1851 kg/m
Nr|r| 26036 0.20 kg m2

The simulations using Matlab/Simulink were performed for time t = 100 s (the time
step ∆t = 0.05 s; the method ODE3 Bogacki–Shampine was used). The following desired
trajectories were tested: sine, linear, and partial circle:

pd1 = [t, 5 sin(0.1 t)]T , (58)

pd2 = [0.5 t, 0.1 t]T , (59)

pd3 = [5− 10 sin(0.05 t), 5− 10 cos(0.05 t)]T , (60)
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with initial points p0d1 = [0.5, 10]T (ψ0d1 = 0), p0d2 = [0.5, 2]T (ψ0d2 = 0), and p0d3 = [6, −2]T

(ψ0d3 = 4), respectively.
The disturbance functions considered for both vehicles were of the form: fu(t)

fv(t)
fr(t)

 =

 5 + 5 sin(0.02 t) N,
5 sin(0.01 t) N,

5 sin(0.05 t) + 5 cos(0.02 t) N·m

 (61)

The disturbance functions were taken on the assumption that the inaccuracies in the model
parameters included in these functions were small (a few percent at most), the water was
calm, the environmental disturbances also induced forces of small values, and the lateral
velocity was below 0.5 m/s.
Comment: The controller’s gains were preselected using a heuristic method described, e.g., in [43].
Then, they were tuned to improve the controller’s performance. At the beginning, the working
conditions were established, i.e., the trajectory and initial conditions. The limits of the forces and
torque were checked, which were possible for the vehicle’s engines (this can be ignored to show the
effectiveness of the algorithm, but the results will be unrealistic). The parameters were divided into
two subgroups (k1 and k2 refer to the kinematic part, while k3, k4, and k5 refer to the dynamic part).
Their values were preliminarily determined, assuming that they can be smaller for the kinematic
controller (e.g., 0.01 and 0.1) and larger for the dynamic algorithm (e.g., 1 and 10, being more
robust to the changes in the gain of the dynamic controller). If, with one set, the task of trajectory
tracking is realized, but with unacceptable accuracy, then this set of gains will be accepted for further
testing. If this condition is not met, then another set is searched for. Once a set is found that allows
trajectory tracking, but with insufficient accuracy, all controller parameters are tuned sequentially
until acceptable results are obtained.

Assumed performance indexes: The measure of velocity coupling due to dynamic param-
eters [46,47] is ∆ζi = ζi − νi (i = 1, 2, 3), which is presented on graphs.

The following set of indexes was selected to evaluate the performance of the controller:

(1) Mean integrated absolute error (MIA), i.e., MIA = 1
t f−t0

∫ t f
t0
|a(t)|dt where a = xe, ye;

(2) Mean integrated absolute control (MIAC), i.e., MIAC = 1
t f−t0

∫ t f
t0
|τ(t)|dt;

(3) Root mean square of the tracking error (RMS), i.e., RMS =

√
1

t f−t0

∫ t f
t0
‖e(t)‖2dt,

where ‖e(t)‖ =
√
(xe)2 + (ye)2 (xe and ye are the position errors in the body frame),

and some indexes based on [46,47] resulting from the use of the IQV, i.e.:
(4) Mean kinetic energy (MKE) δK = mean(K), K = ∑3

i=1 Ki = ∑3
i=1

1
2 Niζ

2
i (K denotes

the kinetic energy);
(5) Mean quasi-velocity (MQV) δz = ∑3

i=1 mean|ζi|, representing the velocity deforma-
tion arising from the dynamics;

(6) Mean quasi-velocity error (MQVE) δ∆z = ∑3
i=1 mean|∆ζi|, representing the velocity

error deformation arising from the dynamics;
(7) Couplings evaluation index (CEI) δΠ̂ = 1 + (||Π̂−1 − I||/||Π̂−1||diag) for a vehicle.

4.1.1. SIRENE Vehicle Test

Sine trajectory (58): The selected controller gains, to ensure acceptable error conver-
gence, were as follows:

k1 = 0.05, k2 = 0.25, k3 = 10, k4 = 2.0, k5 = 10. (62)

As can be seen from Figure 3a, the task of trajectory tracking was carried out correctly,
and the tracking errors tended to the final value, as confirmed in Figure 3b. Therefore, the
controller was working correctly. From the speeds shown in Figure 3c, it is clear that the
forward movement of the vehicle was dominant, although the lateral movement was also
noticeable. The values of the force and torque (Figure 3d) reached the maximum values only
in the first phase of movement (reaching the desired trajectory). The highest values of the
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kinetic energy correspond to the longitudinal velocity, as can be seen from Figure 3e. The
mean kinetic energy values for quasi-velocity were as follows: δK1 = 1240.1 J, δK2 = 37.6 J,
and δK3 = 3.2 J. From the quasi-velocity errors shown in Figure 3f, the deformation of the
longitudinal velocity due to the vehicle’s lack of symmetry was small, while the transverse
velocity was slightly larger.
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Figure 3. Results for the SIRENE, QV controller and sine trajectory: (a) desired and realized trajectory;
(b) position errors; (c) velocity errors; (d) applied force and torque; (e) kinetic energy time history;
(f) quasi-velocity errors ∆ζ1, ∆ζ2.

Linear trajectory (59): The gains to ensure acceptable error convergence were taken
as follows:

k1 = 0.08, k2 = 0.05, k3 = 5.0, k4 = 0.5, k5 = 5.0. (63)

From Figure 4a,b, it can be seen that the task of trajectory tracking was realized, but
for the errors of the uncontrollable variable, the time to reach the trajectory was long (about
80 s). The task was accomplished primarily by means of the longitudinal velocity u, which
is observed in Figure 4c. Large values of the force τu and torque τr occurred only for a short
time at the beginning of the vehicle movement (Figure 4d). The kinetic energy required to
track a linear desired trajectory was much less than for tracking a sinus trajectory, as can
be observed from Figure 4e. The mean kinetic energy values for the quasi-velocity were
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as follows: δK1 = 283.63 J, δK2 = 0.15 J, and δK3 = 0.02 J. The velocities were only very
slightly deformed, as indicated by the errors ∆ζ1, ∆ζ2 in Figure 4f.
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Figure 4. Results for the SIRENE, QV controller and linear trajectory: (a) desired and realized
trajectory; (b) position errors; (c) velocity errors; (d) applied force and torque; (e) kinetic energy time
history; (f) quasi-velocity errors ∆ζ1, ∆ζ2.

Partial circle trajectory (60): In this case, the controller gains were selected as follows:

k1 = 0.04, k2 = 0.30, k3 = 2.5, k4 = 3.5, k5 = 10. (64)

As can be seen in Figure 5a,b, the circular trajectory was tracked correctly, although it
was only after a few tens of seconds that the errors decreased significantly. Further-
more, with this kind of movement, the velocity u was dominant, but also the velocity
v was important, as can be seen from Figure 5c. In the initial phase of the movement,
signals τu, τr reached maximum values, but after a short time, they decreased consid-
erably (Figure 5d). The kinetic energy consumption was only slightly higher than with
linear trajectory tracking, as illustrated in Figure 5e, but the velocity deformation was
higher and similar to that for the sine trajectory, as indicated by the error values ∆ζ1, ∆ζ2
shown in Figure 5f. The mean kinetic energy values for quasi-velocity were as follows:
δK1 = 266.22 J, δK2 = 35.35 J, and δK3 = 4.50 J.
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Figure 5. Results for the SIRENE, QV controller and partial circular trajectory: (a) desired and realized
trajectory; (b) position errors; (c) velocity errors; (d) applied force and torque; (e) kinetic energy time
history; (f) quasi-velocity errors ∆ζ1, ∆ζ2.

4.1.2. CETUS II Vehicle Test

The results presented in Figure 6a,b show that the sine trajectory tracking was per-
formed with satisfactory accuracy. The velocity values in Figure 6c indicate that the
movement was mainly due to the velocity u, although the lateral velocity v also had a
visible contribution to the vehicle movement. The movement of the vehicle was primar-
ily due to the taur force (unlike for the SIRENE vehicle), which only initially reached
a maximum value, as shown in Figure 6d. The kinetic energy consumption (Figure 6e)
also related primarily to the forward motion of the vehicle, which was consistent with
the velocity history u. The mean kinetic energy values for the quasi-velocity were as
follows: δK1 = 65.00 J, δK2 = 1.08 J, and δK3 = 0.02 J. Figure 6f shows (errors ∆ζ1, ∆ζ2)
that the velocity deformation due to the dynamic parameters of the applied model was
not significant.

Sine trajectory (58): The selected controller gains, to ensure acceptable error conver-
gence, were as follows:

k1 = 0.85, k2 = 0.10, k3 = 15, k4 = 1.0, k5 = 20. (65)
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Figure 6. Results for the CETUS II, QV controller and sine trajectory: (a) desired and realized
trajectory; (b) position errors; (c) velocity errors; (d) applied force and torque; (e) kinetic energy time
history; (f) quasi-velocity errors ∆ζ1, ∆ζ2.

Linear trajectory (59): The selected controller gains, to ensure acceptable error conver-
gence, were as follows:

k1 = 0.15, k2 = 0.40, k3 = 1.4, k4 = 1.4, k5 = 15. (66)

As can be seen in Figure 7a,b, the linear trajectory was tracked, but inaccurately, as
evidenced by the xe error values. In addition, at the beginning, the movement of the
CETUS vehicle was different from that of the SIRENE. This may be due to the less favorable
mass-to-power ratio of the engines (the mass of the vehicle is small, and the propulsion
capabilities are strongly limited). In Figure 7c, it can be observed that the dominant speed
was u, but when the vehicle started, there were oscillations of the other velocities, which
caused its irregular movement. Control signals τu and τr had maximum values only when
the vehicle started and then significantly decreased, as shown in Figure 7d. Figure 7e
indicates that the forward motion absorbed the most kinetic energy, but not as much as
the motion along a sine trajectory. Energy oscillations in the initial phase of motion were
caused by changes in the vehicle velocity. The mean kinetic energy values for quasi-velocity
were as follows: δK1 = 14.18 J, δK2 = 0.75 J, and δK3 = 0.18 J. The velocity disturbance was
also reflected in the error histories ∆ζ1, ∆ζ2, as depicted in Figure 7f.
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Figure 7. Results for the CETUS II, QV controller and linear trajectory: (a) desired and realized
trajectory; (b) position errors; (c) velocity errors; (d) applied force and torque; (e) kinetic energy time
history; (f) quasi-velocity errors ∆ζ1, ∆ζ2.

Partial circle trajectory (60): The controller gains, selected to ensure acceptable error
convergence, were assumed as follows:

k1 = 0.15, k2 = 0.40, k3 = 2.0, k4 = 15, k5 = 15. (67)

From Figure 8a,b, it can be noted that the task of tracking a circular trajectory was
indeed carried out, but as can be seen from Figure 2, the limitation of the ye error at the set
time was quite high. The vehicle was not able to obtain a more accurate position error at
this time. However, in this case, the velocity values settled after about 15 s, and the velocity
u had the highest value, although the velocity v was also important for the movement of
the vehicle, as can be deduced from Figure 8c. The force and torque values τu and τr were
large only at the beginning of the movement (Figure 8d). The kinetic energy was reduced
primarily by the forward motion of the vehicle, and its values were slightly higher than
when implementing a linear trajectory, as can be viewed in Figure 8e. The mean kinetic
energy values for the quasi-velocity were as follows: δK1 = 13.62 J, δK2 = 1.90 J, and
δK3 = 0.08 J. In the case under consideration, the velocity deformation errors ∆ζ1, ∆ζ2
shown in Figure 8f were larger than before.
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Figure 8. Results for the CETUS II, QV controller and partial circular trajectory: (a) desired and
realized trajectory; (b) position errors; (c) velocity errors; (d) applied force and torque; (e) kinetic
energy time history; (f) quasi-velocity errors ∆ζ1, ∆ζ2.

The performance of the controller for the tested vehicles and trajectories is summarized
in Table 2.

Table 2. Performance for the SIRENE and CETUS II.

SIRENE CETUS
II

Index Sine t. Linear t. Circle t. Sine t. Linear t. Circle t.

MIA xe 1.0393 0.0267 0.5562 0.1394 0.5334 0.4463
ye 0.6591 0.4005 0.1612 1.1292 0.1120 0.1435

MIAC τu 74.539 12.498 35.537 110.29 18.238 17.822
τr 156.02 10.326 204.72 5.2947 5.8960 5.3220

RMS ||e|| 2.5771 0.6379 0.9426 2.4545 0.6439 0.7073
MKE δK 1280.8 283.80 306.07 66.103 15.106 15.603
MQV δz 1.2499 0.5144 0.7179 1.2000 0.6266 0.7191

MQVE δ∆z 0.0188 0.0013 0.0259 0.0051 0.0070 0.0108
CEI δΠ̂ 1.3258 1.3258 1.3258 1.1232 1.1232 1.1232

The relative performances for the SIRENE and CETUS II are given in Table 3. The quan-
tities xe, ye, ||e||, δz, and δ∆z refer to the selected vehicle and the corresponding trajectory
(assumed 100% for the SIRENE and each of the trajectories tracked by this vehicle). The in-
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put signals τu and τr and the kinetic energy δK concern each vehicle and the realized
trajectory (it was assumed separately for the SIRENE and CETUS as 100 % when the linear
trajectory was tracked as the simplest). The index δΠ̂ indicates the couplings in the vehicle
(for the SIRENE, it was assumed to be 100%).

Table 3. Relative performance for the SIRENE and CETUS II and for different trajectories.

SIRENE CETUS
II

Index Sine t. Linear t. Circle t. Sine t. Linear t. Circle t.

MIA xe 100% 100% 100% 10.0% 1998% 80.2%
ye 100% 100% 100% 171% 28.0% 89.0%

MIAC τu 59.6% 100% 284% 605% 100% 97.7%
τr 1511% 100% 1983% 89.8% 100% 90.3%

RMS ||e|| 100% 100% 100% 95.2% 101% 75.0%
MKE δK 451% 100% 108% 476% 100% 103%
MQV δz 100% 100% 100% 96.0% 122% 100%

MQVE δ∆z 100% 100% 100% 27.1% 538% 41.7%
CEI δΠ̂ 100% 100% 100% 84.7% 84.7% 84.7%

4.2. Discussion of Results

The results of the simulation tests related only to the presented method. One objective
was to test the effectiveness of the control scheme for different vehicles and other dynamic
parameters and for the selected trajectories. A second objective, no less important, was
to quantify the effect of mechanical couplings due to vehicle asymmetry on the vehicle’s
motion after the proposed controller was applied.

As an example, models of two vehicles moving horizontally with distinctly different
dynamic parameters were examined. The tests were realized for three types of desired
trajectories, sine, line, and circular, assuming a limited tracking time of 100 seconds and
taking into account the capabilities of the drives. The results obtained can be summarized
as follows:

(1) It was found that the performance of the proposed control algorithm was affected by
both the vehicle dynamics and the selection of the desired trajectory.

(2) If the vehicle had a large mass and the motors provided large force and force torque
values (SIRENE), then the proposed algorithm was effective even in a limited time, and
the performance was better than for a light vehicle (CETUS II) with small propulsion
capabilities (force and force torques obtained).

(3) All controller gain values were relevant to the tracking task to achieve acceptable
performance. The most sensitive appeared to be k1 and k2, which were responsible
for reducing the position error values. However, other gains, i.e., k3, k4, and k5, also
affected the control performance. Controller tuning was more effective for the SIRENE
vehicle.

(4) The test showed that the controller’s performance and tracking accuracy depended
on the vehicle dynamics, the vehicle’s propulsion capabilities, and the selection of the
desired trajectory. Furthermore, the control signals had the largest values for the sine
trajectory.

(5) It turned out that, in some cases, the algorithm was somehow robust to changes in the
appropriately selected set of control gains, that is similar gain values could be applied
to different trajectories.

(6) The simulation studies demonstrated the suitability of the proposed algorithm both
for control applications and for testing the dynamics of marine vehicles. Using the
proposed control scheme, information was obtained that provided additional insight
into the vehicle dynamics.
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(a) It was possible to analyze the kinetic energy corresponding to each IQV (and indirectly
to velocity). The tests showed that the kinetic energy consumption depended not only
on the parameters of the vehicle, but also on the trajectory to be followed. It turned
out that the most kinetic energy was consumed by tracking a sine trajectory, and for
other trajectories, it was much less.

(b) The velocity deformation caused by the effect of vehicle asymmetry can be evaluated
using indexes δz and δ∆z.

(c) It was feasible to estimate the couplings in the vehicle model using the δΠ̂ index
because it reflected the parameters concerning the asymmetry of the inertia matrix.

(d) A conclusion about the convergence of the errors on the basis of the indexes alone
(MIA, RMS) can be misleading because they do not take into account the run history
of these quantities. It is only by combining the index values with the error history that
the performance of the controller can be reasonably deduced.

(e) The effort associated with the τr control signal had large values compared to the τu
signal for the SIRENE vehicle, while for the CETUS vehicle, the main effort came from
the τu signal. This may be the reason that the control accuracy for the SIRENE was
better.

Comment: This paper did not attempt to compare the proposed control algorithm with other
algorithms in terms of performance. The first reason was that the presented scheme was used not
only to guarantee trajectory tracking, but also to obtain information about the effect of couplings in
the moving vehicle model. Of course, this approach was used, but for vehicles with all control signals
available, as mentioned in the Introduction. For underactuated vehicles, this is rather uncommon
with a few exceptions. The second reason was to verify the performance of the controller for vehicles
with different parameters because verification on a single model may not be sufficient, as also stated
in one of the papers cited in the Introduction. Here, two vehicles and three different trajectories were
selected for testing. Therefore, the work was all about taking into account the change in the model
and executed task. The third reason stemmed from the fact that the control scheme can be used for
vehicles with full asymmetry (in two planes). Usually, however, either full symmetry (the center of
mass coincides with the geometric center) or symmetry in one plane is assumed.

Remark 2. The effectiveness of the control algorithm was based on the proper tuning of its parame-
ters. However, even when this condition is met, other control strategies known from the literature
may lead to better results (e.g., trajectory tracking accuracy) than the proposed controller. From the
cited literature, it appears that performance improvements can be obtained by combinations of
different approaches either adding observers or using neural networks. The proposed approach
was based on classical control methods and also included the limitations of these methods. On the
other hand, the added values are a generalization of the controller to a fully asymmetric model and
obtaining information on the effect of couplings on vehicle movement.

The disadvantages and limitations of the proposed regulator can be stated as follows:

• The control scheme consisted of a kinematic algorithm and a dynamic algorithm.
The use of each guaranteed only limited convergence to equilibrium. This caused
position errors to add up and accuracy to seek some limit. While it can be reduced, it
cannot be eliminated. This is due to the mathematical approach used.

• The dynamic and geometric parameters of the model had a significant impact on
the performance of the controller. As a result, the force and torque had large values,
especially when the vehicle started to move. In a real vehicle, such values may be
impossible to achieve and, therefore, need to be limited to acceptable values (which is
due to mechanical restrictions). This was performed in the conducted tests so that the
realized trajectories did not exceed the values resulting from the drives of each tested
vehicle, and at the same time, the conditions of the mathematical proof were met.

• The parameters of the kinematic controller k1 and k2 were sensitive to changes, and
their increase led to oscillations; therefore, they must have limited values, which led
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to an increase in the time to achieve the desired trajectory. The selection of these
gains is difficult because there is no side signal forcing. The changes in parameters
relating to the dynamic part of the scheme k3, k4, and k5 were also related to each
other, which made their selection difficult (especially k4, because it relates to rotation
and indirectly affects the lateral movement of the vehicle). In addition, some of the
dynamic parameters affected changes in the desired virtual controls (i.e., ud and µd).

• The performance of the controller was limited by the need to simultaneously meet the
parameter selection conditions of the kinematic and dynamic controllers, as well as
the requirements of the force and torque limitation.

Advantages of the proposed control method: The value of the considered approach to the
trajectory tracking problem can be pointed out as follows:

• First, compared to control strategies based on a vehicle model with a diagonal inertia
matrix (the assumption of full vehicle symmetry), the proposed algorithm is more
general because it allows the use of a vehicle model that is asymmetric in two planes.
This distinguishes the presented algorithm from others that are suitable for vehicle
models without inertial coupling, e.g., [8,9,24,58], and additionally oriented toward
improving performance against a known control scheme [26]. Even controllers suitable
for an asymmetric model [31,33,36] cannot be considered suitable for the general case
(with full asymmetry).

• Second, the use of velocity transformation allowed the controller to apply dynamic
equations with a diagonal inertia matrix. An important advantage is that the informa-
tion contained in the original nonlinear model remains in the diagonalized equations,
which makes it possible to incorporate them into the control algorithm.

• Third, using the offered control scheme, it is possible to estimate the effect of cou-
plings during the realization of the trajectory tracking task, something that algorithms
oriented only toward performance improvement do not provide. This property of the
proposed algorithm gives the advantage that, without performing an experiment on
a real vehicle, it is possible to determine whether the couplings are significant in the
vehicle model or can be neglected.

5. Conclusions

This paper developed a nonlinear tracking control algorithm for underactuated marine
vehicles to resist unknown internal and external disturbances. An important property of
this algorithm is that it is not only suitable for the tracking task, but also provides some
insight into the behavior of an asymmetric vehicle during trajectory tracking. This is pos-
sible through the use of classical methods such as backstepping and SMC, but provided
that the description of the dynamics in quasi-velocities resulting from the decomposition of
the inertia matrix is employed. From a theoretical point of view, the proposed algorithm
guarantees uniformly ultimately boundedness, but it also makes it possible to evaluate the
vehicle’s behavior when tracking a desired trajectory already at the stage of preliminary
studies (without realizing the real experiment). This was performed by making assump-
tions due to the technical constraints, analyzing the signal obtained in the simulation
studies, and analyzing a selected set of indexes. In order to demonstrate the suitability
of the control scheme, simulation tests were performed for a model of two vehicles with
significantly different dynamics, three selected trajectories, and propulsion limitations,
which demonstrated the effectiveness of the method and allowed the discussion of the
results produced. The proposed control scheme was verified by simulations on real vehicle
models used in practice. Graphical results were presented, as well as some quantitative
results obtained based on the assumed measures. The discussion of the results pointed
out the advantages, disadvantages, and limitations of the applicability of the proposed
control method. In the future, other types of algorithms based on diagonalized equations
of motion should be studied. The verification of these types of algorithms on models of
other real and designed vehicles is also planned. The proposed approach also needs to be
tested on vehicles moving in three-dimensional space.
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Appendix A

Table A1. Explanation of symbols and abbreviations.

Symbol Explanation

DOF degree of freedom
IQV inertial quasi-velocity
M vehicle inertia matrix
N diagonal vehicle inertia matrix in terms of the IQV
N̂ diagonal vehicle inertia matrix in terms of the IQV with constant elements
Π velocity transformation matrix
∆Π vector containing the inaccuracies of the velocity transformation matrix
Π̂ velocity transformation matrix with constant elements
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