
Citation: Wang, H.; Yin, Y.; Jing, Q.

Comparative Analysis of 3D LiDAR

Scan-Matching Methods for State

Estimation of Autonomous Surface

Vessel. J. Mar. Sci. Eng. 2023, 11, 840.

https://doi.org/10.3390/jmse11040840

Academic Editors: Alessandro

Ridolfi, Bruno Miguel Ferreira and

Nuno A. Cruz

Received: 13 March 2023

Revised: 7 April 2023

Accepted: 13 April 2023

Published: 15 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Comparative Analysis of 3D LiDAR Scan-Matching Methods
for State Estimation of Autonomous Surface Vessel
Haichao Wang , Yong Yin and Qianfeng Jing *

Key Laboratory of Marine Simulation and Control, Department of Navigation, Dalian Maritime University,
Dalian 116026, China; wanghaichao@dlmu.edu.cn (H.W.); bushyin@dlmu.edu.cn (Y.Y.)
* Correspondence: jqf_dlmu@dlmu.edu.cn

Abstract: Accurate positioning and state estimation of surface vessels are prerequisites to achieving
autonomous navigation. Recently, the rapid development of 3D LiDARs has promoted the autonomy
of both land and aerial vehicles, which has aroused the interest of researchers in the maritime
community accordingly. In this paper, the state estimation schemes based on 3D LiDAR scan matching
are explored in depth. Firstly, the iterative closest point (ICP) and normal distribution transformation
(NDT) algorithms and their variants are introduced in detail. Besides, ten representative registration
algorithms are selected from the variants for comparative analysis. Two types of experiments are
designed by utilizing the field test data of an ASV equipped with a 3D LiDAR. Both the accuracy and
real-time performance of the selected algorithms are systemically analyzed based on the experimental
results. It follows that ICP and Levenberg–Marquardt iterative closest point (LMICP) methods perform
well on single-frame experiments, while the voxelized generalized iterative closest point (FastVGICP)
and multi-threaded optimization generalized iterative closest point (FastGICP) methods have the best
performance on continuous-frame experiments. However, all methods have lower accuracy during
fast turning. Consequently, the limitations of current methods are discussed in detail, which provides
insights for future exploration of accurate state estimation based on 3D LiDAR for ASVs.

Keywords: 3D LiDAR; ASV; scan matching; registration; state estimation

1. Introduction

Autonomous surface vehicles (ASVs) have the characteristics of high autonomy and
intelligence [1] and can perform a variety of high-risk tasks in harsh or inaccessible marine
environments [2]. Its low weight and compact size make it highly mobile [3]. Since there
is no crew onboard, personnel safety is higher [4]. Besides, they can also be deployed
in numerous applications involving many fields, such as the civil, industrial, and mili-
tary fields [5], such as environmental monitoring [6], coastal surveillance [4], resource
exploration [7], reconnaissance [8], and rescue [9]. In general, ASVs are extremely suitable
for eliminating personal hazards and improving safety in dangerous and rough marine
missions. In addition, it is expected that the market for ASVs will proliferate shortly.

State estimation is one of the most studied issues in the field of ASV [10]. It is a
prerequisite for ships to achieve genuine autonomy. At present, most ships mainly rely on
the global navigation satellite system (GNSS) and inertial measurement unit (IMU) to obtain
their pose. When the ship is sailing in the harbor, GNSS performance is seriously affected by
the multipath (MP) effect and the non-line-of-sight (NLOS) reception, and the positioning
error may increase to several meters [11] or even tens of meters [12]. IMU has a cumulative
error, and the reliability decreases with time [13]. Therefore, an alternative state estimation
system is needed to estimate the ship’s motion by using the surrounding environment.
When the GNSS and IMU information is inaccurate or interrupted, it provides accurate
position and motion estimation for the ship to avoid collisions and other accidents.

To solve the above problems, ASV usually relies on the data collected by its sensors
to apply the Simultaneous Localization and Mapping (SLAM) method for positioning.
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The sensors used in ASV mainly include GNSS, IMU, gyro compass, magnetic compass,
camera, radar, LiDAR, geomagnetic direction sensor (GDS), and fiber-optic gyro (FOG).
GNSS, IMU, camera, radar, and LiDAR can be used for ship positioning. Gyro compass,
magnetic compass, GDS, and FOG are mainly used for azimuth measurement. In addition,
GNSS and IMU are the basic sensors to ensure the safe operation of USV, which can be
called safety sensors. Camera [14], radar [15], and LiDAR [16] can use the scan matching
between consecutive frames for ASV state estimation. However, the camera is easily
affected by illumination and weather conditions, resulting in large registration errors and
inaccurate state estimation [17]. The low resolution of radar output also affects the accuracy
of registration and state estimation [18]. Compared with the camera and radar, LiDAR can
provide reliable and accurate distance measurement and is more robust to the environment
with poor lighting conditions or less optical texture [19]. State estimation accuracy is
usually higher. It has been a research hotspot in recent years. This paper mainly describes
the autonomous positioning scheme based on 3D LiDAR.

Scan matching is the core module of the LiDAR SLAM [20]. It uses the relationship
between adjacent frames to estimate the motion pose of the current frame. Depending on
this process, the current robot pose will be incrementally updated. Scan matching is com-
monly used in positioning and six-degree-of-freedom (6DOF) state estimation of unmanned
aerial vehicles [21], unmanned ground vehicles [22], and ASV [23]. For some applications
that require precise positioning, scan matching can further refine the positioning accuracy,
especially for scenarios such as berthing that require high position and rotation accuracy.

Iterative closest point (ICP) [24] and normal distribution transformation (NDT) [25]
are classic scan-matching algorithms. The ICP algorithm aligns two frames of point clouds
by distance judgment, and the NDT algorithm uses a Gaussian distribution to model point
clouds. Both ICP and NDT are regarded as local scan-matching methods that begin with an
initial transformation and then iterate until a local minimum is reached [26]. In addition,
there are some feature-based matching methods. The features used mainly include line-
plane features [27], viewpoint feature histograms [28], fast point feature histograms [29],
3D neighborhood point feature histograms [30], density characteristics [31], etc. The most
representative method is the LOAM [27] scheme, which uses corner and plane point features.

Experts and scholars have done a lot of work in scanning matching research [32]. Some
work is for specific scenarios [33]. There are also studies on the comparative analysis of
different algorithms, including traditional methods [34] and deep learning methods [35].
However, these studies mainly focus on the situation on land and do not explore the
application of these algorithms on ASV. Compared with the land field, the situation at sea
is more complicated, including wind, waves, currents, sea fog, etc. [36]. In addition, the
motion pose of the ship at sea is also more nonlinear. Compared with vehicles constrained
by ground and wheels, ASV is completely six-degree-of-freedom motion on the water
surface, which poses a challenge to 3D LiDAR scanning matching [37]. In view of the
above situation, this paper develops a ship state estimation framework based on a scanning
registration algorithm. By comparing and evaluating 10 algorithms, a scanning registration
algorithm suitable for marine ASV is selected. In addition, this paper also finds the
problems of these algorithms in marine applications, which can provide a reference for the
following research. The main contributions of this article are summarized as follows:

(1) This paper discusses ICP and NDT algorithms and their variants. A single-frame
point cloud registration scheme based on PCL is built. Considering the accuracy
and registration time, the appropriate parameters are selected for the algorithm, and
10 common registration algorithms are tested and analyzed on ASV data.

(2) Secondly, a continuous-frame point cloud registration module based on ROS is built.
The results are compared with RTK and IMU values, and the performance of the
algorithm is analyzed from multiple perspectives. In addition, the problem of large
local errors of roll and pitch obtained by the continuous-frame registration module is
studied, and the causes of errors are analyzed from many aspects.
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(3) Finally, the registration algorithm is verified by an experiment with real ASV, and the
single-frame and continuous-frame scanning registration schemes suitable for marine
environments are obtained.

2. ICP and NDT
2.1. ICP

The basic model of the ICP algorithm is: given source point cloud P = {p1, p2, p3, . . . , pm}
and target point cloud Q = {q1, q2, q3, . . . , qn}, P, Q ⊂ R3, m,n are the number of source
point cloud and target point cloud, respectively. Let E(T) be the error between the source
point cloud P and the target point cloud Q under the transformation matrix T. Then E(T)
can be expressed by the following formula:

E(T) = E(R, t) =
m

∑
i=1
‖(Rpi + t)− qi‖

2 T =

(
R t
0T 1

)
(1)

where R is the rotation matrix, t is the translation matrix, pi is the point in the source point
cloud, and qi is the nearest point in the target point cloud.

Solve R, t by minimizing the above error function.

R, t← argmin
R,t

m

∑
i=1
‖(Rpi + t)− qi‖

2 (2)

The specific process is as following:

1: Input: Source Point Cloud P = {p1, p2, p3, . . . , pm}
2: Target Point Cloud Q = {q1, q2, q3, . . . , qn}
3: Initial Transformation T0
4: Output: Correct transformation matrix T matching P and Q
5: T← T0
6: While the result does not converge Do
7: for i← 1 to m
8: qi ← FindClosestPointInQ(T·pi)
9: if ‖T·pi − qi‖ ≤ dmax then
10: wi ← 1 ;
11: else
12: wi ← 0 ;
13: end if
14: end for
15: T← argmin

T

{
∑i wi‖Tpi − qi‖2}

16: end while

2.2. NDT

The basic model of the NDT algorithm is: Given source point cloud P = {p1, p2, p3, . . . , pm}
and target point cloud Q = {q1, q2, q3, . . . , qn}, P, Q ⊂ R3. Firstly, the NDT algorithm
divides the space covered by the target point cloud into voxels. Then, based on the
distribution of the midpoints of each voxel, the probability density function (PDF) is
calculated for each voxel. Suppose that the position of the point on the target point cloud is
obtained by random processing of the D-dimensional normal distribution. The probability
function of the point x in each voxel is:

F(x) =
1

(2π)
D
2
√
|Σ|

exp

(
− (x− µ)TΣ−1(x− µ)

2

)
(3)
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where D represents the dimension, µ and Σ represent the mean vector and covariance
matrix of all points in the voxel where x is located, respectively, µ and Σ are calculated by
the following formulas:

µ =
1
k

k

∑
i=1

qi (4)

Σ =
1

k− 1

k

∑
i=1

(qi − µ)(qi − µ)T (5)

qi=1,...,k is the position coordinates of all points contained in the voxel.
Finally, the pose transformation T is obtained, so that the overall likelihood of the

transformed source point cloud in its corresponding probability density function reaches
the maximum, that is

R, t← argmax
R,t

m

∏
i=1

F(Rpi + t) (6)

Using the Newton iteration method, find the optimal transformation parameters to
complete the point cloud registration.

1: Input: Source Point Cloud P = {p1, p2, p3, . . . , pm}
2: Target Point Cloud Q = {q1, q2, q3, . . . , qn}
3: Initial Transformation T0
4: Output: Correct transformation matrix T matching P and Q
5: T← T0
6: Target point cloud space voxel segmentation V = {v1, v2, · · · , vl}
7: for i← 1
8: Find voxel vk containing point qi
9: Store qi in vk
10: end for
11: for j← 1 to l
12: Q′ =

{
q′1, q′2, · · · , q′n′

}
← vj

13: if n′ ≤ 5 then
14: delete vj // Delete grid cells with too few elements
15: else
16: µj ← 1

n′ ∑n′
k=1 q′k

17: Σj ← 1
n′−1 ∑n′

k=1

(
q′k − µj

)(
q′k − µj

)T

18: end if
19: end for
20: T← argmax

T
∏m

i=1 F(Tpi)

3. Point Cloud Registration Method

Point cloud registration accuracy is positively correlated with state estimation accuracy.
The higher the registration accuracy, the more accurate the state estimation. To improve
registration accuracy, new registration algorithms and their variants are proposed. This
chapter discusses variants based on ICP and NDT, respectively.

3.1. ICP-Based Variants

The ICP algorithm has some shortcomings, such as sensitivity to the initial value [38],
high computational overhead [39], being easily trapped in a local optimal solution [40], and
a lack of utilization of point cloud structure information [41]. In response to these problems,
experts and scholars have exploited many improvement methods. Censi [42] proposed
the PLICP algorithm, using the point-line distance metric to replace the point-to-point
distance metric in the ICP algorithm. Compared with P2P-ICP, PLICP has higher accuracy
and requires fewer iterations, but PLICP is more susceptible to initial values. Chen and
Medioni [43] proposed the P2PL-ICP algorithm, which improved the selection method
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of the corresponding points in the ICP algorithm (P2P-ICP), and used the distance from
the point to the surface instead of the distance from the point to the point to improve
the convergence speed. Segal et al. [44] presented the Generalized-ICP (GICP) algorithm,
which combines the P2P-ICP algorithm and the P2PL-ICP algorithm into a probabilistic
framework based on which point cloud matching is carried out. The covariance matrix
plays a role analogous to the weight to eliminate some bad corresponding points in the
solution process. The GICP algorithm can flexibly model different models, the P2P-ICP
algorithm is equivalent to a unique form of the GICP algorithm. GICP algorithm can
effectively reduce the impact of mismatch, and it constitutes one of the most effective
and robust algorithms among many improved ICP algorithms. Based on GICP, Koide
et al. [45] extended the GICP method by voxelization to improve the registration speed
while maintaining its accuracy. In addition, the multi-threaded CPU GICP algorithm is
implemented. Sharp et al. [46] proposed the ICP algorithm using invariant features (ICPIF)
by combining Euclidean invariant features with the ICP algorithm. The algorithm uses
the distance function of the weighted linear combination of position distance and feature
distance to obtain the corresponding relationship. The experimental results demonstrate
that the intersection is more accurate than the corresponding relationship using only
position distance. Minguez et al. [47] used a new distance scale function to consider
both translation and rotation. Compared with the ICP algorithm, the MbICP algorithm
has improved robustness, accuracy, convergence, and computational load. Serafin and
Grisetti [48] used surface features such as the normal vector and curvature to filter out
error points during matching. In the iterative solution process, the error function not only
includes the projection distance of the normal vector between point clouds (same P2PL-ICP)
but also includes the normal vector direction error. Experimental analysis shows that the
NICP algorithm has better accuracy and robustness.

Granger and Pennec [49] developed the EM-ICP algorithm and applied the EM algo-
rithm to the ICP algorithm to avoid the initial registration step. Aiming at the point cloud
distortion caused by motion (especially high-speed motion). Hong et al. [50] introduced
speed updates based on the ICP algorithm to obtain more accurate pose estimation. Ac-
cording to the distortion effect caused by sensor motion during point cloud registration,
Alismail et al. [51] designed a Continuous-ICP (CICP) algorithm, which uses the estimated
continuous 6DOF pose of the sensor to correct the distortion and improves the accuracy
and robustness of the algorithm.

The ICP algorithm is easy to converge to the local minimum. To solve this problem,
Yang et al. [52] combined the ICP algorithm with the branch-and-bound method to ensure
a global optimal solution. Although this method solves the local minimum problem, it is
always sensitive to initialization and has a large computational cost. As to the challenge
of accurate registration of outdoor large-scale multi-robot environment data fusion, Han
et al. [53] proposed an enhanced ICP method that combines a hierarchical search scheme
with an octree-based ICP algorithm to achieve coarse-to-fine registration of large-scale
multi-resolution data. An early warning mechanism is utilized to sense local minimum
problems. A heuristic escape scheme based on sampling potential transformation vectors
to avoid local extremum. The superior performance of the exploited algorithm is checked
by experiments.

Kdtree can be used in the process of searching for the nearest point to optimize and
reduce the search time [54,55]. Fitzgibbon [56] used the general nonlinear optimization
(Levenberg–Marquardt algorithm) to directly minimize the registration error. Pavlov
et al. [57] designed an ICP algorithm using Anderson acceleration (AA-ICP), which accel-
erates ICP by modifying the iterative process and improves the convergence speed and
effect of registration. Zhang et al. [58] proposed a new robust registration method with fast
convergence. This method accelerates its convergence by using the Anderson acceleration
method. In addition, the Welsch function is introduced to improve the robustness of ICP.

For the problem that the ICP algorithm is sensitive to outliers and missing data,
Bouaziz et al. [59] improved the ICP algorithm and used the sparsity induction norms to
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optimize the registration, which improved the robustness of ICP to outliers and incomplete
point cloud data. Agamennoni et al. [60] elaborated an improved standard ICP data associa-
tion strategy, which associates each point in the source point cloud with a set of points in the
target point cloud. Experimental analysis shows that the improved method can effectively
deal with the alignment problem between dense point clouds and sparse point clouds.
TrimmedICP [61] introduced a solution for partially overlapped point cloud registration,
using least-trimmed squares to solve the ICP problem, which improves the robustness to
noise and allows two-point cloud sets to have poor initial values of transformation param-
eters. Rusinkiewicz [62] proposed a symmetric objective function for ICP, which realizes
the simplicity and computational efficiency of point-to-plane optimization and improves the
convergence speed and wider convergence range. Du et al. [63] and Wu et al. [64] introduced
the maximum correntropy criterion (MCC) as a robust metric for point-set rigid registration.
The ICP algorithm based on MCC (MCC-ICP) can deal with noise and outliers well and shows
its superiority in accuracy and robustness. A recent work [65] introduced soft constraints as
the cost of ICP optimization, allowing elastic deformation of the scan during registration to
improve accuracy and robustness to high-frequency motion from discontinuities.

3.2. NDT-Based Variants

NDT was originally presented by Biber and Strasser for 2D scan matching [25]. Mag-
nusson et al. [66] extended 2D NDT to 3D. Magnusson et al. [67] conducted a comprehensive
comparison of the 3D scan-matching algorithms of ICP and NDT. The experimental results
demonstrate that NDT performs faster than ICP and converges from a wider range of
initial pose estimations. However, the NDT convergent pose is unpredictable, and the
pose generated in the case of failure is worse than the ICP. The author proposes an NDT
algorithm with trilinear interpolation to solve this problem. This algorithm has a higher
success rate than the classical NDT algorithm, but it takes a longer time. To speed up NDT
registration, Koide et al. [68] encapsulated SSE-friendly and multi-threaded NDT, which
can run up to 10 times faster than its original version in PCL. In addition, three methods
for neighbor voxel search are provided, including KDTREE, DIRECT1, and DIRECT7.

Zaganidis et al. [69] added semantic labels to point clouds by calculating the smooth-
ness of point clouds. Point clouds without semantic labels are discarded and do not take
part in registration. Point clouds with distinct semantic labels are separately registered
by NDT. Experimental analysis has shown that the algorithm improves the speed and
robustness of registration. Jun et al. [70] developed an NDT registration algorithm with
variable voxel size that considers the local density in the process of dividing a large voxel
into several small voxels and gathers the sparse point cloud as a large voxel. The point
cloud is densely dispersed into multiple small voxels to solve the problem that most sparse
points cannot be used due to the difference in the number of point clouds caused by the
fixed voxel size and enhance the accuracy of registration. Hong and Lee [71] converted
the reference point cloud into a disclike distribution suitable for the point cloud structure,
addressing the effect of the thick distributions whose mass centers are hanging in the air on
NDT registration.

Ulas and Temeltas [72] introduced a multi-layer-based transformation algorithm for
the normal distribution. The algorithm automatically calculates the cell size by looking
at the boundary of the point cloud, and then the point cloud is subdivided into 8n cells,
where n represents the level of the layer. In addition, the method uses the Mahalanobis
distance function as the score function to replace the original Gaussian probability function
and optimization using the Newton and Levenberg–Marquardt methods. Compared
with the NDT algorithm, this method has longer-distance measurement capability and
a faster convergence speed. Later, Ulas and Temeltas [73] added a feature extraction
module to the above algorithm, namely MLNDT based on feature extraction, which further
improved the efficiency and robustness of the registration algorithm. Hong and Lee [74]
presented the KLNDT algorithm to solve the problems of the fixed number of layers
and the limited number of optimization iterations in MLNDT. The algorithm searches
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the key layer and registers in the key layer until the termination criterion is satisfied.
Experiments show that KLNDT has a higher success rate and accuracy than MLNDT. Hong
and Lee [75] presented PNDT, defined the probability of point samples, and calculated
the mean and covariance according to the probability. Compared with the classical NDT,
PNDT point cloud registration accuracy is higher. Zaganidis et al. [76] used semantic
information extracted from point clouds to enrich NDT features and combined NDT
histogram descriptors for loop closure detection. This method has higher accuracy than
non-semantic NDT methods. Lee et al. [77] proposed a weighted normal distribution
transform (weightedNDT) method, which reflects the static probability of each point as a
weight. Compared with his dynamic target removal method, the weightedNDT algorithm
has higher classification accuracy and lower scanning matching error. Deng et al. [78]
introduced an optimized normal distribution transform algorithm (SEO-NDT) and its
FPGA implementation. Compared with the state-of-the-art embedded CPU and GPU
implementations, the scheme performs faster and can run in real time when processing
larger point clouds. Aiming at the problem of poor real-time performance and pose drift
error of the NDT algorithm in large scenes, Zhong et al. [79] proposed a factor graph
optimization algorithm (FGO-NDT). The experimental results show that this method can
eliminate the attitude estimation error caused by drift, improve the local structure, and
reduce the root mean square error.

4. Experiments

In order to evaluate the performance of the above algorithms, this chapter tests the
common registration algorithms, including ICP, LMICP, GICP, multi-threaded optimization
GICP (FastGICP), voxelized GICP (FastVGICP), point-to-plane ICP (PTPLICP). Multithread-
ing accelerated PTPLICP (PTPLOMPICP), NDT, multithreading optimized NDT and the
DIRECT1 method for neighbor voxel search (NDTOMP1), and multithreading optimized
NDT and the DIRECT7 method for neighbor voxel search (NDTOMP7).

4.1. Experimental Environment and Equipment Configuration

The experimental site is “Lingshui Port” in Dalian, China. The experimental ASV is
“Zhi Long No 1”, which is 1.75 m long and 0.5 m wide, with a double propeller and double
rudder. The ASV is equipped with a rfans-16 mechanical LiDAR, RTK, high-precision
GPS/IMU, and a stereo camera. The experiment’s weather is cloudy, with a north wind
level of 3~4 and a wave level of 1. For port information and other equipment-specific
configurations, please see the paper [80]. All methods were implemented on an Intel Core
i5-4570 with 16 GB of RAM and an NVIDIA GeForce GTX1650.

4.2. Experimental Design

The experiment selects the navigation data of the ASV in the port. The algorithm per-
formance test experiment is divided into two groups, namely the single-frame experiment
and the continuous-frame experiment. In the single-frame experiment, 10 pairs of data are
selected from the data of the whole navigation stage, and each pair of data is two adjacent
frames. The average registration time and root mean square error (RMSE) of ten algorithms
on 10 pairs of data are calculated. The purpose of the single-frame algorithm is to test
the registration accuracy of each algorithm and select appropriate parameters for each
algorithm. The continuous-frame experiment is designed to continuously register each
frame data on the entire navigation data set and obtain the final result. In this experiment,
the performance of each registration algorithm is evaluated by calculating the absolute
trajectory error (ATE) and relative pose error (APE) between the true pose value and the
registration result. The whole process of the experiment is shown in Figure 1. All methods
are implemented depending on the robot operating system (ROS) and the point cloud
library (PCL).
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Figure 1. The whole process of experiment.

4.3. Evaluation Indicators
4.3.1. RMSE

RMSE is a common method used to evaluate the accuracy of single-frame point cloud
registration, in meters [81]. The RMSE calculation formula is as follows:

RMSE =

√
1
m

m

∑
i=1
‖(Rpi + t)− qi‖2 (7)
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4.3.2. ATE and RPE

In this paper, ATE and RPE [82] are used to evaluate the accuracy of continuous-frame
registration. ATE is equivalent to the following APE, which is suitable for evaluating the
overall performance of the registration algorithm.

RPE is used to describe the accuracy of the pose difference between two frames sepa-
rated by a certain time difference, which is equivalent to the error of the direct measurement
of the odometry. The standard is appropriate for estimating the drift of the system.

4.4. Experimental Results
4.4.1. Single Frame Experimental Comparison

All of the above registration methods are required to set parameters, and different
application scenarios need to set different parameters. The initial parameters are the default
parameters set in PCL, and then the parameters are chosen according to the registration
accuracy and time. First, we discuss the transformation epsilon (the maximum allowable
difference between two consecutive transformations) and the maximum number of iter-
ations. Furthermore, for the ICP series of algorithms, all filtered point clouds are used
for registration. For point-to-plane ICP (PTPLICP, PTPLOMPICP), analyze the number of
points using the calculated normal. For GICP, FastGICP, and FastVGICP, discuss the effect
of using different numbers of points to calculate the covariance matrix on registration. For
the NDT series algorithms, the relationship between voxel side length and registration
time, and accuracy is analyzed.

Figure 2a–f shows the relationship between registration time and registration accuracy
when different registration parameters are selected for each registration algorithm. The
x-axis represents the registration time, the y-axis is the registration accuracy, and broken
lines of different colors correspond to different registration algorithms. The values in the
box above the broken line are registration parameter values, corresponding to the points
on the broken line. The unselected parameters are represented by yellow boxes, and the
parameters in the red box are the final parameters selected by the algorithm. In addition,
point cloud registration is an error accumulation process. The frequency of the LiDAR used
in the experiment is 10 Hz; that is, 600 frames of data are emitted per minute. To ensure
that the error is within tens of centimeters, the RMSE error of a single frame should be
retained to three decimal places, so the error level of the RMSE of 0.001 is reasonable.

Figure 2a shows the relationship between the registration time and the registration ac-
curacy (RMSE) of the t transformation epsilon from 1× 10−10 to 1× 10−1. Each registration
algorithm is sensitive to the parameter transformation epsilon. The final value of the param-
eter transformation epsilon is shown in Figure 2b It can be seen from Figure 2c that as the
number of iterations increases, the registration accuracy and registration time increase until
convergence. When the maximum number of iterations is 10, all registration algorithms
achieve convergence. Figure 2d shows the registration effect of the point-to-plane ICP
algorithm when calculating normals with different points. PTPLICP and PTPLOMPICP
achieve the best registration effect when calculating normals with 40 points. The num-
ber of points used by GICP, FastGICP, and FastVGICP to calculate the covariance matrix
ranges from 10 to 100 intervals of 10. The covariance matrix is calculated with 40, 100, and
80 points, respectively. Registration accuracy is considered first, and then the registration
time. After many experiments, we set the NDT series algorithm voxel side length range to
1.0 to 1.9 interval 0.1. It can be seen from Figure 2f that the registration effect of the NDT
series algorithms changes obviously with the voxel side length. The voxel side lengths of
NDT, NDTOMP1, and NDTOMP7 are 1.4, 1.8, and 1.8.
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Figure 2. Result comparison of registration algorithms under different parameter settings. (a) Trans-
formation epsilon comparison; (b) transformation epsilon result comparison; (c) maximum iterations
comparison; (d) points for normals comparison; (e) points for covariances comparison; (f) NDT
voxel comparison.

After configuring the parameters, the final registration results are shown in Figure 3.
ICP and LMICP have the highest registration accuracy, but the speed is relatively slow,
especially in LMICP. The registration speed of FastVGICP and NDTOMP1 is faster (less than
40 ms), but the accuracy is significantly lower than that of ICP. It can be seen from Figure 2a,c
that ICP, LMICP, and NDT are more sensitive to parameters, especially ICP and LMICP,
and that other registration performance changes are relatively small with parameters.
Compared with GICP, FastGICP and FastVGICP have better stability (Figure 2e). It can
be seen from Figure 2d that PTPLOMPICP has a significant improvement in registration
speed compared with PTPLICP. NDTOMP1 has obvious speed advantages over NDT and
NDTOMP7, and NDTOMP7 registration accuracy is more stable (Figure 2f).
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Figure 3. Comparison of registration algorithm results.

4.4.2. Continuous Frame Experiment Comparison

In contrast to the single-frame experiment of scan-to-scan registration, in a continuous-
frame experiment, we use scan-to-map registration. The LiDAR frequency is 10 Hz, the IMU
frequency is 100 Hz, and the GNSS data is about 2 Hz (uneven). In order to facilitate the
performance comparison of the algorithm, after aligning the initial timestamp of the data,
we use GNSS as a benchmark to select data with a time difference of less than 0.05 from the
LiDAR data. Similarly, for the IMU data, we select the data with the smallest time difference
between the IMU and the GNSS, and the time difference is less than 0.05. The data that
meet the above conditions are used as the reference value to evaluate the performance of
the algorithm.

Figure 4 is the trajectory comparison map of each registration algorithm, and the
dotted line is the true value of the trajectory. From the diagram, it can be observed that the
registration results of FastGICP, FastVGICP, PTPLICP, PTPLOMPICP, NDT, and NOTOMP7
are better, and the coincidence between the trajectory and the real value is higher. The
trajectories of ICP, LMICP, GICP, and NDTOMP1 are quite different from the real values,
and the registration results are poor, especially for ICP and GICP. Some trajectories of
the ICP and GICP algorithms have exceeded the port range, so they are not shown. The
registration results of the six algorithms, such as FastGICP, are close to the true values,
but it can be observed from the local enlarged image that the registration results of some
regions are also significantly different from the true values. In the following, we further
compare and analyze the registration algorithms with better results. The PTPLICP and
PTPLOMPICP trajectories are completely coincident, so only one of the two is discussed.

Figure 5 shows the comparison of the output trajectories of the registration algorithms
in the x, y, and z directions. The trajectories of each registration algorithm in the x and
y directions are under a high degree of coincidence with the true value of the trajectory,
which proves that the registration algorithm has better registration results in the horizontal
plane. It can be seen from the local graph that in the x and y directions, the algorithms with
slightly worse registration results than other algorithms are FastGICP and PTPLOMPICP,
respectively. The difference between the results in the z direction is obvious. Depending
on the data analysis, the reason for this phenomenon should be that the observation
information in the z direction is less, the observation incident angle in the z direction is
large, and the precision is poor. FastGICP, FastVGICP, and PTPLOMPICP have better
registration results in the z direction.
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Figure 4. Comparison of output trajectories of registration algorithm.

It can be seen from Figure 6 and the local graph that each registration algorithm has a
similar performance on the yaw angle. The performance of each algorithm is different in
terms of roll angle and pitch angle. Compared with FastGICP, FastVGICP, PTPLICP, and
PTPLOMPICP, NDT and NDTOMP7 are more unstable than the actual value. The reason
why the roll angle is not much larger than the pitch angle is that the two sides of the ship
are equipped with yellow, which can reduce the frequency of roll.
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Figure 5. Comparison of output trajectories of registration algorithm in x, y, and z directions.

Figure 6. Comparison of output pose Euler angles of registration algorithm.

Figure 7 shows the roll and pitch error curves. For ease of viewing, the curves are
smoothed by the Savitzky–Golay filter, where the window length and polynomial fitting
order are 15 and 3, respectively. From the smoothed curve, it can be seen that the trend
of roll and pitch is similar, and both contain multiple local gentle (small change range)
and local steep (large change range) stages. Registration is an ongoing process of error
accumulation. The gentle error curve indicates that the registration error is small and
the registration result is good. On the contrary, the steep error curve indicates that the
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registration error is enormous and the result is poor. The changing trend of roll and
pitch is similar, so only one of them (roll) is discussed. We selected four cases for further
analysis, which are case1 and case2 with obvious error changes, and case3 and case4 with
gentle error changes. The visualization results of point cloud and image data are shown in
Figures 8 and 9, respectively.

Figure 7. Roll and pitch errors of registration algorithm.

Figure 8. Top view of ASV point cloud in different periods.
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Figure 9. Image data corresponding to point cloud.

Figure 8 is a 5-frame point cloud top view selected in the 1,2,3,4 parts of Figure 7.
Figure 9 shows the corresponding image data, with an interval of 1 s between every two
frames of data. The coordinate values contained in Figure 8 are the x and y coordinates of
the current ship in the world coordinate system. It can be seen from the figure that case1
and case2 have obvious turns. In case3 and case4, the ship is closer to the straight line.

Table 1 is the mean (µ) and standard deviation (σ) of the inter-frame distance of
the four-part point cloud in Figure 8, which is the square of the distance between the
corresponding points in the two frame point clouds. It can be seen from the data in the table
that the µ and σ of the point cloud distance in case1 and case2 are large, indicating that the
distance between the corresponding points of the two frames of point clouds is large and
discrete, and the distance between the corresponding points is large, which is consistent
with the above ship-turning conclusion. The µ and σ of the point cloud distance in case3
and case4 are small, so the distance and distance difference between the corresponding
points of the point cloud are small, which also confirms that the ship is more likely to sail
near the straight line.

Table 1. Mean and standard deviation of point cloud frame distance.

Case µ/σ F1-F2 F2-F3 F3-F4 F4-F5

1 µ 3.29155 5.59733 5.90157 2.33137
σ 18.6138 33.5996 34.2802 14.5016

2 µ 1.39014 2.39899 2.35713 2.19866
σ 15.1237 24.6198 20.1098 19.4458

3 µ 0.252314 0.266688 0.541945 0.217449
σ 3.85721 3.53274 10.5645 6.2222

4 µ 0.084555 0.085174 0.424403 0.15355
σ 1.67186 2.38434 18.0619 2.93024

Note: F1-F2 represents from Frame1 to Frame2.

Figures 10 and 11 are the ATE and RPE results of the trajectory translation error
output by the FastGICP algorithm obtained by the evo tool, where the RPE interval is
10 pose points. In addition, the information provided by the tool also includes RMSE,
mean, and median. The evo evaluation results of each registration algorithm are shown in
Table 2. FastGICP, FastVGICP, and PTPLOMPICP have smaller ATEs, which is consistent
with the conclusions obtained in Figure 5. Compared with ATE, the RPE results of each
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algorithm are less different. The algorithm with the smallest RPE is FastVGICP, followed
by NDTOMP7. FastVGICP achieves optimal values on both ATE and RPE. Through the
above analysis, the registration accuracy of each registration algorithm, from high to low, is
FastVGICP, FastGICP, PTPLOMPICP, NDTOMP7, and NDT.

Figure 10. Evo tool APE evaluation results for FastGICP algorithm.

Figure 11. Evo tool RPE evaluation results for FastGICP algorithm.

Table 2. The evaluation results of five algorithms using evo tool.

Evo Evaluation FastGICP FastVGICP PTPLOMPICP NDT NDTOMP7

RMSE 2.199127 1.862248 2.677981 3.565329 3.394351
APE Mean 1.934627 1.67735 2.207614 2.885509 2.754741

Median 1.680057 1.511793 1.757098 2.44847 2.298347
RMSE 1.340868 1.242829 1.330651 1.299537 1.283601

RPE Mean 1.078858 0.982106 1.089126 1.013066 1.002319
Median 0.861822 0.854125 0.928976 0.812974 0.796367
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The two experiments in this paper are different, and the results are not the same.
Compared with single-frame registration, continuous-frame registration is a process of
multiple registrations, which has a cumulative error and is more complicated. It can be seen
from the experimental results that the algorithm with better single-frame registration results
is not satisfactory at continuous frames, such as ICP and LMICP. Similarly, algorithms with
better continuous-frame registration may not be very prominent on a single frame, such
as PTPLICP (PTPLOMP). Experimental results show that ICP and LMICP are suitable for
single-frame registration, and FastVGICP and FastGICP are more suitable for continuous-
frame registration.

5. Discussion
5.1. Accuracy and Real-Time of Scan Matching Algorithm

It can be observed in the single-frame experiment that the parameter setting of the
registration algorithm directly affects the accuracy and speed of registration. This paper
also sets some parameters taking into account these two aspects. The parameter selection in
this paper gives priority to accuracy, followed by speed. However, if an embedded system
with limited computing power is used, this will not be a good choice. This experiment uses
a 16-line LiDAR, and the number of laser points is not very large. It can be observed in
the final registration result map that the registration speed is fast. The registration time of
the NDT algorithm is more than 100 ms, and other registration algorithms are less than
100 ms. Scan-to-map has higher accuracy than scan-to-scan, but the registration time also
increases accordingly. Real-time registration can be obtained by properly adjusting the
filtering parameters.

5.2. Discuss the Scan-to-Scan and Scan-to-Map

From the above, single-frame point cloud registration using scan-to-scan registration
and continuous-frame registration utilizing scan-to-map registration. The scan-to-scan
is the registration of two adjacent frames. The advantage is that the calculation is small,
and the disadvantage is that the error accumulation is large, especially for long distances.
Scan-to-map is the current frame and keyframe subgraph matching. The advantage is
high precision; error accumulation is small; the disadvantage is that the calculation is
large. ASV requires accurate positioning and six degrees of freedom state estimation
when performing tasks. Considering the number of LiDAR lines, this paper chooses the
scan-to-map registration method.

5.3. Point Cloud Registration at Ship Turning

For point cloud registration, the larger the overlapping part of the point cloud, the
better the registration result, and the smaller the overlapping part usually leads to registra-
tion failure. In Figures 4 and 7, we can find that there is a large positioning error and state
estimation error at the turning point. The reason for this phenomenon is that the ship’s
heading angular velocity is large at the turning point, which will lead to a low overlap
rate of the two adjacent frame point clouds, resulting in large registration errors and poor
positioning accuracy. This is also one of the main reasons for the low positioning accuracy
of scan-matching technology.

5.4. Differences of Scan Matching at Sea and on Road

The research on scan matching is mostly based on the land, such as wheeled robots,
cars, and so on. Compared with the motion on land, the ASV sailing at sea is more violently
affected by wind and waves, the motion is more complex, and it is more difficult to achieve
accurate registration. In addition, the laser of the LiDAR hits the water surface, most of
which is absorbed by water, and a small part of the mirror is reflected without an echo.
Therefore, the laser point incident on the sea surface is almost not reflected back to the
LiDAR. Compared with the LiDAR data on land, the point clouds scanned by the LiDAR
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on the sea have no land information, and the number and characteristics of the point clouds
are smaller, which further increases the difficulty of registration.

6. Conclusions

This paper mainly studies the ASV maritime positioning and state estimation based on
LiDAR, where the poses are obtained by scan matching. We introduced ICP, NDT, and their
variants in detail and selected 10 different registration methods for testing and evaluation,
including ICP, LMICP, GICP, FastGICP, FastVGICP, and PTPLICP, PTPLOMPICP, NDT,
NDTOMP1, and NDTOMP7. The performance test experiment of the algorithm is divided
into single-frame experiments and continuous-frame experiments. Single-frame experi-
ments involved the registration of two adjacent frames, and continuous-frame experiments
used scan-to-map registration. The accuracy of the single-frame experiment is evaluated
by the RMSE, and the parameters of the algorithm are selected at the same time. The
continuous-frame experiment uses the registration output overall trajectory, XYZ direction
trajectory, Euler angle, ATE, and RPE to evaluate each registration algorithm.

The experimental results show that the single-frame registration ICP and LMICP
have high accuracy, and the mean values of RMSE on 10 pairs of data are 0.965926 and
0.966460, respectively. NDTOMP1 and VGICP are fast in registration, and the average
registration time is 19 ms and 31.4 ms, but the registration accuracy is much lower than
ICP. For continuous-frame registration, the registration results of ICP, LMICP, GICP, and
NDTOMP1 differ greatly from the truth values, especially ICP and GICP. VGICP and
multi-threaded optimization GICP have the best effect, and the RMSE of ATE is 1.862248
and 2.199127, respectively. Compared with straight-line navigation, the distance between
the corresponding points of two adjacent frames of point clouds increases and becomes
more discrete when USV turns, and the registration accuracy is worse.

However, there are still some defects in this paper owing to the limitations of exper-
imental conditions. The mechanism of loss of registration accuracy at turning could be
revealed by more abundant data sets, such as different maneuvers, ASVs of different sizes,
and LiDAR of different types. In addition, the influence of dynamic objects from a busy
port on point cloud registration is the focus of our future study.
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