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Abstract: At present, sea cucumbers, sea urchins, and other seafood products have become increas-
ingly significant in the seafood aquaculture industry. In traditional fishing operations, divers go
underwater for fishing, and the complex underwater environment can cause harm to the divers’ bod-
ies. Therefore, the use of underwater robots for seafood fishing has become a current trend. During
the fishing process, underwater fishing robots rely on vision to accurately detect sea cucumbers and
sea urchins. In this paper, an algorithm for the target detection of sea cucumbers and sea urchins in
complex underwater environments is proposed based on the improved YOLOv5s. The following
improvements are mainly carried out in YOLOv5s: (1) To enhance the feature extraction ability of
the model, the gnConv-based self-attentive sublayer HorBlock module is proposed to be added to
the backbone network. (2) To obtain the optimal hyperparameters of the model for underwater
datasets, hyperparameter evolution based on the genetic algorithm is proposed. (3) The underwater
dataset is extended using offline data augmentation. The dataset used in the experiment is created
in a real underwater environment. The total number of created datasets is 1536, and the training,
validation, and test sets are randomly divided according to the ratio of 7:2:1. The divided dataset is
input to the improved YOLOv5s network for training. The experiment shows that the mean average
precision (mAP) of the algorithm is 94%, and the mAP of the improved YOLOv5s model rises by
4.5% compared to the original YOLOv5s. The detection speed increases by 4.09 ms, which is in
the acceptable range compared to the accuracy improvement. Therefore, the improved YOLOv5s
has better detection accuracy and speed in complex underwater environments, and can provide
theoretical support for the underwater operations of underwater fishing robots.

Keywords: underwater target detection; improved YOLOv5; gnConv; HorBlock; hyperparameter
evolution; data augmentation

1. Introduction

In traditional aquaculture, high nutritional seafood, such as sea cucumbers and sea
urchins, has been loved by fishers. Unlike land plants, sea cucumbers and sea urchins live
on underwater reefs at depths of 12–13 m. The traditional fishing method mainly relies on
two methods, netting and underwater fishing by divers [1]. Although netting can greatly
reduce the cost of fishing, it will cause serious damage to the ecological environment of
the seafloor in the long term. Manual fishing can avoid damage to the seafloor ecological
environment, but the cost of manual fishing is relatively high. Therefore, the research on un-
derwater fishing robots has greatly promoted the development of underwater aquaculture
industry [2,3]. In order to realize the automation of underwater robots for sea cucumber
and sea urchin fishing operations, the target detection of sea cucumber and sea urchin is
especially important.

Underwater imaging quality is poor due to the complex underwater environment
that are susceptible to light and other factors [4]. The current detection for sea cucumbers
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and sea urchins is mainly optimized in two aspects: on the one hand, the target detection
network is optimized to enhance the extraction of underwater image features; on the
other hand, image enhancement algorithms are used to improve the quality of underwater
images and make the features of underwater images more obvious [5]. In this paper, the
target detection network is optimized by enhancing the model’s ability to extract features
from underwater images, so as to achieve the accurate detection of sea cucumber and sea
urchin in complex underwater environments. Currently, some researchers are applying
the target detection framework based on convolutional neural networks (CNNs) to the
underwater aquaculture industry, which plays an important role in the identification,
monitoring, and fishing of underwater seafood [6]. Algorithms on underwater target
detection have also been developed; Chen et al. [7] proposed a RetinaNet-based target
detection algorithm for underwater robot, which uses Dense Net instead of ResNet to
build a backbone network, and uses convolutional layer stacking instead of the original
single convolutional operation to reduce the weight of the network. Qiang et al. [8]
proposed an improved single shot multibox detector (SSD) target detection algorithm
using ResNet instead of the VGG convolutional neural network of SSD, which led to a
large improvement in the accuracy of the algorithm. Deng et al. [9] proposed a marine
organism detection algorithm based on the improved SSD algorithm, in which a feature
fusion module and a feature augmentation module were designed. The algorithm improves
the overall detection accuracy of the algorithm for marine organism targets with only a
small increase in computation and number of parameters. Wang et al. [10] proposed an
underwater target image edge detection algorithm based on ant colony optimization and
reinforcement learning, which can effectively extract underwater contour information,
better maintain image texture, and has ideal anti-interference performance. Guo et al. [11]
proposed an underwater target detection and localization method using feature maps
and CNN-based classification, which is superior in underwater signal classification and
target localization. Zeng et al. [12] proposed an underwater target detection based on
Faster R-CNN and adversarial occlusion network, which can obtain better robustness for
underwater seafood.

Currently, deep learning-based targets detection algorithms are mainly divided into
one-stage algorithm and two-stage algorithm. The representative algorithms of one-stage
are: OverFeat, YOLO series algorithm, SSD and RetinaNet, etc. The images inputting to
the network enters directly into the convolutional neural network, and the features can be
extracted to predict the classification and location of objects. Two-stage algorithms include:
R-CNN, SPP-Net, Fast R-CNN, Faster R-CNN and R-FCN, etc. Two-stage algorithms are
characterized by taking the input image and performing candidate region proposal (RP)
before classifying it by convolutional neural network. This feature can make the accuracy of
the network improve, but due to the feature extraction of the candidate region, it will make
the detection speed of the network drop greatly and cannot meet the real-time detection
requirements. In underwater target detection, one-stage algorithms are widely used mainly
because of its fast detection speed and relatively high detection accuracy. In the YOLO
series algorithm, Li et al. [13] proposed an improved YOLOv3ST model, embedded two
attention mechanisms, and proposed a K-means clustering algorithm to adapt to multi-scale
feature prediction to improve underwater small target detection accuracy. Guo et al. [14]
proposed a fast detection scheme for marine organisms based on an improved MSRCP
image augmentation algorithm. Zhang et al. [15] proposed a lightweight underwater target
detection method based on MobileNetV2, YOLOv4 [16] algorithm and attentional feature
fusion. Chen et al. [17] proposed an improved YOLOv4 for detecting underwater targets by
replacing the up-sampling module with a deconvolution module and incorporating depth-
separable convolution into the network. Li et al. [18] proposed an improved YOLOv5s
underwater scallop recognition algorithm, mainly using the group convolution and inverse
residual modules instead of the backbone network. The mAP was able to reach 88.2%.
Li et al. [19] proposed an improved YOLOv5 based on adding triplet attention and multi-
scale detection to meet the shortcomings existing for small target detection. Li et al. [20]
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proposed an improved CME-YOLOv5 network to detect fish and small targets in dense
groups, and the algorithm showed good detection performance when applied to densely
distributed fish and small targets. Currently, the YOLO series algorithms have been applied
to the detection of underwater targets. YOLOv5 has smaller trained weight files, faster de-
tection, and higher mAP compared to YOLOv3, YOLOv4 and other models [21]. However,
due to the poor imaging quality of the underwater dataset, the original YOLOv5 model did
not achieve the ideal results in the target detection process [22].

Therefore, in order to accurately and quickly identify sea cucumbers and sea urchins in
the complex environment underwater, an improved YOLOv5s underwater target detection
algorithm is proposed to complete underwater fishing operations more effectively. The
research content and innovation are mainly in the following aspects: (1) For the underwater
dataset with inconspicuous image features, the backbone network of YOLOv5s is improved
so that its ability to extract image features is enhanced, thus improving the recall of
sea cucumbers and sea urchins. (2) For the accuracy problem of model training, the
hyperparameters controlling the model training are optimized by using genetic algorithm,
so as to improve the accuracy of model training. (3) For the overfitting phenomenon of
model training caused by the lack of underwater datasets, offline data augmentation is
performed on the datasets, which can effectively improve the generalization ability of
the model.

2. Materials and Methods
2.1. Dataset Creation

The dataset used in the experiment is from the Zhanjiang Underwater Robotics Com-
petition URPC2021 Underwater Optics Competition dataset. The dataset uses two of the
categories: sea cucumbers and sea urchins. The images of the dataset are obtained from
videos taken by underwater robots in real underwater environments. The image resolutions
are 720 × 405 and 400 × 300 pixels. The selected dataset includes 1536 images in total, and
the training set, validation set and test set are randomly divided at the ratio of 7:2:1. After
the division is completed, the annotation information, category ratio and size distribution
are counted again to ensure that the distributions of training set, validation set and test set
are similar. In the process of dataset labelling, the Labelimg software with version number
1.8.6 was used to manually label sea cucumbers and sea urchins with rectangular boxes,
and finally the labelling file in YOLO format was obtained. The labeling process of the
Labelimg software is shown in Figure 1.
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There are two types of data augmentation: one is offline data augmentation and the
other is online data augmentation. In order to improve the generalization ability of the
model, online data augmentation and offline data augmentation are used in the dataset.
The online data augmentation used in this paper is Mosaic data augmentation, which is
mainly used to generate a new image by stitching four randomly selected images into one
image with a random size ratio. The advantage of this operation is not only to increase
the richness of the image itself, but also to increase the number of samples. Mosaic data
augmentation is shown in Figure 2.
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Figure 2. Mosaic data augmentation.

The offline data augmentation is performed by randomly translating, flipping, crop-
ping and rotating each image in several ways at random combinations. An image generated
after offline augmentation is shown in Figure 3. After the offline data augmentation, the
training set, the validation set and test set are respectively increased by 4196, 1245 and
623 images. Meanwhile, the number of datasets samples before and after offline data
augmentation and the number of category labels are shown in Table 1. After the dataset
augmentation is completed, the dataset needs to be manually labelled.
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Figure 3. Image offline data augmentation: (a) Original image; (b) Translate + horizontal flip;
(c) Translate + rotate; (d) Horizontal flip + rotate + translate; (e) Rotate (f) Vertical flip.
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Table 1. Number of data set labels.

Dataset

Category Training set
(Original/Augmentation)

Validation set
(Original/Augmentation)

Test set
(Original/Augmentation)

Sea
Cucumber 2771/15774 801/4482 446/2276

Sea Urchin 4403/22374 1339/6918 644/3016

2.2. YOLOv5 Target Detection Algorithm

YOLOv5 target detection is a regression-based algorithm in the one-stage algorithm.
When the image is input into the network, it goes directly into the convolutional neural
network for feature extraction, and in the output layer, the object classification and location
regression prediction is carried out. In this paper, the newer version 6.1 of YOLOv5 is
used. For ensuring the detection accuracy, the lightweight version of the model is also fully
considered; YOLOv5s is selected for training in the experiment. The YOLOv5s network
structure is shown in Figure 4.
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The network structure of YOLOv5s is mainly composed of the backbone, neck, head
and detect, whose structural components and features are as follows:

(1) The backbone is the feature extraction network of YOLOv5s, which is mainly
composed of the convolutional module, C3 module and SPPF module [23]. When the
image enters the network, it goes through these modules for feature extraction, respectively,
and the extracted features can be called the effective feature layer, which contains the
feature information of the image.

(2) The neck is an enhanced feature extraction network composed of FPN, which
mainly fuses features from three effective feature layers of different scales in the backbone
part. The fusion process is mainly upward and downward fusion in the form of feature
pyramids. At the same time, YOLOv5s uses down-sampling for large-scale effective
feature layers, and fuses the features with other scale effective feature layers, which greatly
preserves the semantic features of the images.
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(3) The head performs the classification and regression of network prediction. CIoU
loss [24] is applied to compute the loss in training process. At the same time, the generated
multiple prediction bounding boxes are suppressed away by non-maximal suppression to
obtain a most accurate prediction bounding box.

The YOLOv5 target detection algorithm can achieve a relatively high mAP for target
detection of land-based clear datasets. However, target detection of underwater datasets
still needs to be optimized to recognize sea cucumbers and sea urchins easily. When
optimizing the target detection algorithm, the main focus is to improve the accuracy of the
algorithm in the underwater environment. Moreover, the detection speed of the algorithm
should be ensured.

2.3. Improved YOLOv5s Network Design

The backbone is mainly improved in the YOLOv5s network, which is used to extract
features from the images of sea cucumbers and sea urchins. In this paper, the HorBlock
module is added after each C3 module. The HorBlock module is a self-attentive sub-layer
based on gnConv to achieve an arbitrary order of priority complexity exchanges. The
improved YOLOv5s backbone improves the feature extraction ability for sea cucumbers
and sea urchins. The structure diagram of the improved YOLOv5s network is shown
in Figure 5. Meanwhile, the hyperparameters are optimized using a genetic algorithm,
and the original hyperparameters of YOLOv5s are evolutionary transferred based on the
COCO dataset. The experiment uses the evolved hyperparameters based on the improved
network model to obtain the optimal hyperparameters, which can effectively improve the
recognition accuracy of the network. In YOLOv5s version 6.1, three scales feature maps
are output in the head: 20 × 20, 40 × 40 and 80 × 80. Sea cucumbers and sea urchins
appear larger in the image when they are closer to the lens. In this case, the 20 × 20 scale is
used to predict the larger objects in the image. However, sea cucumbers and sea urchins
appear smaller in the image when they are further from the lens; 40 × 40 and 80 × 80 scales
are used to predict medium and small-sized objects in the image. The parameters of the
improved YOLOv5s network are shown in Table 2.
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Table 2. Improved YOLOv5s network parameters.

Layer Number Network Layer Input Dimension Stride

0 Conv 6 × 6 3 × 640 × 640 2
1 Conv 3 × 3 32 × 320 × 320 2
2 C3 64 × 160 × 160 -
3 HorBlock 64 × 160 × 160 -
4 Conv 3 × 3 64 × 160 × 160 2
5 C3 128 × 80 × 80 -
6 HorBlock 128 × 80 × 80 -
7 Conv 3 × 3 128 × 80 × 80 2
8 C3 256 × 40 × 40 -
9 HorBlock 256 × 40 × 40 -

10 Conv 3 × 3 256 × 40 × 40 2
11 C3 512 × 20 × 20 -
12 HorBlock 512 × 20 × 20 -
13 SPPF 512 × 20 × 20 -
14 Conv 1 × 1 512 × 20 × 20 1
15 nn.Upsample 256 × 20 × 20 -
16 Concat 256 × 40 × 40 -
17 C3 512 × 40 × 40 -
18 Conv 1 × 1 512 × 40 × 40 1
19 nn.Upsample 128 × 40 × 40 -
20 Concat 128 × 80 × 80 -
21 C3 256 × 80 × 80 -
22 Conv 3 × 3 128 × 80 × 80 2
23 Concat 128 × 40 × 40 -
24 C3 256 × 40 × 40 -
25 Conv 3 × 3 256 × 40 × 40 2
26 Concat 256 × 20 × 20 -
27 C3 512 × 20 × 20 -

128 × 80 × 80
28 Detect 256 × 40 × 40 -

512 × 20 × 20

2.3.1. Self-Attentive Sub-Layer HorBlock Based on gnConv

Due to the complex environment underwater, some sea cucumbers and sea urchins
cannot be recognized effectively, and there are problems of missed detection and low
accuracy. Therefore, in order to solve this problem, the HorBlock module, which is a
self-attention sub-layer based on gnConv, is added to the YOLOv5s model. Its main
purpose is to improve the recognition accuracy of sea cucumbers and sea urchins, and
reduce the influence of the surrounding environment. The gnConv used in the HorBlock
module is designed to perform higher-order spatial interactions through gated convolution
and recursion. It is highly flexible, customizable and compatible, and able to extend
second-order interactions in self-attentiveness to arbitrary orders without much additional
computation. The gnConv can be used as a plug-and-play module to form an independent
module or embedded in various convolution-based models. The gnConv is built using
standard convolution, linear projection, and element multiplication, whose basic operation
is gated convolution (gConv). Let t ∈ IH×W×C be the input feature and the output of the
gated convolution y = gConv(t) can be written as [25]:[

bH×W×C
0 , dH×W×C

0

]
= θin(t) ∈ IH×W×2C (1)

y = θout( f (d0)� b0) ∈ IH×W×C (2)

where, θin, θout are linear projection layers and f is the depth convolution. Note that
( f (d0)� b0)

(i,c) = Σj∈Ω wc
i→jd0

(j,c)b0
(i,c), where, Ωi is the local window centered on i and w
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is the convolution weight of f. Thus, the above equation introduces the interaction between
adjacent features b(i)0 and d(i)0 via element-wise multiplication. Since each b(i)0 interacts with

its neighboring feature d(i)0 only once, the interaction in gConv is considered as a 1-order
interaction.

After implementing 1-order spatial interactions with gConv, gnConv is constructed by
introducing higher-order interactions. First, a set of projection features b0 and {dm}n−1

m=0 are
obtained using θin [25]:[

bH×W×C0
0 , dH×W×C0

0 , . . . , dH×W×Cn−1
n−1

]
= θin(t) ∈ IH×W×(C0+∑0≤m≤n−1 Cm) (3)

Then, perform the gated convolution recursively using [25]:

bm+1 = fm(dm)� gm(bm)/δ, m = 0, 1 . . . , n− 1 (4)

where, they scale the output by 1/δ to stabilize the training. { fm} are a set of depth-wise
convolution layers, and {gm} are used to match the dimension in different orders [25]:

gm =

{
Identity, m = 0
Linear(Cm−1, Cm), 1 ≤ m ≤ n− 1

(5)

Cm =
C

2n−m−1 , 0 ≤ m ≤ n− 1 (6)

Cm is the channel dimension, and finally, the last recursive output dn is fed into the
projection layer θout to obtain the result of gnConv.

In this paper, spatial modeling operations that are representative and perform differ-
ent interaction sequences are compared, as shown in Figure 6, where the blue structure
is a feature and the gray structure is the feature’s adjacent region. Each spatial model
individually shows the spatial interactions between the feature and the neighboring re-
gions. (a) Standard convolutional operations do not explicitly consider spatial interactions.
(b) Dynamic convolution introduces the SE module, which makes the weights dynamic
and improves the modeling ability of convolution by adding channel interactions [26–28].
(c) The self-attentive operation performs second-order spatial interactions through two
consecutive matrix multiplications [29]. (d) The gnConv uses gated convolution and a
recursive design to implement arbitrary-order spatial interactions [25].
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The HorBlock constructed by combining the gnConv module with Layer Norm is
incorporated into the backbone network, which can enhance the network’s performance by
further extracting the input images features.

2.3.2. Hyperparametric Evolution Based on a Genetic Algorithm

Hyperparameter evolution uses a genetic algorithm for optimization [30]. During
model training, hyperparameters control all aspects of model training. Having the best
hyperparameters is important to the training outcome, but it is also a greater challenge.
Due to the unknown correction between high-dimensional search space and the fitness
of each point, traditional hyperparameter evolution methods such as grid searches are
difficult to meet the requirements. Therefore, hyperparameter evolution based on a genetic
algorithm is a better selection for hyperparameter optimization methods [31,32], which can
obtain desired results.

There are 29 hyperparameters in YOLOv5s that regulate the training process. With
such a large number of hyperparameters, the optimal solution for each parameter can be
obtained using a genetic algorithm, and then can get the optimal hyperparameter results.
For each hyperparameter in the training process, it can be considered as an independent
variable x. The result obtained by performing network training is y. In YOLOv5s, seven
results for representation are used. They are: “metrics/precision”, “metrics/recall”, “met-
rics/mAP 0.5”, “metrics/mAP 0.5:0.95”, “val/box loss”, “val/obj loss” and “val/cls loss”.
At the same time, a fitness function needs to be defined to judge the effect of the input x.
Fitness is the precision (P), recall (R), and the fraction-weighted sum of mAP 0.5 and mAP
0.5:0.95, independent of the loss part. For the variant x, after training, the result y is re-
turned. If the calculated fitness is higher than the current one, the variant can be considered
effective, and the parameters of the variant will be saved at this time. This experiment is
set to mutate once every 50 epochs, 300 times in total. The one with the best mutation effect
is selected as the final result of mutation. A comparison of the hyperparameter evolution
results is shown in Table 3.

Table 3. Comparison of hyperparameter evolutionary results.

Parameter lr0 lrf Momentum Weight
Decay

Warmup
Epochs

Warmup
Momentum

Warmup
Bias lr Box cls cls

pw

Original 0.001 0.01 0.937 0.0005 3.0 0.8 0.1 0.05 0.5 1.0
After

Evolution 0.00886 0.01 0.85395 0.0004 3.0549 0.84169 0.06114 0.10873 0.2 1.0017

Parameter obj obj pw iou t anchor t fl
gamma hsv h hsv s hsv v degrees

Original 1.0 1.0 0.20 4.0 0.0 0.015 0.7 0.4 0.0
After

Evolution 1.0651 0.75344 0.2 3.2016 0.0 0.01024 0.36303 0.18256 0.0

Parameter translate scale shear perspective flipud fliplr mosaic mixup copy
paste anchors

Original 0.1 0.5 0.0 0.0 0.0 0.5 1.0 0.0 0.0 3
After

Evolution 0.14064 0.39425 0.0 0.0 0.0 0.5 1.0 0.0 0.0 3.9496

The main genetic operator for hyperparametric evolution uses crossover and mutation.
During the training process, it is the offspring created with 80% probability and 0.04 vari-
ance based on the best combination of parents from all previous generations. The results
are saved separately for each time and for the highest fitness. Each hyperparameter is
visualized in the evolutionary process, as shown in Figure 7. Each figure corresponds to
a hyperparameter, where the x-axis represents the value of the hyperparameter and the
y-axis represents fitness. The concentration of data points gradually decreases as the color
changes from yellow to gray. The yellow color indicates a higher concentration of data
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points, while the vertical line indicates that a parameter has been fixed and will no longer
be subject to further mutation.
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2.4. Evaluation Indicators

The loss function of YOLOv5s mainly consists of three components: bounding box
regression loss, classification loss and objectness loss. The loss function is calculated as
follows [33]:

L = Lbox + Lcls + Lobj (7)

where, Lobj is obtained by the CIoU loss function, and the CIoU calculation formula is as
follows [33]:

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + av (8)

a =
v

1− IoU + v
(9)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(10)
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where, ρ2(b, bgt) is the Euclidean distance between the real bounding box and the prediction
bounding box. c is the length of the diagonal of the smallest outer rectangle of the real
bounding box and the prediction bounding box. v is the distance between the aspect ratio
of the real bounding box and the prediction bounding box. a is the weight coefficient. w is
the width of the prediction bounding box. h is the height of the prediction bounding box.
wgt is the width of the real bounding box. hgt is the height of the real bounding box.

In the classification loss, the loss is calculated via binary cross entropy, which is
characterized by the fact that it is calculated only when the detected target is a positive
sample. The bounding box regression loss is divided into two parts: loss with the target
and loss without the target, which is different from the other two loss functions in that it is
calculated regardless of positive or negative samples.

3. Results and Discussion
3.1. Model Training

The model training platform is achieved based on the Python 3.8 PyTorch 1.10 deep
learning framework. The system environment is Windows 10, and training is performed
using a GPU configured with CUDA version 11.1 and the neural network acceleration
library cuDNN. The overall configuration of the training environment is shown in Table 4.

Table 4. Training environment configuration table.

Item Parameter

Operating System Windows 10
Central Processing Unit Intel(R) Core(TM) i5-11400F

GPU GeForce RTX 3090
Graphics Card Driver CUDA 11.1
Software Environment OpenCV-Python 4.5.5.62

Deep Learning Framework PyTorch 1.10.2

All models are not loaded with pre-training weights during the training process.
As the hyperparameter evolution based on the genetic algorithm is adopted, the default
hyperparameters are no longer used in model training. The initial learning rate is 0.00886.
At this learning rate, the model converges faster. As mAP continues to increase and the
loss continues to decrease, the model reaches its optimal state finally. The weight decay
coefficient is 0.0004, and the momentum factor is 0.85395. In the training, the batch size
is 32, the optimizer uses Adam optimizer [34] and epochs are 200. The image sizes in the
input network are resized to the default size of 640 × 640 pixels. The loss variation curves
and mAP variation curves of the improved YOLOv5s model and the original YOLOv5s
model are shown in Figure 8.

From the curve changes in the figure, it can be seen that the two models start to
converge rapidly after 20 epochs, when the loss values start to decrease rapidly and the
mAP rises rapidly. After 50 epochs, the loss and the mAP changes start to become smaller
and tend to stabilize. From Figure 8a, the bounding box regression loss of the improved
YOLOv5s model is higher than that before the improvement, but the convergence speed
is better than that of the original model. Because the initial learning rate of the improved
model is larger when using hyperparameter evolution, bounding box regression loss of the
model becomes larger. From Figure 8b,c, the curves for classification loss and objectness
loss are smoother and less volatile. In terms of the objectness loss, overfitting occurred for
the original model during training, whereas the improved model can solve the overfitting.
From Figure 8d, the improved YOLOv5s model has a higher mAP in the training process,
and the convergence speed is also faster.
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3.2. Analysis of Results

In this experiment, the average precision (AP), mAP and mean detection time will
be used to evaluate the performance of the model. Their calculation equations are as
follows [33]:

AP =

1∫
0

TP
TP + FP

d
TP

TP + FN
(11)

mAP =
1
N

N

∑
i=1

APi (12)

where, TP is the number of cases where the true case is positive and the predicted outcome
is positive. FP is the number of cases where the true case is negative and the predicted
outcome is positive. FN is the number of cases where the true outcome is positive and the
predicted outcome is negative.

3.2.1. Analysis of Ablation Experiments

Ablation experiments are carried out for different improvements of the improved
YOLOv5s of the same dataset, which can get the impact of the fusion of self-attentive sub-
layer HorBlock, hyperparameter evolution and offline data augmentation on the accuracy
of the model. The comparison results are shown in Table 5.
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Table 5. Comparison results of ablation experiments.

HorBlock Hyperparametric
Evolution

Offline Data
Augmentation mAP/% Parameters/M

Average
Detection
Time/ms

89.5 7.02 7.09√
90.4 11.19 14.09√ √
91.5 11.20 11.54√ √ √
94.0 11.20 11.18

According to the data in Table 5, after adding the HorBlock module, the mAP of
the improved YOLOv5s increases by 0.9% compared with the original YOLOv5s, which
indicates that the network pays more attention to sea cucumbers and sea urchins and
reduces the influence of useless features. While using the hyperparameter evolution, the
mAP increases by 1.1%, which indicates that the adjustment of hyperparameters can help
the network obtain a better result in the training process. The mAP increases by 2.5% with
offline data augmentation, which indicates that the original samples are relatively not rich
enough. The use of data augmentation can greatly enrich the samples and improve the
generalization ability of the model. The final detection accuracy of the model increases
by 4.5% compared with the original YOLOv5s. Therefore, the model is able to meet the
experimental requirements in terms of the detection accuracy. The experimental result also
shows that parameters in the improved YOLOv5s increases by 4.18 M compared with them
in the original YOLOv5s and increases by 4.09 ms considering the average detection time.
The comparison effect of the original model and the improved model is shown in Figure 9.
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From Figure 8, it can be seen that both the detection accuracy and the recall rate are
low, and the objectness loss of the prediction bounding box is high in the original model.
The detection accuracy and recall rate are improved in the improved model. In addition,
as shown by the comparison of the middle images, the objectness loss of the prediction
bounding box of the improved model is lower and the bounding box selection of the
detected sea cucumbers and sea urchins is more accurate.

3.2.2. Comparative Analysis of Model Detection Effects

To further validate the performance of the improved YOLOv5s model, a compari-
son experiment is conducted with RetinaNet, SSD, YOLOv4, YOLOv5m, YOLOV5l and
YOLOv5x. In the experiment, all other models use default parameters and all models
are not loaded with pre-training weights during the training process. The ratio of the
training set, validation set and test set for all models during training is 7:2:1. The experi-
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mental results are shown in Table 6. where the mAP of the improved YOLOv5s is 11.75%,
10.31%, 8.08%, 3.2%, 3.1% and 3% higher than that of RetinaNet, SSD, YOLOv4, YOLOv5m,
YOLOV5l and YOLOV5x, respectively. The parameters of the improved YOLOv5s are 4.18
M larger than those of the original YOLOv5s, but smaller than those of the other models.
The improved YOLOv5s has an average detection time that is 6.29 ms slower than that of
SSD, but it is 93.84 ms, 6.46 ms, 6.63 ms, 6.18 ms and 2.63 ms faster than those of RetinaNet,
YOLOv4, YOLOv5m, YOLOv5l and YOLOv5x, respectively. The AP of sea cucumber and
sea urchin detected using the improved YOLOv5s are both better than those detected with
the other models. The detection effect of the models is shown in Figure 10. The improved
YOLOv5s, in terms of both missed and false detections, significantly improved, and the
regression accuracy is improved compared to the other models.

Table 6. Comparison data between different models.

Models Sea Cucumber AP/% Sea Urchin AP/% mAP/% Parameters/M Average Detection Time/ms

RetinaNet 72.23 92.27 82.25 36.1 105.02
SSD 78 90 83.69 24.5 4.89

YOLOv4 77 95 85.92 64.36 17.64
YOLOv5s 83.9 95.1 89.5 7.02 7.09
YOLOv5m 87.0 94.6 90.8 20.88 17.81
YOLOv5l 86.5 95.2 90.9 46.14 17.36
YOLOv5x 87.3 94.8 91.0 86.18 13.81
Improved
YOLOv5s 91.2 96.7 94.0 11.20 11.18
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4. Conclusions

In this paper, a target detection algorithm based on improved YOLOv5s is proposed
that can adapt to accurately recognize and detect sea cucumbers and sea urchins in complex
underwater environments. The main improvement of YOLOv5s is to integrate the HorBlock
module into the backbone network to enhance the feature extraction ability of the backbone
network. The original hyperparameters of the improved YOLOv5s are adjusted using a
hyperparameter evolution method based on a genetic algorithm to obtain hyperparameters
suitable for complex underwater environments, which enables the model to obtain the
optimal recognition accuracy during the training process. In this experiment, online and
offline data augmentation methods are used to process the dataset. Mosaic data augmen-
tation is used for online data augmentation, while offline data augmentation is achieved
by expanding the dataset. During the experimental process, the ablation experiment and
the comparison experiment of each model are conducted, respectively. In the ablation
experiment, the methods of the HorBlock module, genetic algorithm hyperparameter evo-
lution and offline data augmentation are experimentally verified. The final experimental
results show that although the improved YOLOv5s has a slight decrease in detection speed,
mAP increases by 4.5% compared to the original model. In the model comparison experi-
ments, the improved YOLOv5s model has a higher mAP than the RetinaNet, SSD, YOLOv4,
YOLOv5m, YOLOV5l and YOLOV5x models.

Due to the complex underwater environment, the underwater datasets have certain
difficulties in the acquisition process. The underwater environment is affected by light and
plankton in the water. This greatly affects the clarity of underwater images, which brings
some difficulties in making the dataset and training the network model. Therefore, the
image enhancement algorithms to improve the clarity of underwater images is a crucial task
in the underwater data processing process. In future research, more kinds of datasets should
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be collected and image enhancement algorithms should be added to the datasets during
training and detection. Moreover, the network model should continue to be optimized and
the detection speed should also be improved while continuing to improve the accuracy of
the model, which will be a direction of continued research in the future.
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