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Abstract: This study is concerned with the generation and propagation of strongly nonlinear waves
in shallow water. A numerical wave flume is developed where nonlinear waves of solitary and cnoidal
types are generated by use of the Level I Green-Naghdi (GN) equations by a piston-type wavemaker.
Waves generated by the GN theory enter the domain where the fluid motion is governed by the
Navier–Stokes equations to achieve the highest accuracy for wave propagation. The computations
are performed in two dimensions, and by an open source computational fluid dynamics package,
namely OpenFoam. Comparisons are made between the characteristics of the waves generated in
this wave tank and by use of the GN equations and the waves generated by Boussinesq equations,
Laitone’s 1st and 2nd order equations, and KdV equations. We also consider a numerical wave
tank where waves generated by the GN equations enter a domain in which the fluid motion is
governed by the GN equations. Discussion is provided on the limitations and applicability of the
GN equations in generating accurate, nonlinear, shallow-water waves. The results, including surface
elevation, velocity field, and wave celerity, are compared with laboratory experiments and other
theories. It is found that the nonlinear waves generated by the GN equations are highly stable and in
close agreement with laboratory measurements.

Keywords: Green–Naghdi equations; Navier–Stokes equations; Boussinesq equations; KdV equation;
solitary wave; cnoidal wave; numerical wave tank

1. Introduction

Solitary wave is a nonlinear wave with an isolated elevation of finite amplitude and
permanent form over a flat seafloor. The presence of the solitary wave was first reported
by [1], who conducted extensive experiments on the generation and propagation of the
wave in 1834 and 1835, see [2]. At the time, there was a conflict between Russell’s observations
and [3] prediction (shallow-water-theory) that a wave of finite amplitude cannot propagate
without a change of form. This conflict was resolved independently by [4–8]. Boussinesq and
Rayleigh showed that appropriate allowance for vertical acceleration and finite amplitude
leads to an explicit solution of the solitary wave. Ref. [6]’s theory of solitary wave was
accepted although the solution is only first-order accurate. Ref. [9] suggested a theoretical
solution whose mathematical formulations are provided by Lee et al. (1982). As [9]’s
equations are implicit, an iterative method, such as Newton–Raphson, is needed to solve
the equations. An equation only admitting right-running solutions was derived by [10],
named the Korteweg–de Vries (KdV) equation.

The periodic form of a solitary wave with the same height is named a cnoidal wave
by [7]. A cnoidal wave is a periodic wave with isolated wave crests and flat wave troughs.
A cnoidal wave without a nonlinear and asymmetrical wave profile about the still-water
level (SWL) could become a sinusoidal wave. Ref. [10] obtained the solutions for cnoidal
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waves by means of the Jacobian elliptic cosine function Cn contained in the wave pro-
file formula. Following the idea of [10] about cnoidal waves, Ref. [11] established the
Keulegan–Patterson theory for cnoidal waves. Ref. [12] proved the existence of cnoidal
waves with a complex potential function. By then, the equations were complicated to be
used in practical application for the incompleteness of second-order solutions. Based on the
work of [13,14] a second-order approximation to the cnoidal wave theory was developed
by using the expansion method, and [15] added a nonzero term to the equations.

Ref. [16] developed the Green–Naghdi (GN) equations for shallow-water wave mo-
tions based on the directed fluid sheet theory. The GN theory satisfies exactly the nonlinear
boundary conditions and conservation of mass, postulates the integrated form of the con-
servation of momentum, and does not require the irrotationality of the flow. This set of
equations contains solutions for solitary wave (see [17]) and cnoidal wave (see [18]). The GN
equations are used successfully for a wide range of problems involving water wave dynam-
ics; for example, nonlinear wave scattering by submerged objects ([19]), and diffraction and
refraction of solitary and cnoidal waves ([20]).

Although there are several equations that can be used to describe the solitary and
cnoidal waves, it is difficult to solve the equations analytically due to the nonlinear nature
of these waves, especially the implicit part of solutions of the cnoidal wave, see [18].
Thanks to the increase in computational power, the computational fluid dynamics (CFD)
approach is used in the study of solitary and cnoidal waves. The waves are generated
by use of different equations, see, e.g., Refs. [21,22] for the use of the KdV equations to
generate solitary waves, Ref. [23] for the use of the GN equations to generate solitary waves,
and propagate in the domain governed by the Navier–Stokes (NS) equations, Ref. [24] for
the use of cnoidal waves by use of the GN equations, and [25] for the use of the Boussinesq
equations to generate solitary waves. It is desirable to generate accurate nonlinear waves
when studying wave dynamics in coastal zones, for example for wave propagation over an
uneven seafloor, or in wave-structure interaction problems. While various theories are used
to generate nonlinear waves of solitary and cnoidal types in computational wave tanks,
there has not been any systematic investigation about the accuracy and stability of the
waves when compared to each other. It is desirable to find out how the solitary wave and
cnoidal wave generated based on the existing equations propagate in the computational
fluid dynamics-based numerical wave tanks.

In this study, we create a numerical tank to investigate the accuracy and stability
of solitary and cnoidal waves of different theories. We develop numerical wave makers
capable of generating solitary and cnoidal waves of different theories. Waves are generated
by a piston-type wave maker and enter a domain of constant water depth, where the flow
is governed by the NS equations. We then investigate the characteristic of the solitary
and cnoidal waves of different theories within the domain, and compare the results with
available laboratory measurements. To further assess the performance of the GN equations,
we also create a numerical wave tank based entirely on the GN equations, i.e., the waves
generated by the GN theory enter a domain where the flow is governed by the GN equations.
The results are then compared with the laboratory measurements, and with the results of
the case of the NS domain.

In this paper, we first present the theories used for wave generation and propagation,
followed by the introduction of the set-up of the numerical tank. Steady-state results are
given first and unsteady results of solitary waves and cnoidal waves are presented and
discussed thereafter. The conclusions then follow.

2. The Theories and Numerical Set Up

We create a numerical tank, in which solitary and cnoidal waves generated by different
theories are investigated. The governing equations of the domain and the wave theories
used are described in this section.

We adopt a right-handed two-dimensional (2D) Cartesian coordinate system, with x1
pointing to the right, and x2 pointing vertically opposite to the direction of the gravitational
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acceleration such that x2 = 0 is the SWL. Indicial notation and Einstein’s summation
convention are used. Subscripts after the comma indicate differentiation. The equations
are given in dimensionless forms using density of water, ρ, gravitational acceleration, g,
and water depth, h, as a dimensionally independent set. Hence, the dimensionless form of
time is t′ = t×

√
g/h, surface elevation is η′ = η/h, velocity is u′ = u/

√
gh and pressure

is p′ = p/ρgh. For simplicity, we drop primes from all dimensionless variables in the rest
of this work unless otherwise indicated.

2.1. The Navier–Stokes Equations

For a homogeneous, Newtonian and incompressible fluid, the 2D NS equations are
given by the following conservation of mass and momentum equations:

ui,i = 0, i = 1, 2 (1)

uj,t + (uiuj),i =
1

Fr2 gj − p,j +
1

Re
uj,ii, i, j = 1, 2 (2)

where ~u = ui~ei is the velocity vector, and ~ei is the unit normal vector in the i-th direction,
Fr = U√

gl
is the Froude number, with U and l as the characteristic velocity and length,

respectively, Re = Ul
ν is the Reynolds number, ν is kinematic viscosity, ~g = (0,−1) is the

gravitational acceleration vector, and p is the pressure.
A computational tank is created, in which waves are generated by the use of different

wave theories and propagate over a flat tank floor. A schematic of the tank is shown in
Figure 1. The tank is separated by dash lines into three parts, namely the wave generation
zone, the computational domain and the wave absorption zone. Within the computational
domain, the governing equations are solved for both water and air above. The volume of
fluid method, originally introduced by [26], is used to determine the free surface between
air and water.

Figure 1. Schematic of the NS computational domain used in this study. Solitary and cnoidal waves
are created at the generation zone, using different theories.

The Finite Volume approach is used to discretize the equations. The boundary condi-
tions used in this study are the same as that of [27]. The details of these boundary conditions
can be found in, e.g., [28,29].



J. Mar. Sci. Eng. 2023, 11, 917 4 of 21

2.2. The Green–Naghdi Equations

Considering the theory of directed fluid sheets of an incompressible fluid and from
the laws of conservation of mass and linear momentum, [30] derived a set of equations,
the Green–Naghdi (GN) equations, describing the nonlinear motion of inviscid fluids.
The dimensionless GN equations read as

η,t + [(1 + η − α)u1],1 = α,t, (3)

u̇1 + η,1 + p̂,1 = −1
6
[2η + α],1α̈ + [4η − α],1η̈ + (1 + η − α)[α̈ + 2η̈],1, (4)

u2 = α̇ +
x2 + 1− α

η + 1− α
(η̇ − α̇), (5)

p̄ =
1
2
(1 + η − α)(α̈ + η̈ + 2) + p̂, (6)

where η is the free surface elevation measured from the SWL, α(x1, t) describes the bottom
surface of the fluid sheet measured from a fixed reference point, p̄(x1, t) is the pressure on
α, and p̂(x1, t) is the pressure on top of the fluid sheet. The superposed dot denotes the
material time derivative, and double dot is the second material derivative.

The pressure distribution in shallow water, p, is given as ([31,32]),

p(x1, x2, t) =
1
2
(1 + η − x2)(α̈ + η̈ + 2) + p̂. (7)

In the cases studied here, the bottom surface is flat and stationary, hence α = 0 and
α̈ = 0, and we assume p̂ = 0, i.e., pressure is atmospheric on the top surface. Hence,
Equations (5) and (7) can be written as,

u2(x1, x2, t) =
x2 + 1
η + 1

η̇, (8)

and
p(x1, x2, t) =

1
2
(1 + η − x2)(η̈ + 2). (9)

The above solution belongs to the Level I GN equations, in which the vertical velocity
varies linearly along the water column and horizontal velocity is invariant in the vertical
direction. The Level I GN equations, hence, are best applicable to the propagation of long
waves in shallow water. High level GN equations can be obtained by considering higher
order functions for the distribution of the velocities in the vertical direction, see, e.g., [33,34].

2.3. Solitary Wave Solution

The solitary wave surface elevation of the Level I GN equations is given by [16] as

η(x1, t) = A sech2(εxC1), (10)

where A is the amplitude of the solitary wave, xC1 = (x1 − Ct), ε =
√

3A
4(A+1) , and C is the

wave speed, which is

C =
√
(A + 1). (11)

The horizontal particle velocity is given by

u1(x1, t) = C
η

1 + η
. (12)
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Equations (8)–(10) can be used to obtain analytical solutions for the solitary wave
velocity and pressure fields. η̇ is given by

η̇ = η,t + u1η,1 + u2η,2. (13)

The first part of the right-hand side of Equation (13) is obtained as

η,t = [A sech2(εxC1)],t = 2AεC cosh−2(εxC1)tanh(εxC1), (14)

The second part of the right-hand side of Equation (13) is given as

u1η,1 = u1[A sech2(εxC1)],1 = −2u1 Aε cosh−2(εxC1) tanh(εxC1). (15)

As η(x1, t) is a function of x1 and t, but not x2, the third part on the right-hand side of
Equation (13) is given as

u2η,2 = u2[A sech2(εxC1)],2 = 0. (16)

Substituting Equations (14)–(16) into Equation (13) gives

η̇ = 2Aε(C− u1) sech2(εxC1) tanh(εxC1), (17)

and, substituting Equation (17) into Equation (8) gives

u2(x1, x2, t) = 2
x2 + 1
η + 1

εη tanh(εxC1)(C− u1). (18)

Next, we obtain η̈, given as

η̈ = η̇,t + u1η̇,1 + u2η̇,2. (19)

For the first part of the right-hand side of Equation (19), we can write

η̇,t = 2Aε2(C− u1)C(3 sech2(εxC1) tanh2(εxC1)− 1). (20)

For the second part of the right-hand side of Equation (19)

u1η̇,1 = −2Aε2(C− u1)u1(3 sech2(εxC1) tanh2(εxC1)− 1). (21)

As in the derivation of Equation (16), η(x1, t) is a function of x1 and t, but not x2;
therefore, the third part of the right-side of Equation (19) can be written as

u2η̇,2 = 0. (22)

Hence, substituting Equations (20)–(22) into Equation (19) gives

η̈ = 2Aε2(C− u1)
2(3 sech2(εxC1) tanh2(εxC1)− 1), (23)

Substituting Equation (23) into Equation (7) gives

p(x1, x2, t) = (η − x2)(2Aε2(C− u1)
2(3 sech2(εxC1) tanh2(εxC1)− 1) + 1). (24)

Equations (10), (12), (18) and (24) provide the surface elevation, horizontal and vertical
velocities and the pressure under a steady-state solitary wave solution of the GN equations.

There are several solutions of a solitary wave provided by, e.g., Boussinesq (1872), [14]
and KdV equations given by [10]. The analytical solutions (used in this study) and the GN
solution derived above are listed in Table 1.
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Table 1. Solutions of solitary wave by different theories.

Boussinesq KdV Laitone’s 1st Order Laitone’s 2nd Order GN

η A sech2(εBLxC1) A sech2(εBLxC1) Asech2(εBLxC1)
A sech2χ2
−3A2 sech2χ2
×(1− sech2χ2)/4

A sesh2(εxC1)

C
√

1 + A
√

1 + A
√

1 + A/2
√

1 + A/2− 3A2/20
√

1 + A

u1 Cη/(1 + η)

A[aKdV
+bKdV

×cosh(
√

3AxC1)]
×sech4(εBLxC1)/4

A sech2(εBLxC1)
A(1 + A/4− 3Ax2

2/2)
×sech2χ2

+εL1 sech4χ2

Cη/(1 + η)

u2

√
3A3(1 + x2)

×[cKdV + dKdV
×cosh(

√
3AxC1)]

×sech(εBLxC1)/4

κx2
×sech2χ
×tanhχ

κ(x2 + 1) sech2χ2
×tanh[(1− 3A/8)χ2]
−Ax2

2/2 + A tanεL2
×sech2χ2

2εη
×tanh(εxC1)
×(C− u1)
×(x2 + 1)
/(η + 1)

where ε =
√

3A/4(A + 1), εBL =
√

3A/4, κ =
√

3A3, χ =
√

3/4xC1, χ2 = x1
√

3A/(4(1− 5A/8)− Ct, εL1 =

A2(−1 + 9x2
2/4), εL2 = −2 + 3x2

2, aKdV = 2 + A + 12Ax2 + 6Ax2
2, bKdV = 2 − A − 6Ax2 − 3Ax2

2, cKdV =

2− 7A + 10Ax2 + 5Ax2
2, dKdV = 2 + A− 2Ax2 − Ax2

2.

2.4. Cnoidal Wave Solution

Similar to the solitary wave, there are several solutions for the cnoidal wave, such as
through the Boussinesq equations, KP equations and KdV equation. The cnoidal waves
generated according to the GN equations, KP equations, and KdV equation are discussed
in this study.

2.4.1. The Green-Naghdi Equations

The cnoidal wave solution of the GN equations provided by [18] gives the water
surface elevation, the wave phase speed, C, and the water particle velocity as

C2 = (1 + η1)(1 + η2)(1 + η3), (25)

where η1 = H
k2 (1− E

K ), η2 = H
k2 (1− k2 − E

K ), and η3 = H
k2

E
K are three wave parameters,

η = η2 + HC2
n =

H
k2 (1− k2 − E

K
) + HC2

n, (26)

u1 =
η

1 + η
C, (27)

u2 =
1 + x2

(1 + η)

∂η

∂x1
C, (28)

where H is the wave height of the cnoidal wave, K is the complete elliptic integral of the first
kind, E is the complete elliptic integral of the second kind, Cn is the Jacobian elliptic function
and k is the modulus of the respective elliptic integral function. For details, see [18].

2.4.2. The Keulegan and Patterson Equations

The solution of cnoidal wave derived by [11] share Equations (25) and (26) for C and
η with the solution of the GN theory. The equations for u1 and u2 are:

u1 = (η − 1
4

η2 + (
1
3
− 1

2
(1 + x2)

2)
∂2η

∂x2
1
)C, (29)

u2 = −(1 + x2)((1−
1
2

η)
∂η

∂x1
+

1
3
(1 +

1
2
(1 + x2)

2)
∂3η

∂x3
1
)C. (30)
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2.4.3. The Korteweg-de Vries Equations

The KdV solution of the cnoidal wave is given by [35]:

C2 = 1 +
1
k
(2− k− 3

E
K
), (31)

η =
H
k
(1− k− E

K
) + HC2

n, (32)

u1 = (η − η2 +
1
2
(

1
3
− (1 + x2)

2)
∂2η

∂x2
1
)C, (33)

u2 = −(1 + x2)((1− 2η)
∂η

∂x1
+

1
6
(1− (1 + x2)

2)
∂3η

∂x3
1
)C. (34)

2.5. The Numerical Tank

A numerical tank is created in this study, in which solitary and cnoidal waves of
different theories can be generated. Inside the domain, the fluid is governed by the NS
equations. The computational domain of the numerical tank used in this study is 11.84 m
long and 0.21 m deep, as shown in Figure 1. The wave generation and absorption zones in
this study are shown in Figure 1, follow the same principle as those given by [36], within the
open source computational fluid dynamics package, OpenFOAM. Waves are generated
in a zone on the left of the tank. On the right-hand side of the domain, a relaxation zone
is used to minimize the wave reflection back into the domain. The generation zone is set
from x1 = −2 m to x1 = 0 and the relaxation zone is located at x1 = 7.84 m to x1 = 9.84 m.
There are two wave gauges, GI located at the first node outside of the relaxation zone at
x1 = 0, and GII located at x1 − 2.62 m from the end of the relaxation zone. Two pressure
sensors, SI and SII, are placed on the tank bottom, at x2 = −1, and two velocimeters, VI and
VII, are placed at x2 = −0.3. The horizontal location of the gauges are shown in Figure 1.

For the NS computations, two Intel Xeon E5-2697A v4 processors (16 cores, 40 M
Cache, 3.00 GHz) are used. The maximum Courant Number is 0.25 and average Courant
Number is 0.0086. All the cases are performed in 2D. The mesh sizes are ∆x1/h = 0.067
and ∆x2/h = 0.167, following the grid convergence study of [27].

We also use a tank that utilizes the GN equations both at the wavemaker and inside
the domain, see [37] for details of the theoretical tank of the GN equations. See [38–41] for
some studies on nonlinear wave dynamics and wave-structure interaction utilizing GN
numerical tanks. For internal wave solutions of the GN equations, see, e.g., [42].

3. Results and Discussion

The results, including the surface elevations, velocities and pressure fields of solitary
and cnoidal waves of different theories, are presented in this section. The results are
compared with laboratory measurements where available and also with the results of the
GN equations, (GN-GN, where both the wave maker and the domain are governed by the
GN theory). The steady-state results generated by different theories are discussed first,
followed by the unsteady results obtained from the computational tank. All results are
given in a dimensionless form using ρ, g and h as a dimensionally independent set.

3.1. Steady-State Solution

The surface elevation of solitary waves generated by the five equations listed in Table 1
are presented first, followed by discussion on the surface elevations, horizontal velocities,
and vertical velocities of cnoidal waves generated by the GN equations, the KP equations
and the KdV equations.



J. Mar. Sci. Eng. 2023, 11, 917 8 of 21

3.1.1. Solitary Wave

The profiles of solitary waves with A = 0.4 generated by the Boussinesq equations,
Laitone’s 1st equations, Laitone’s 2nd equations, the GN equations, and the KdV equations
are shown in Figure 2.

0 5 10

0

0.2

0.4

Figure 2. Comparisons of steady-state surface elevations of a solitary wave with A = 0.4, generated
by various theories.

In Figure 2, the surface elevation of the Boussinesq equations and Laitone’s 1st equa-
tions are covered by that of the KdV equations, as they share the same equation for η.
The GN solution is wider, and that of Laitone’s 2st theory is the widest.

In these cases, the theoretical wave speeds of the Boussinesq equations (C = 1.1832),
the KdV equations (C = 1.1832), and the GN equations (C = 1.1832) are the same, followed
by that of Laitone’s 1st equations (C = 1.2000) is the fastest, and that of Laitone’s 2nd
equations (C = 1.1760) is the slowest.

3.1.2. Cnoidal Wave

The theoretical cnoidal wave surface elevation and velocity field, for λ = 29.5 and
H = 0.156, 0.311, generated by the GN equations and the KP equations are shown in
Figures 3–5, where λ is the wave length.

Figures 3–5 show that the results of the three equations are almost on top of each
other, except there are small differences between the peak of the results. The peak of
the surface elevation, horizontal and vertical velocities of the three equations are listed in
Tables 2 and 3, together with the ratio, R = θM−θGN

θGN
× 100%, where θ is an arbitrary variable

(η, u1 or u2), and M refers to different models.

Table 2. Comparisons of the peak values of the surface elevation, horizontal and vertical velocities of
cnoidal wave (H = 0.156) of the GN equations and the KP equations.

η u1 u2

GN 0.1251 0.1145 0.0252
KP 0.1251 0.1219 0.0250
R 0.00% 6.46% −0.79%

KdV 0.1251 0.1162 0.0247
R 0.00% 1.48% −1.98%
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0

0.1

0.2

0.3

40 60 80

Figure 3. Comparisons of steady-state surface elevation of cnoidal waves generated by various
theories. λ = 29.6.

40 60 80

0

0.1

0.2

40 60 80

Figure 4. Comparisons of steady-state horizontal particle velocity of cnoidal waves generated by
various theories. λ = 29.6.

Table 3. Comparisons of the peak values of the surface elevation, horizontal and vertical velocities of
cnoidal wave (H = 0.311) of the GN equations and the KP equations.

η u1 u2

GN 0.2675 0.2273 0.0618
KP 0.2675 0.2580 0.0635
R 0.00% 13.51% 2.75%

KdV 0.2674 0.2265 0.0603
R −0.04% −0.35% −2.43%

Shown in Figure 3, the peak values of the surface elevation of the three theories are the
same, except that of the KdV equations with H = 0.311, which is 0.04% less than that of the
other two equations. The same results are found for the vertical velocity, where the peak
values are almost the same. The peak value of the horizontal velocity of the KP theory is
significantly larger, where R is 6.46% and 13.51% for the two cases, than that of the other
two theories.
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40 60 80

0

0.05

40 60 80

Figure 5. Comparisons of steady-state vertical particle velocity of cnoidal waves generated by various
theories. λ = 29.6.

4. Unsteady Results

In this section, the propagation of solitary and cnoidal waves generated by a wave
maker (using different theories) over a flat seafloor is studied. The wave maker is placed at
x1 = 0. In all cases, waves are generated by wave makers using different theories, and enter
the domain governed by the NS equations. We also consider waves generated by the GN
theory, entering a domain also governed by the GN equations. These combinations are
listed in Table 4. The results for solitary waves are shown first, followed by the cnoidal
wave results.

Table 4. List of the combination of wave makers and domain equations of the unsteady cases
considered in this study.

Case Wave Maker Theory Domain Governing
Equations Type of Waves

KdV-NS KdV NS solitary & cnoidal
KP-NS KP NS cnoidal
GN-NS GN NS solitary & cnoidal
GN-GN GN GN solitary & cnoidal

4.1. Solitary Wave

Ref. [21] conducted laboratory experiments on the generation of solitary waves. They
report the surface elevations of four cases with the same water depth h = 0.114 m. In all the
cases presented in this subsection for cnoidal waves, water depth is fixed at h = 0.114 m.
These four cases are listed in Table 5. Waves are measured in the wave flume in the absence
of any obstruction by GII, located at x1 = 2.62 m. These laboratory measurements are used
for comparison here.

Table 5. Solitary wave cases considered in this study.

Case A

1 0.192
2 0.301
3 0.408
4 0.525
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Snapshots at t = 0 and surface elevations gathered by the GII of solitary waves are
compared between GN-NS, KdV-NS, GN-GN, and laboratory experiments of [21], and are
shown in Figures 6–9.

0 5 10

0

0.1

0.2

60 70 80 90

Figure 6. Comparisons of surface elevations of a solitary wave with A = 0.192, generated by the KdV
and GN equations, propagating in domains of the NS and GN equations.
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0

0.1

0.3

60 70 80

Figure 7. Comparisons of surface elevations of a solitary wave with A = 0.301, generated by the KdV
and GN equations, propagating in domains of the NS and GN equations.

At t = 0, the surface elevations of GN-NS and GN-GN are almost identical (as
expected), and the KdV-NS solitary wave is slimmer, see sub-figure (a) of Figures 6–9.

Table 6 shows the comparisons between the steady-state propagation speeds of solitary
waves calculated by the equations listed in the table and unsteady ones measured from
Figure 8 (A = 0.4). The wave speeds calculated by Laitone’s 1st theory are the fastest,
followed by those of the Boussinesq theory and the GN analytical solution, whose wave
speeds are equal to each other. After these are the GN-GN, GN-NS and Laitone’s 2nd theory.
When compared to the other models, the KdV-NS predicts the slowest wave propagation.
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1 

 

 

Figure 8. Comparisons of surface elevations of a solitary wave with A = 0.408, generated by the KdV
and GN equations, propagating in domains of the NS and GN equations.
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Figure 9. Comparisons of surface elevations of a solitary wave with A = 0.525, generated by the KdV
and GN equations, propagating in domains of the NS and GN equations.

For the surface elevations recorded at x1 = 2.62 m, the peak value of the GN-GN and
the GN-NS drops slightly from the initial amplitude and are in good agreement with the
laboratory experimental data of [21], while that of the KdV-NS drops more remarkably and
is smaller than the laboratory measurements, particularly where the wave amplitude is
larger, shown in sub-figures (b) of Figures 6–9. It shows the solitary wave generated by the
GN equations are more stable than that of the KdV equations, especially in the cases of
larger wave amplitudes.
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Table 6. The analytical and numerical wave speeds of various theories (A = 0.408).

Analytical Value of C

Steady-state

Boussinesq Theory
√

1 + A 1.1832
Laitone’s 1st Theory

√
1 + A/2 1.2000

Laitone’s 2st Theory
√

1 + A/2− 3A2/20 1.1760
GN Theory

√
1 + A 1.1832

KdV equations
√

1 + A 1.1832

Unsteady
KdV-NS 1.1767
GN-NS 1.1769
GN-GN 1.1769

4.2. Cnoidal Wave

Ref. [43] conducted laboratory experiments on the generation of cnoidal waves in a
tank with a flat floor. They report the surface elevations of cnoidal waves at water depth
h = 0.071 m. In all the cases presented in this subsection for cnoidal waves, the water depth
is fixed at h = 0.071 m. Details of two cases are listed in Table 7 used here for comparison.
Waves are measured in the wave flume in the absence of any obstruction by only one gauge
located at 2.62 m in the laboratory experiments.

Table 7. Cnoidal wave cases considered in this study.

Case λ H

1 29.6 0.156
2 29.6 0.311

The surface elevations recorded by the two wave gauges are presented in Figure 10.
The results at x1 = 2.62 m are compared between the experimental data of [43], and the
numerical results of GN-NS, KP-NS, KdV-NS and GN-GN, in Figure 10.

Figure 10 shows that the results of the GN-GN model is the closest to the laboratory
measurements. The wave speed of KP-NS is the fastest, followed by GN-NS, GN-GN,
and KdV-NS.

The surface elevation differences between the experimental data and numerical results
are presented in Table 8. In the table, R = ( PM

P − 1)× 100%, where P is the peak of the
surface elevation in experiments and PM is that of the equations. The average percentage
difference ratios of the peak of the surface elevation of GN-NS (3.99%) and KdV-NS (4.36%)
are close to each other, while that of KP-NS (5.71%) is the largest, and that of GN-GN
(3.03%) is the smallest.

Table 8. The percentage differences between the peak of the surface elevation of cnoidal waves of
different models and the laboratory measurements of [43]. λ = 29.6.

Case H = 0.156 H = 0.311

Experiments 0.132 0.262
GN-NS 0.123 0.259

R −6.82% −1.15%
KP-NS 0.126 0.280

R −4.55% 6.87%
KdV-NS 0.123 0.257

R −6.82% −1.90%
GN-GN 0.125 0.264

R −5.30% 0.76%



J. Mar. Sci. Eng. 2023, 11, 917 14 of 21

40 60 80

0

0.1

0.2

0.3

40 60 80

0

0.1

0.2

0.3
80 110

80 110

Figure 10. Comparisons of surface elevation of cnoidal waves of GN-NS, KP-NS, KdV-NS and
GN-GN and the laboratory measurements of [43]. λ = 29.6.

Comparisons of pressures, horizontal and vertical velocities of the GN-NS, KP-NS,
KdV-NS, and GN-GN models, recorded at pressure sensors, SI and SII, velocimeters, VI and
VII, under GI and GII, respectively, of the two cases are presented in Figures 11–13, respec-
tively. In the absence of laboratory measurements of the pressure and velocity, and given
that the surface elevations of the GN-GN is the closest to the laboratory experimental
data, the GN-GN model is used as a benchmark and differences between the results of the
models, R = θ−θGNGN

θGNGN
, are presented in Tables 9–11.

Table 9. The differences between the peak pressure of cnoidal waves generated by various theories.

Case H = 0.156 H = 0.311

GN-GN 1.124 1.263
GN-NS 1.100 1.201

R −2.14% −4.91%
KP-NS 1.108 1.216

R −1.42% −3.72%
KdV-NS 1.105 1.200

R −1.69% −4.99%
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Figure 11. Comparisons of pressure of cnoidal waves of various theories, propagating in domain of
the NS and GN equations. λ = 29.6.
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Figure 12. Comparisons of horizontal particle velocity of cnoidal waves generated by various theories,
propagating in domain of the NS equations. λ = 29.6.
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Figure 13. Comparisons of vertical particle velocity of cnoidal waves generated by various theories,
propagating in domain of the NS equations. λ = 29.6.

Table 10. The differences between the peak horizontal velocity of cnoidal waves generated by
various theories.

Case H = 0.156 H = 0.311

GN-GN 0.121 0.242
GN-NS 0.114 0.220

R −5.79% −9.09%
KP-NS 0.117 0.235

R −3.31% −2.89%
KdV-NS 0.114 0.219

R −5.79% −9.50%

Table 11. The differences between the peak vertical velocity of cnoidal waves generated by vari-
ous theories.

Case H = 0.156 H = 0.311

GN-GN 0.0296 0.0726
GN-NS 0.0250 0.0592

R −15.54% −18.46%
KP-NS 0.0255 0.0632

R −6.93% −12.95%
KdV-NS 0.0249 0.0588

R −15.88% −19.00%
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Figures 11–13 and Tables 9–11 show that p, u1, u2 of KP-NS are closer to that of GN-
GN, while that of the GN-NS and KdV-NS are close to each other and slightly smaller than
that of KP-NS.

We recall that in the Level I GN equations, we assume linear distributions of the
vertical velocity. It is interesting to compare the results of GN-GN model with that of
GN-NS and KP-NS to find out how close the assumption is to the computational results.
Distribution of the horizontal and vertical velocity along the vertical direction at x1 = 0
and x1 = 2.62 m of the two cases are shown in Figures 14–17.

0

0.2

0.1 0.2 0.3

0

0.2

0 0.1 0 0.1

Figure 14. Comparisons of horizontal velocity distribution of cnoidal waves of theories, propagating
in domains of the NS and GN equations in Case 1. H = 0.156, λ = 29.6.

For horizontal velocity distribution of cnoidal wave, GN-GN shows constant velocity
along the vertical direction and this agrees with Equation (27). Although the horizontal
velocity of GN-NS is constant at x1 = 0, which is the same as GN-GN, the velocity
becomes closer to that of KP-NS and KdV-NS as the wave propagates in the NS domain (at
x1 = 2.62 m). At x2 = 2.62 m, the horizontal velocity of the cnoidal wave propagating in
the NS domain shows a slight difference with that of GN-GN near the tank bottom and free
surface. This is due to the effect of viscosity and the atmospheric boundary effects. Away
from these boundaries, the horizontal velocities of the GN-NS, KP-NS and KdV-NS are
constant and very close to that of the GN-GN model.

For vertical velocity distribution of cnoidal wave, that of GN-GN, GN-NS, KP-NS,
and KdV-NS are almost linear along the vertical direction (agree with Equation (28) for the
GN-GN model). Nonlinear distributions are found at t = 0, where the distributions under
the crest is observed, see sub-figs (a) and (d) of Figures 16 and 17.
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Figure 15. Comparisons of horizontal velocity distribution of cnoidal waves of theories, propagating
in domains of the NS and GN equations in Case 2. H = 0.311, λ = 29.6.
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Figure 16. Comparisons of vertical velocity distribution of cnoidal waves of theories, propagating in
domains of the NS and GN equations in Case 1. H = 0.156, λ = 29.6.
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Figure 17. Comparisons of vertical velocity distribution of cnoidal waves of theories, propagating in
domains of the NS and GN equations in Case 2. H = 0.311, λ = 29.6.

5. Concluding Remarks
The surface elevation, pressure and velocities of solitary and cnoidal waves generated

by different theories are investigated. The stability and accuracy of the waves generated by
different theories, propagating in a domain governed by the NS equations, are assessed.
We have also considered waves generated by the GN equations, entering the domain of the
GN equations.

For a steady-state solitary wave, the surface elevation of the wave generated by
Laitone’s 2nd is close to that of the GN equations, while those of the Boussinesq equations
and Laitone’s 1st are close to each other and slimmer than the previous two equations.
The wave speed of Laitone’s 1st equation is the largest, followed by the Boussinesq equa-
tions and the GN equations, and that of Laitone’s 2nd is the slowest. Although the GN
equations and the KdV equations share the same expression of wave speed for solitary
waves, the speed of the wave in the GN-NS model is faster and closer to the theoreti-
cal values than that of KdV-NS, while that of GN-GN shows close agreement with the
GN-NS model.

For the cnoidal wave, the surface elevation of the GN-GN model is closer to the
experimental data, followed by KP-NS, GN-NS, and KdV-NS. Similar results are found for
pressure, horizontal and vertical velocities. The wave speed of KP-NS is the fastest, GN-NS
is the second, GN-GN is the third, and KdV-NS is the last. The main difference in the
horizontal and vertical velocity distribution between GN-NS, KdV-NS, KP-NS, and GN-GN
is found under the crest of the cnoidal wave, while the distributions are all the same when
observed under the trough.

Overall, it is concluded that nonlinear waves generated by the GN equation are stable
and show the least difference when compared with the laboratory measurements.
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