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Abstract: Gravity-aided inertial navigation system (GAINS) is an important development in au-
tonomous underwater vehicle (AUV) navigation. An effective path planning algorithm plays an
important role in the performance of navigation in long-term underwater missions. By combining the
gravity information obtained at each position with the error information from the INS, the posterior
Cramér-Rao bound (PCRB) of GAINS is derived in this paper. The PCRB is the estimated lower
bound of position variance for navigation along the planned trajectory. And the sum of PCRB is used
as the minimum cost from the initial state to the current state in the state space, and the position error
prediction variance of inertial navigation system (INS) is used as the minimum estimated cost of the
path from the current state to the goal state in the A* algorithm. Thus, a path planning method with
optimal navigation accuracy is proposed. According to simulation results, traveling along the path
planned by the proposed method can rapidly improve the positioning accuracy while consuming
just slightly more distance. Even when measuring noise changes, the planned path can still maintain
optimal positioning accuracy, and high positioning accuracy is possible for any trajectory located
within a certain range of the planned path.

Keywords: autonomous underwater vehicle (AUV); gravity-aided inertial navigation system (GAINS);
A* optimization; path planning; posterior Cramér-Rao bound (PCRB)

1. Introduction

Autonomous underwater vehicles (AUV) usually use the Inertial Navigation System
(INS) as their primary navigation device, but INS requires regular calibration to be able
to perform long-term missions. In underwater situations, traditional navigation methods
(e.g., GPS) are greatly limited due to the complexity and variability of the underwater
environment [1–3]. In contrast, the Gravity-Aided Inertial Navigation System (GAINS) is an
advanced technology used for underwater navigation that enables highly accurate position
estimation without emitting or receiving signals. To achieve this objective, GAINS utilizes
a specially designed navigation algorithm to compare the gravimeter’s measurements of
gravity anomalies at the current position with the stored gravity field data to effectively
correct the INS position [4–7].

As the variability of the gravity field significantly affects the performance of
GAINS [8,9], the use of gravity navigation in order to make path planning for UAVs is
crucial.In this regard, previous researchers have explored several characteristics to describe
the gravity field information, such as variance, roughness, slope, coefficient of variation,
fractal dimensions, and their combination to determine the efficiency of using the gravity
field for navigation [10–12]. Based on empirical thresholds, the gravity map is divided
by its characteristics into two categories: informative (suitable for positioning) and non-
informative (not suitable for positioning) [13]. Then, by treating non-informative areas
as obstacles, the path planning problem can be transformed into a sequence optimization
problem [14,15]. There are many optimization methods available to solve this problem, in-
cluding genetic algorithms, simulated annealing algorithms, ant colony algorithms, particle
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swarm algorithms, etc. [16–20]. However, the assumption that non-informative areas are
restricted regions and entering these areas will result in significant positioning errors does
not apply to UAV navigation situations. For example, flat areas are not suitable for gravity
navigation, but there are no real obstacles, and, even relying solely on INS, it is possible
to safely navigate through them. Furthermore, research suggests that areas suitable for
positioning based on local characteristics are typically discrete and small, making it difficult
to find connected informative areas [13,21–23]. As a result, it is impossible to use obstacle
avoidance path planning methods for path planning in any sea area, especially when the
starting or target points are surrounded by non-informative regions.

The main purpose of the planning method in this study is to find a path that minimizes
the positioning error between the starting and ending points and can be carried out in
any sea area. It is necessary to compare the filtering results along different trajectories to
determine the optimality of the planned path. The posterior Cramér-Rao bound (PCRB)
integrates information from kinetics and measurement models; therefore, it comprises
all sensor-obtained gravity field information without the need for actually implementing
the filtering algorithm [24–30]. A* algorithm is one of the most common heuristic search
algorithms, swiftly investigating a possible set of solutions for a given issue using heuristic
search techniques, focusing more on the end answer than on sub-problems, which enables
it to produce pathways fast and with improved results [31,32]. This study uses PCRB as
the cost function of A*, precisely fusing the path planning and navigation filter estimation
results. The characteristics of the gravity fields at departure and destination are not
limitations on the proposed path-planning method. This study doe not add distance
directly to the cost or heuristic function like most shortest path trajectory designs do.
Instead, the distance factor is included in the INS error divergence variance. Hence, this
method can plan the quickest path while maintaining positioning accuracy.

The following is the arrangement of this paper: Section 2 derives the PCRB model of
GAINS, and Section 3 combines PCRB with A* to form the PCRB-based A* path planning
method. In Section 4, two simulation tests were conducted to prove the optimality of the
two planned paths. Finally, conclusions are given in Section 5.

2. PCRB for Gravity-Aided Navigation System

In most cases, GAINS is modeled as a hidden Markov model (HMM), as shown
in Figure 1, i.e., the observation depends only on the state of the Markov chain at that
moment, independent of the other states; the current moment state is related only to the
previous moment.
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Figure 1. Hidden Markov Model for GAINS.

The mathematical model of GAINS can be reduced to the following two discrete-time
equations.The first equation describes the evolution of the state vector, i.e., the INS error
propagation process

xt+1 = xt + ut + vt (1)



J. Mar. Sci. Eng. 2023, 11, 993 3 of 16

where xt is the state vector indicating the carrier position. ut represents the state increment
of INS. vt represents the state noise from IMU measurement error, Gaussian distribution,
and with covariance matrix Qt.

The second equation describes the observed values of the gravity sensor and the
comparison with the reference map values by interpolation

yt = h(xt) + εt(xt) + wt (2)

where yt is the measurement of the gravimeter at time t, and h denotes the interpolation
method of the gravity sensors model combined with the reference data map, usually
sampling bilinear or Kriging interpolation. wt denotes the measurement noise of the
geophysical sensor, which is assumed to be additive Gaussian white noise. εt denotes the
reference data mapping error. Considering this error covariance depending on the location,
the variance matrix of the total observation error is modeled as (3) [33].

Rt =
σ2

m + C0β2δ4

4
+ σ2

g (3)

where Rt includes a combination of sensor measurements and map uncertainty. δ is the
map spatial resolution, and σ2

m is the map mapping error variance. C0 is the variance of the
local gravity anomaly. β is the inverse of the square of the correlation distance, and σ2

g is
the gravimeter measurement error variance.

Under the assumption of additive Gaussian white noise, vt and wt, are assumed to
be independent of each other, and independent of x0. (1) and (2) explicitly determine the
joint probability distribution p(Xt,Yt) of Xt(x0, · · · , xt) and Yt(y0, · · · , yt) at any moment
t with a known p(x0).

p(Xt+1,Yt+1) =p(Xt,Yt) · p(xt+1 | Xt,Yt) · p(yt+1 | xt+1,Xt,Yt)

=p(Xt,Yt) · p(xt+1 | xt) · p(yt+1 | xt+1)
(4)

where p(·) refers to the probability density of the variables described in the parameters of p.
The derivation of (4) makes use of the Markov property of the model, i.e., p(xt+1 | Xt,Yt) =
p(xt+1 | xt), and p(yt+1 | xt+1,Xt,Yt) = p(yt+1 | xt+1).

PCRB is a lower bound on the mean squared error (MSE) of a deterministic parameter
estimate in parameter estimation, defined as the variance of any unbiased estimate being at
least larger than the inverse of the Fisher information. Whenever the estimate X̂t is based
on the sequence Yt, the mean square error for any unbiased estimator X̂t should satisfy the
following condition.

E
((

X̂t −Xt

)(
X̂t −Xt

)T
)
≥ Pt = J−1

t (5)

where Jt is the Fisher information matrix.

Jt = E
(
−∆Xt

Xt
log p(Yt,Xt)

)
(6)

where log p(Yt,Xt) denotes the joint probability density of Xt and Yt. Here and below,∇ is
the operator of the first order derivative, and ∆ is the operator of the second order derivative.

Let Pt|t denote the PCRB of the state xt determined for a given measurement Yt. By
decomposing the lower bound (5) into subblocks, the estimated covariance of xt is lower
bounded by the lower right block of Pt, i.e.,

E

([
X̂t−1 −Xt−1

x̂t − xt

][
X̂t−1 −Xt−1

x̂t − xt

]T
)
≥
[
∗ ∗
∗ Pt|t

]
(7)
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Correspondingly,

Jt = E

{[
−∆Xt−1

Xt−1
−∆xt

Xt−1

−∆Xt−1
xt −∆xt

xt

]
log p(Yt,Xt)

}
=

[
At Bt
BT

t Ct

]
(8)

From (8) it follows that
P−1

t|t = Ct − BT
t A−1

t Bt (9)

Insert (4) into (8) to get the recursive update

Jt+1 = E

−
 ∆Xt−1

Xt−1
∆xt
Xt−1

∆xt+1
Xt−1

∆Xt−1
xt ∆xt

xt ∆xt+1
xt

∆Xt−1
xt+1 ∆xt

xt+1 ∆xt+1
xt+1

 log p(Yt+1,Xt+1)

 =

 At Bt 0
BT

t Ct + Dt St
0 ST

t Zt

 (10)

where 0 denotes the block matrix of zero entries of appropriate dimensionality.
Comparing with (9), it follows that

P−1
t+1|t+1 = Qt −

[
0 ST

t
][ At Bt

BT
t Ct + Dt

]−1[ 0
St

]
= Zt − ST

t

(
P−1

t|t + Dt

)−1
St (11)

Under the assumption that the noise wn and vn of (1) and (2) are zero-mean Gaussian
and invertible covariance matrices, Qt and Rt, respectively, therefore,

− log p(xt+1 | xt) = c1 +
1
2
[xt+1 − xt]

TQ−1
t [xt+1 − xt] (12)

− log p(yt | xt) = c2 +
1
2
[yt − h(xt)]

T R−1
t [yt − h(xt)] (13)

where c1 and c2 are constants. Thus, in the Equation (11),

Dt =E
(
−∆xt

xt log p(xt+1 | xt)
)
= Q−1

t (14)

St =E
(
−∆xt+1

xt log p(xt+1 | xt)
)
= −Q−1

t (15)

Zt =E
(
−∆xt+1

xt+1 log p(xt+1 | xt)
)
+ E

(
−∆xt+1

xt+1 log p(yt+1 | xt+1)
)

=Q−1
t + HT

t+1R−1
t+1Ht+1 (16)

where Ht = ∇h(xt) and Ht is the gradient of h(·) at the true position at time t. In the above
derivation, the expectation of both the measurement noise and the position is 0, so the
expectation E(•) is computed only at the current true position.

Bringing the Equations (14)–(16) into the Equation (11) gives

Pt+1|t+1 =

[
HT

t+1R−1
t+1Ht+1 + Q−1

t −Q−1
t

(
P−1

t|t + Q−1
t

)−1
Q−1

t

]−1

=

[
HT

t+1R−1
t+1Ht+1 +

[
Qt + Pt|t

]−1
]−1

(17)
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The derivation of (17) makes use of the Woodbury matrix identity [34].

(A + UCV)−1 = A−1 − A−1U
(

C−1 + VA−1U
)−1

VA−1 (18)

HT
t R−1

t Ht in (17) is only related to the position and represents the gravity information
obtained from the map, and the square root of the trace of this matrix is used as the scalar
navigation information map.

Mt =
√

tr{HT
t R−1

t Ht} (19)

A further expansion of Equation (17) using the Woodbury matrix identity gives a more
interesting form

Pt+1|t = Pt|t + Qt (20)

Pt+1|t+1 = Pt+1|t − Pt+1|tHT
t+1

(
Ht+1Pt+1|tHT

t+1 + Rt+1

)−1
Ht+1Pt+1|t (21)

(20) and (21) constitute the recursive form of the PCRB for the state estimation in GAINS,
where (20) is the one-step prediction covariance and (21) is the posterior filter covariance.

By linearizing the model, the recursive PCRB is consistent with the Riccati recursion of
the error covariance of the Kalman filter for the system. This also indicates that the Kalman
filter can obtain the optimal solution under the assumption of linear system models, and
its state covariance can reach the PCRB.

3. A* Algorithm Path Planning Design Based on PCRB

The A* algorithm is a heuristic search algorithm that is recursive in nature and can
follow certain steps, starting from the original state and gradually searching to the optimal
solution. The A* algorithm uses the overhead G between nodes in the graph, and a heuristic
function H related to the current task to find the optimal path.

F(n) = G(n) + H(n) (22)

where, F(n) is the valuation function of a node, which indicates the combined priority of
that node considered in the selection of node n. G(n) denotes the actual generation value
from the starting point to the current node. H(n) denotes the cost estimate of the current
node to the target point, which is the prediction function.

The computation in PCRB is in the time domain and the A* algorithm works in
the spatial domain. To facilitate the combination of PCRB with the A* algorithm, the
coordinates at t time are assumed to be n. Correspondingly, the estimated position PCRB
in n coordinates is Pn|n. The INS position error dispersion is assumed to be time-dependent
only, and the coefficient of linear drift of the position error variance with time is Qt. Denote
the Euclidean distance from the current point (xc, x f ) to the parent node (x f , x f ) by d f , and
denote the distance from the current point to the target node by dg to denote the Euclidean
distance from the current point to the target node.

d f =
√
(xc − x f )2 + (yc − y f )2 (23)

dg =
√
(xc − xg)2 + (yc − yg)2 (24)

The position error uncertainty of INS grows linearly over a certain time period, and
the relationship between Qn and distance is as follows.

Qn = Qt · d f /V(n) (25)
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where V(n) is the average velocity of the carrier during the sampling interval.
The main goal of this paper is to identify the path that minimizes the total posterior

filtering errors of navigation at each current waypoint. We accomplish this by using the
PCRB Pn|n at the present position n as the cost function G(n) for the current node in the
A algorithm.

Pn+1|n = Pn|n + Qn (26)

Pn+1|n+1 = Pn+1|n − Pn+1|n Hn
n+1

(
Hn+1Pn+1|nHT

n+1 + Rn+1

)−1
Hn+1Pn+1|n (27)

(26) represents the navigation error covariance of the one-step prediction, and (27) rep-
resents the correction of the one-step prediction by the posterior information from the
reweighted force measurement to obtain the PCRB. Obviously the Pn|n matrix is a square
matrix whose diagonal elements represent the error variance in two orthogonal directions,
X direction (eastward) and Y direction (northward). In this paper, the sum of the traces
of the PCRB of the localization error at each point on the trajectory is used as a metric to
quantify the navigation accuracy of this path, i.e.,

G(n + 1) = G(n) +
√

tr{Pn+1|n+1} (28)

where tr{•}means trace operation.
The heuristic function is the expected navigation error for the increase of the current

position to the target position. Based on the fact that the INS position error can be considered
as linearly divergent in the short term, the heuristic function is set to

H(n) =
√

tr{Qt · dg/V(n)} (29)

Assuming that the current node is n and the actual cost is G(n), the complete compu-
tation steps of F(n + 1) for its child node n + 1 are as follows.

(1) Calculate the distance dg from the child node to the target node according to Equation (24),
and bring in Equation (29) to calculate the estimated value H(n + 1).

(2) The distance d f from the child node to the parent node is calculated according to
Equation (23) and brought into Equation (25) to get Qn.

(3) Substitute Qn into Equation (26) to get Pn+1|n+1 then bring (28) to calculate G(n + 1)
of the child nodes.

(4) Combining the obtained G(n + 1) and H(n + 1),

F(n + 1) = G(n + 1) + H(n + 1) (30)

The A* algorithm controls the points in the map by setting the open list and close
list, and the pseudo code table of PCRB-based A* path planning algorithm is shown
in Algorithm 1.
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Algorithm 1 The PCRB-base A* path planning algorithm
Add the start point s to the open list and set the initial value F(0) = 0.
Repeat the following procedure:
(1) Iterate through the open list to find the node with the smallest F value and use it as

the current node n to be processed.
(2) Move the node to be processed to the close list.
(3) For each of 8 grid points adjacent to the current node:

i Ignore if it is already in the closed list;
ii If it is not in the open list, add it and set the current node as its parent, recording

the F, G and H values of this node;
iii If it is already in the open list, check if this path (i.e., via the current node to this

node) is better. Using the trace of G as a reference, a smaller value indicates
that this path has a smaller localization covariance. If so, set its parent node
to the current node and recalculate its G value and F value. The open list is
sorted by F values and needs to be reordered after the change.

(1) Stop, when
(i) The endpoint is added to the open list, and the path is found at this point.
(ii) The find focus fails and the open list is empty, when there is no path.

(2) Let n = n + 1 and deal with the next node.
Starting from the end point, each node moves along its parent node until the start point,
saving the path.

4. Simulation

The numerical gravity map of the simulation shown in Figure 2 is derived from
the global ocean gravity field 1′ × 1′ model produced by Sandwell’s team [35], and the
accuracy of the gravity field of the selected experimental region is better than 1.7 mGal.
The maximum gravity anomaly in the region is 40.8 mGal and the minimum is −37.2 mGal.
The gravity anomaly is highly undulating and contains various topographic features such
as peaks, slopes, and flats, which are suitable for path planning analysis. Since the actual
horizontal distances of longitude and 1′ latitude of 1′ are different, this paper projects the
earth coordinate system to the geographic coordinate system, and the spatial resolution of
the interpolated map is 1 km.

The measure of trajectory performance uses the Root Mean Square Error (RMSE),
which is the square root of the ratio of the square of the deviation of the predicted value
from the true value to the number of observations n.

RMSE =

√
1
N

n

∑
i=1

({x̂i} − {xi}) (31)

where {x̂i} is the estimated value of the trajectory coordinates, {xi} is the true value of the
trajectory coordinates, and N is the number of Monte Carlo experiments.

The estimated position x̂ is calculated by the SITAN algorithm, which is essentially
an extended Kalman filter algorithm [5,36]. The state error propagation of SITAN can be
simply modeled as (32).

∆xt+1 = ∆xt + vt (32)

where ∆xt is the position error of INS, i.e., x̂t = xINS − ∆xt.
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Figure 2. Simulation map.

SITAN uses random linearization techniques to fit linear observation models.

zt = h(xt)− yt ≈ H∆xt + ε (33)

where coefficients for H = [hλ, hϕ] can be obtained from the following

hλ =
1

L(2L + 1)(L + 1)δ


n=i−1
m=j+L

∑
n=i−L
m=j−L

∆gM(n, m)−

n=i+L
m=j+L

∑
n=i+1
m=j−L

∆gm(n, m)

 (34)

hϕ =
1

L(2L + 1)(L + 1)δ


n=i+L
m=j−1

∑
n=i−L
m=j−L

∆gM(n, m)−

n=i+L
m=j+L

∑
n=i−L
m=j+1

∆gm(n, m)

 (35)

(34) and (35) describe the process of calculating the observation matrix H for gravity
anomaly data. The variables used are as follows: (n, m), which represents the grid of
the INS indicator position on the digital gravity map; ∆gM = h(xt), which is the gravity
anomaly extracted from the digital map based on the INS indicated position; ∆gm = yt,
which is the gravity anomaly measured in real-time; δ which is the spacial resolution of
the digital map; and L, which represents the number of grid points in the length of the
fitted interval. Generally, a more accurate INS indicator position leads to a smaller INS
confidence interval, resulting in a more precise linearized observation model.

For comparison, the following method [31,37] (hereinafter named method1) is used to
calculate the informative areas.

Slatitude =[g(i, j)− g(i, j− k)]2 + [g(i, j)− g(i, j + k)]2 (36)

Slongitude =[g(i, j)− g(i− k, j)]2 + [g(i, j)− g(i + k, j)]2 (37)
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Γ(i, j) =
√(

Slongitude + Slatitude

)
/4, (38)

where Slatitude and Slongitude are the sum of the squares of the gravity anomaly differences
between point (i, j) and its adjacent points within a distance of k in the latitude and
longitude directions. When k = 6, T > 9.3 is used as a criterion for determining the
informative areas, as shown in Figure 3.

0 20 40 60 80
East (km)

0

20

40

60

80

N
or

th
 (

km
)

Informative
areas

k=6
T>9.3

Figure 3. Informative areas of method1.

In order to implement method1 in the A* algorithm, the following design was carried out:

Hmethod1(n) = dg (39)

Gmethod1(n) =

{
0, when (i,j) ∈ informative areas

1, when (i,j) ∈ non-informative areas
(40)

The meaning of (39) is to use the distance from the current point to the goal point as
the heuristic function H(n). (40) represents a cost function G(n) of 0 in the informative
areas and 1 in the non-informative areas, rather than being treated as obstacles.

4.1. Test 1

The starting point of Test 1 in the planned path is located at (58, 73) (start1 in Figure 2). The
point is located within the slope area, where contour lines are densely distributed. The ending
point, on the other hand, has coordinates of (65, 9). Table 1 lists the simulation conditions.

Table 1. Simulation parameters settings.

Carrier velocity V 5 m/s
Initial position covariance P(x0) diag([1, 1]) km2/s

Process noise covariance Qt diag([0.01, 0.01]2) m2/s
Measurement noise covariance Rt 4 mGal2

Map Spatial Resolution δ 1 km
Number of Monte Carlo runs 1000



J. Mar. Sci. Eng. 2023, 11, 993 10 of 16

The background in Figure 4 is the Mn contour filling map calculated from Equation (19)
in spatial domain, i.e.,

Mn =
√

tr{HT
n R−1

n Hn} (41)

where Hn is the slope vector of the gravity field, and Rn is the variance of the gravity
measurement error at position n. Mn represents the information of gravity anomaly fields
in a small area that GAINS can collect. That is, a large Mn means a small value of positioning
error. A comparison between this and the gravity anomaly contours in Figure 2 reveals
that regions with denser contours correspond to larger Mn, which indicates that gravity
navigation is more advantageous in these areas. In addition, compared with Figure 3, areas
with large Mn (i.e., dark colored areas) are basically consistent with the informative areas
determined by method1, indicating that Mn can quantify the informative areas.

As shown in Figure 4, following the proposed method, the planned path intersects
the region with maximum information. However, the trajectory planned by method1
roughly follows the contour of the informative areas, rather than the center. Furthermore,
the planned trajectory is smoother than the trajectory of method1, which is beneficial for
heading control. In order to determine the optimality of the planned path, in addition to
the path of method1 and the shortest path, we established several equidistant curves for
comparison. Five additional curves were labeled as L1, L2, . . . curves, L5, from left to right,
with a horizontal distance of 3.5 km between them.

40 50 60 70
East (km)

10

20

30

40

50

60

70

N
or

th
 (

km
)

1

2

3

4

5

Mn
Planed

Shortest

Method1

L1

L2

L3

L4

L5

Figure 4. Planned path, Shortest path, and trajectory L3, L4, . . . , L9 in Test 1.

We conducted Monte-Carlo simulations 100 times with the same parameters as those
listed in Table 1. Each trajectory was divided into 100 sampling points by equal Euclidean
distances. Figure 5 provides a comparison of the localization accuracy achieved using
different trajectories in Test 1. As can be seen from Figure 5, the RMSE of all paths decreases
rapidly during the initial stage since the starting point 1 is located in a region with high Mn
values. Among them, due to L4 and L5 towards the east heading in the initial stage, where
the Mn value there is relatively small, there is a slower RMSE descent of the trajectory
in these two compared to other trajectories. Although the planned trajectory does not
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maintain the lowest RMSE throughout the entire path, it can be seen in the Figure 6 that
the total RMSE of the planned trajectory is the smallest.
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Figure 5. RMSE curves for each trajectory in Test 1.
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Figure 6. Sum of RMSE for each trajectory in Test 1.

A noteworthy phenomenon is that even though L1 deviates from areas with high Mn
values, or even has a segment in the trajectory that is in a very small Mn region, it still
achieves a lower RMSE. One possible reason is that its path is short, so the divergence of the
INS is small. The positioning accuracy is the comprehensive result of INS divergence and
gravity-assisted correction, which cannot be determined solely by Mn or the characteristic
parameters of informative areas.
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4.2. Test 2

Test 1 indicates that the RMSE of all trajectories decreases rapidly during the initial
phase because the starting point is located in informative areas. Test 2 changed the starting
point to (30, 58) (start2 in Figure 2), situated at a relatively gentle seabed. As shown in
Figure 7, this location has a smaller Mn value, indicating that less gravity information can
be used at the initial position. Consistent with test 1, in Figure 7, the black curve represents
the planned trajectory, the gray curve represents the direct trajectory, and the blue curve
represents the method1 trajectory. Similarly, we also designed L1–L5 as a comparison, with
a horizontal spacing of approximately 5.5 km. Due to the distance from the informative
areas, method1 fails at this test and only implements the shortest path planning of the A*
algorithm without passing through any informative areas.
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)
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4
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Mn

Figure 7. Planned path, Shortest path, and trajectories L1, L2, . . . , L5 in Test 2.

The simulation parameter settings are the same as Table 1. Figure 8 shows the RMSE
of the position error for these trajectories, and the sum of RMSE values for each trajectory
is presented in Figure 9.

In addition to the planned trajectory, L1, L2, and L3 all cross the area with large Mn
values on the left side in the initial stage, where L2 overlaps with the planned trajectory for
a long time. In the magnified coordinate area, it can be seen that these four curves have a
significantly faster descent speed at the beginning than the other four curves, including
the straight line trajectory, method1 trajectory, L4, and L5. As shown in Figure 9, among
all trajectories, the sum of RMSE for L2 and L3 is close to the planned trajectory, but their
path length is longer, and the planned path is still the optimal choice. Due to the neglect of
the relative value of information in the path planning method based on informative areas,
available gravity information below the set threshold is discarded, and the setting of the
threshold is vague and empirical, and will not be applicable to any sea area. Therefore,
as shown in Figure 9, method1 exhibits the worst RMSE, even worse than the shortest
path. On the contrary, the path planning method based on PCRB has clear information
significance, considering not only the amount of gravity field information, but also the
distance factor and INS drift rate, thus obtaining the optimal results.
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Figure 8. RMSE curves of Test 2.
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Figure 9. The sum of RMSE for each trajectory of Test 2.

4.3. The Impact of Changing the Measurement Noise on the Paths

In practice, the statistical characteristics of gyroscopes and accelerometers noise in
inertial navigation systems are usually known and stable after careful calibration, so the
process noise is stable. Therefore, the main factor to consider is the impact of gravity
measurement errors. And since gravity measurement noise is affected by carrier motion,
waves, and inaccurate map modeling, its variance is difficult to estimate accurately, so path
planning should be considered to adapt to different measurement noise. The calculation of
the sum of RMSE of two experimental trajectories is carried out by changing the standard
deviation of the measurement noise

√
Rt to obtain Table 2.

In an overall view in Tables 2 and 3, increasing the amount of measurement noise will
increase the lower limit of positioning error, but will not change the ranking of the lower
limit size of the curve, so the planned trajectory always has higher positioning accuracy
than the other curves. Therefore, the planned trajectory is always optimal. And with
the increase of the measurement noise, the improvement of the localization accuracy of
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the planned trajectory is more obvious. The optimality of the planned trajectory is not
affected by gravimetric measurements, so that the planned trajectory can be navigated in
one determined ocean mission to achieve the optimal navigation accuracy. In addition,
the RMSE of a spatially close trajectory to the planned path is also close to the RMSE of
the planned trajectory. Therefore, even if the real path deviates from the planned one by a
small amount, it is possible to obtain a high positioning accuracy by gravity information.

Table 2. Sum of RMSE of the trajectories in Test 1.

√
Rt

(mGal)
Sum of RMSE (km)

Planned Shortest Method1 L1 L2 L3 L4 L5

1 18.7 25.2 21.0 19.7 19.8 20.9 25.0 27.4
2 30.4 38.0 34.4 31.1 31.4 31.7 37.6 40.8
3 53.4 67.1 56.4 57.2 55.2 58.2 66.0 69.1

Table 3. Sum of RMSE of the trajectories in Test 2.

√
Rt

(mGal)
Sum of RMSE (km)

Planed Shortest Method1 L1 L2 L3 L4 L5

1 27.8 55.5 61.8 38.0 29.0 29.7 37.7 64.1
2 41.7 75.0 85.0 59.7 43.4 43.4 53.4 67.3
3 51.9 87.3 98.4 75.2 55.4 54.5 65.8 80.1

5. Conclusions

This article proposed a method to plan a path that aims for the best positioning
accuracy by using the Postiori Cramer-Rao bound of Gravity-aided Inertial Navigation
System as the cost value in the A* algorithm. This path planning method is not limited
by the ocean gravity field and can plan the trajectory with the minimum navigation error
between any start and end points. The next work is to find the set of trajectories within
a certain error requirement in which the carrier can achieve higher positioning accuracy
without strictly following a certain trajectory, thereby improving the mobility of the carrier.
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