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Abstract: In recent years, safety issues respecting polar ship navigation in the presence of ice have
become a research hotspot. The accurate prediction of propulsion power plays an important role in
ensuring safe ship navigation and evaluating ship navigation ability, and deep learning has been
widely applied in the field of shipping, of which the artificial neural network (ANN) is a common
method. This study combines the scientific problems of ice resistance and propulsion power for polar
ship design, focusing on the design of an ANN model for predicting the propulsion power of polar
ships. Reference is made to the traditional propulsion power requirements of various classification
societies, as well as ship model test and full-scale test data, to select appropriate input features and a
training dataset. Three prediction methods are considered: building a radial basis function–particle
swarm optimization algorithm (RBF-PSO) model to directly predict the propulsion power; based on
the full-scale test and model test data, calculating the propulsion power using the Finnish–Swedish
Ice Class Rules (FSICR) formula; using an ice resistance artificial neural network model (ANN-IR) to
predict the ice resistance and calculate the propulsion power using the FSICR formula. Prediction
errors are determined, and a sensitivity analysis is carried out with respect to the relevant parameters
of propulsion power based on the above methods. This study shows that the RBF-PSO model based
on nine feature inputs has a reasonable generalization effect. Compared with the data of the ship
model test and full-scale test, the average error is about 14%, which shows that the method has high
accuracy and can be used as a propulsion power prediction tool.

Keywords: propulsion power; artificial neural network; ice resistance; polar ship; machine learning

1. Introduction

The propulsion power requirements of polar ships in icy water are higher than those
of ships in open water. Generally speaking, if the overall design of the same type of ship
structure meets these requirements, the greater the propulsion power and the stronger the
icebreaking capacity. However, choosing a larger propulsion power system increases the
cost of shipbuilding, and such propulsion systems are relatively low in efficiency. Moreover,
the propulsion system usually takes up more space on the ship. Therefore, reasonable
prediction of the propulsion power for a polar ship is an important issue and deserves
further study.

The propulsion power of a polar ship mainly depends on the ice resistance of the hull.
Lindqvist [1] proposed a semi-empirical formula by summarizing full-scale measurements,
model tests, and numerical calculations to predict the ice resistance. Semi-empirical for-
mulas play an important role in ice resistance prediction, but the application is limited
by ship form and environmental conditions. The usage of the formulas relies excessively
on real ship experimental data, which cannot fully consider the influence of ship form,
ice conditions, and other key factors. Taking account of the cost of full-scale testing and
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model testing, numerical methods are a good alternative for computing ship ice resistance.
However, they rely on understanding the mechanisms of ice–ship interactions and include
several simplifications and assumptions [2]. Sun et al. [3] designed a reliable ice resistance
prediction ANN model within the set parameter range by selecting appropriate ship and
ice parameters.

Currently, the propulsion power of polar navigation ships is mainly calculated based on
the recommendations of various classification societies [4–7]. The propulsion power require-
ments of the classification societies under the IACS are based on the FSICR. Ding et al. [8]
proposed a modified formula based on the FSICR to calculate the minimum propulsion
power of polar ships. MAN Diesel A/S [9] compared various sizes of oil tankers and
proposed that the power required by the FSICR is much higher than the power of ships
that are equipped conventionally, and the power required by a 1A ice-class Aframax tanker
is almost equal to the power of a main engine normally equipped with a VLCC.

The ABS (2010) also believes that the main engine power required by the Finnish–
Swedish specification is too high. Other classification societies, such as the RMRS, CASPPR,
and CCS, have formed power evaluation systems.

ANNs have been widely used in the field of ocean engineering in recent years. Kim
et al. [10] considered the ice resistance in level ice and built an ANN model from the
perspective of different feature inputs, but it is also possible to optimize the model structure
and consider enriching the selection range of ship and ice parameters. Theodoropoulos
et al. [11] predicted a ship’s propulsion power using different deep learning models, propos-
ing a time series prediction model with high prediction accuracy and further improvement
in the utilization of computational resources. Pedersen and Larsen [12] adopted ANN
models under four different loading conditions to predict a ship’s propulsion power using
three data sources for training and prediction; however, due to the lack of sufficient noon
reports, the model had certain limitations when processing noon report data at the same
time. In addition, compared with the limitations of traditional models in dealing with large
datasets with significant variations, ANNs and deep learning are promising alternatives. In
terms of visual recognition, Luo et al. [13] proposed a method based on an ANN for extract-
ing fish information; the method had better robustness and higher accuracy compared to
traditional visual algorithms. In terms of data processing, Ehsan et al. [14] proposed a novel
deep-learning-based forest change method. Compared with other traditional U-Net-based
models, deep learning methods better preserve forest changes and their set details, and
they have great potential for providing quantitative and qualitative results.

In this work, an ANN model is proposed that is based on the selection of different
features and algorithms where the feature selection includes ship, ice, and propeller param-
eters. We find that the ANN has good nonlinear mapping ability and good generalization
ability when dealing with nonlinear data. Compared to traditional full-scale and model
tests, the ANN is more efficient in terms of time and computation resources. Compared
with R/V Sikuliaq full-scale experiments [15], PSV model experiments [16], and polar
carrier model experiments [17], the ANN model prediction results have stability, reliability,
and high prediction accuracy.

2. ANN Models

Machine learning methods can be used as a tool to tackle complicated problems.
They can address different problems such as function approximation, classification, and
regression. The ANN is one of the most commonly used methods in the field of machine
learning. Its network structure is mainly composed of neurons, layers, and networks [18].
Although the function of a single neuron is limited, an ANN composed of multiple neurons
is highly effective in solving problems. The trained ANN model is represented by a set of
algorithms that are trained using input datasets to identify a good hypothesis function for
the target issue. This has proven to be a feasible and practical approach to solving highly
nonlinear problems.
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A three-layer feed-forward neural network (RNNM) is proposed herein, as shown in
Figure 1. In the FNN, there is no feedback from the latter layer to the former layer, and
each layer’s neurons come from the former layer’s input. Neuron c in the hidden layer of
the network is a linear combination of the input feature x multiplied by the weight matrix
and the deviation vector. The output is a linear combination of hidden layer neurons.
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In the RNNM, the input includes ship, ice, and propeller parameters, while the output
is propulsion power. The sigmoid function is selected as the activation function on the
hidden layer neurons, and the Levenberg–Marquardt algorithm is taken as the training
function of the network. The convergence speed of the Levenberg–Marquardt algorithm
is relatively slow, but it still has good generalization effects on the training set with less
sample data.

3. Propulsion Power Requirement of Classification Societies

Ship propulsion power in ice-covered waters can be estimated using the propulsion
requirements of various classification societies. At present, propulsion power requirements
mainly refer to the FSICR. To select the appropriate input characteristics, the propulsion
power calculation formulas of different classification societies can be referred to.

The FSICR [19] is widely used for vessels in the Northern Baltic Sea in winter. The
propulsion power requirements are based on the total resistance of ships in first-year
ice. The FSICR presents a formula for calculating the minimum propulsion power under
different ice classes, and the power is calculated as a function of the thrust. Three methods
are used to obtain thrust, namely, the CFD method, the bollard pull test, and the towing
test at low speed [20].

The propulsion power equations provided by the CCS [21] are formulated with a set
of empirical coefficients. These coefficients are divided based on the propulsion type of the
propeller, which includes the angle between the stem and the waterline, ship breadth, ship
length, ship velocity, and ice thickness.

The RMRS assigns the ice class of icebreakers into the categories Ice2 to Arc9, and
it provides calculation methods for the minimum propulsion power requirements under
different ice classes. The propulsion power is linearly related to the displacement. For
ice-strengthened vessels under ice classes Ice2 and Ice3, the displacement required by the
minimum propulsion power should not be more than 8000 m3.

The ABS proposes that propulsion power can be calculated using the bollard pull test.
Ice-going ships should meet ice class PC1–PC7, and the power received by the propeller
under the maximum power should satisfy the continuous icebreaking mode.
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The minimum power formula suggested by the CASPPR is a function of displacement
and ship width at the waterline. This set of functional relationships is based on a set of
empirical coefficients derived from different ice class conditions. It should be noted that
the final power calculated should not be less than the power of the ship sailing at 12 knots
in still water.

These five formulas have introduced propulsion power specification requirements
from various classification societies, where the main parameters that influence propulsion
power are given. The important parameters are summarized in Table 1. As shown in
Table 1, there are 15 ship-related parameters, 2 ice-related variables, and 3 propeller-related
parameters selected to predict the propulsion power. Some parameters show a high
occurrence, and some are low in the existing formulas. Sun et al. [3] explained the main
factors affecting ice resistance in the semi-empirical formula in detail. Based on the ANN-IR,
the appropriate propeller parameters are added to predict propulsion power in this paper.
The schematic diagram of all angles is defined as shown in Figure 2.

Table 1. Parameters used in propulsion power formulas of classification societies.

Item Notations Unit FSICR CCS RMRS ABS CASPPR Occurrence
(Total 12)

Ship-related
parameters

Ship speed v m/s
√

1
Ship length L m

√ √
3

Ship breadth B m
√ √ √ √ √

5
Ship draught T m

√ √ √
3

Bow length Lbow m
√

1
Parallel mid-body length Lpar m

√
1

Waterline angle β ◦ √ √ √
3

Trim angle ϕ ◦ √ √ √
3

Average bow flare angle at waterline ψ ◦ √
1

Entry angle at waterline ∂ ◦ √
1

Stem angle φ ◦ √
2

The rake of the stem at the centerline ϕ1
◦ √

1
The rake of the bow at B/4 ϕ2

◦ √
1

Area of the waterline of the bow AWF m2 √
1

Displacement ∆ m3 √ √ √ √
4

Ice-related
parameters

Ice thickness h m
√ √ √ √ √

5
Snow thickness hs m

√
1

Propeller-related
parameters

Propeller diameter DP m
√ √ √

3
Propeller number Z -

√ √ √
3

CPP/FPP f -
√ √ √

3
Number of constants - - 1 4 4 3 1 /
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4. Database for ANN Training

To select the dataset and determine key features is important when training a neural
network model. Different datasets derived from model-scale and full-scale tests are used in
the RNNM to train the network. The appropriate dataset is selected for feature analysis.
The results are then compared with the actual propulsion power of the R/V Sikuliaq ship
from Neville and Martin [15].

4.1. Database Preparation

In this study, the dataset is sourced from 13 different full- and model-scale tests with a
total of over 140 sets of data. Among them, the experimental data comprise 123 sets with
the rest comprising design power data. Dataset [4,17,22–31] selection is shown in Table 2.
The model test data are amplified to full-scale data based on the specific scale factors that
are given in the experiment, and the conversion relationship is shown in Table 3.

Table 2. Construction of propulsion power ANN model data source.

Ship Name Reference Test
Conditions

Power
Condition

Ice
Condition

A polar carrier (Ji et al., 2018) Model-scale Actual Level ice

USCG (Wang et al., 2018) Model-scale Actual Level ice

KV Svalbard (Madsen, 2010) Full-scale Actual Level ice, etc.

R class (Spencer and Jones, 2001) Full-scale Actual Level ice

29 polar icebreakers (Cao, 2020) Full-scale Actual Level ice

Araon (Kim et al., 2011) Full-scale Actual Level ice

Envik
Kemira

Link Star
Solano
Atserot
Sotka

Finnoak
Aila

Finnmerchant
Futura

Arkadia
Sirius

Windia
Nossan
Shuttle

(Juva and Riska, 2002) - Design Level ice

KV Svalbard (Jeong et al., 2017) - Design Level ice

Akadenilk Fyodorov (Zhang et al., 2017) - Design Level ice, etc.

Tor Viking II (Su et al., 2010) - Design Level ice

Araon (Kim et al., 2011) - Design Floating ice

MT Uikku (Zhou et al., 2018) - Design Level ice

A general cargo ship (Montewka et al., 2013) - Design
Level ice/ice

ridge/ice
compression

Note: the test with an ice thickness of 1.3 m is selected as the training data, and the test with an ice thickness of
1.6 m is selected as the verification data (Ji and Tian, 2018).

4.2. Propulsion Power Prediction Using Different Databases

Sun et al. [3] verified the feasibility of constructing an ANN using model test results as
training data and full-scale test results as validation data. In this study, since the full-scale
and model tests have limited data sources, ship design power data are added, and some
parameters are added referring to the power calculation requirements from classification
societies. For example, the power requirement in the FSICR notes that the ship speed in
channels of a given thickness is at least 5 knots [4]. The full-scale test and model test data
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are used as a set named Dataset-1. On this basis, the ship design power is added as a set
named Dataset-2. To select appropriate training data, the reliability of the dataset is verified
in RNNM construction.

Table 3. Similarity relations for ship model test in ice.

Property Scale Factor Property Scale Factor Property Scale Factor

Length λ Ice thickness λ Propeller diameter λ

Breadth λ Flexure strength λ Propeller number 1

Draught λ Density of ice 1

Stem angle 1 Friction coefficient 1

Velocity λ1/2

Waterline angle 1 Ice resistance λ3 Propulsion power λ3.5

In the RNNM, the dataset is divided into three parts: training, verification, and testing.
Among these, the training set is used to train the model, the verification set is used to
adjust the super parameters of the model, and the test set is used to evaluate the accuracy
and generalization ability of the model. In regression analysis, one of the most important
indicators to judge the quality of the dataset is the size of the R-value of the test set.

The square root of the determination coefficient (R) of the two models trained based
on Dataset-1 and Dataset-2 is shown in Figures 3 and 4, where the abscissa represents
the target output, and the ordinate represents the fitting function between the predicted
output and the target output. The value of R in the interval [0, 1] is used to indicate the
correlation between prediction and output data. The relationship between prediction and
output becomes more random as the R-value approaches 0, and the correlation between
them is stronger as the R-value approaches 1. The R-value in Dataset-1 is generally lower
than that in Dataset-2, but the generalization ability of the model is mainly judged by the
R-value of the test set. The test set based on Dataset-1 fits well, and the R-value is much
higher than that of Dataset-2. However, the R-value is used to analyze the correlation
between prediction and output, which can be used as a reference, but a model cannot be
judged only by the size of the R-value. In model training, verification, and testing, if the
R-value is not high, the reason may be the lack of fitting caused by less data and insufficient
features. In the case of less data, the reason for the high R-value may be that the feature
variables contain the features of strong correlation of dependent variables or it may be the
over-fitting caused by model training.

To keep the weights of each feature on the same scale and eliminate the dimensional
influence between features, normalization is used to linearly transform the training dataset
to the range [0, 1]. In Figures 5 and 6, the abscissa represents the number of the training
dataset, and the ordinate represents the value range of the training dataset. From the data
normalization, it can be seen that the input and output features before normalization are not
in the comparable range, and the input features affect each other, but there is no correlation
between the propulsion power and the input features. After normalization, the features are
in the same order of magnitude, with the input and output features affecting each other.
Feature scaling can improve the prediction and convergence speed of the ANN model,
but the maximum value needs to be redefined when new data are added. The formula is
as follows:

z′ =
z− zmin

zmax − zmin
(1)

where zmin and zmax represent the minimum and maximum values of one feature, respec-
tively; and z and z′ represent data before and after normalization, respectively.
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Figure 6. Data normalization based on Dataset-2.

The R/V Sikuliaq is an icebreaking research vessel [15], and its full-scale trials were
conducted in the Bering Sea in March and April 2015. The RNNM uses two different
datasets to predict the propulsion power of the vessel R/V Sikuliaq. The results are
compared with predictions from the FSICR. The ice resistance value of the FSICR is based
on the prediction result of the ANN-IR, and this power prediction is defined as ANN-
IR-FSICR. The parameters of R/V Sikuliaq are shown in Table 4. The ice resistance and
propulsion power under different ship speeds are shown in Figure 7. The formula for
calculating the propulsion power of the FSICR is as follows:

P = Ke
(RCH/1000)3/2

DP
(2)

where P is the propulsion power; RCH is the ice resistance, applicable to the calculation
of ice resistance in ice channels with broken ice and solid ice layers; DP is the diameter
of the propeller; Ke is the coefficient related to the propeller, mainly used for traditional
propulsion forms; and the specific coefficients are shown in Table 5.
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Table 4. R/V Sikuliaq main dimensions.

Length
(m)

Breadth
(m)

Draught
(m)

Stem Angle
(◦)

Flexural Strength
(kPa)

Ice Thickness
(m)

Velocity
(m/s)

Propeller
Diameter

(m)

Propeller
Number

(-)

79.705 15.85 5.944 30 250 0.2–0.47 2.2–5.5 4 2
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Figure 7. Ice resistance and propulsion power prediction based on ANN model for R/V Sikuliaq 
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Figure 7. Ice resistance and propulsion power prediction based on ANN model for R/V Sikuliaq
icebreaker (Predictions-1 and -2: predictions based on Dataset-1 and -2).

Table 5. Calculation coefficients of propulsion power.

Propulsion Mode CPP FPP

Single screw 2.03 2.26

Twin screw 1.44 1.60

Three screw 1.18 1.31

In Figure 7, the ice resistance predicted from the ANN-IR model increases with the
increase in ship speed. This conforms to the general rule. In propulsion power prediction,
the ANN-IR-FSICR prediction method has an average error of 24.6%; when the ship speed
is 5.5 kn, the predicted value is about 50% more than the actual value. Predictions-1, which
are based on Dataset-1, have an average error of 37.2%, and Predictions-2, which are based
on Dataset-2, have an average error of several times. Considering the three prediction
methods under different ship speeds, it can be seen that the ANN-IR-FSICR is the lowest
among the three models, and Predictions-1 and Predictions-2 overestimate the results. In
addition, the R/V Sikuliaq icebreaker also undergoes propulsion power experiments under
different ship speeds and ice thicknesses, as shown in Table 6.

Table 6. Prediction of propulsion power using ANN model under four working conditions.

Item Unit Case1 Case2 Case3 Case4

h m 0.30 0.34 0.33 0.47

v m/s 2.5 2.4 3.2 2.2

Measurements kW 1208 1208 1835 1857

Predictions (ANN-IR-FSICR) kW 1302 1352 1533 1880

Predictions-1 kW 2741 2910 1969 2842

Predictions-2 kW 9772 10,028 8724 8724
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The three model predictions under the four working conditions summarized in Table 6
are plotted in Figure 8. The ANN-IR-FSICR is relatively close to the measurement, with
average errors between 1.2% and 16.4%, and the average error is 9.3%. The average error
of Predictions-1 is close to twice as high as the measured value. The prediction result of
Predictions-2 is the largest, and its predicted value is several times the measured value.
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The reason for these results is that the value of the design power itself is not consistent
with the measured value, e.g., the design power of the same polar oil tanker is 32,000 kW
when the ice thickness is 1.5 m, and the velocity of ship is 5 kn, and the actual propulsion
power under the same working conditions is around 45,000 kW (Zhou and Ding, 2020). In
the next step, Dataset-1 is used as the training data. Considering its simple structure and
large prediction error when dealing with sophisticated nonlinear data, the RNNM is only
used to select the dataset.

4.3. Feature Scaling

The Pearson correlation coefficient is introduced to visualize the correlation between
input x and output y [32]:

ρx,y =
cov(x, y)

σxσy
=

E
(
(x− µx)

(
y− µy

))
σxσy

=
E(xy)− E(x)E(y)√

E(x2)− E2(x)
√

E(y2)− E2(y)
(3)

where the Pearson correlation coefficient is represented by ρx,y, the covariance of variables
x and y is represented by cov(x, y), the standard deviation of variables x and y is repre-
sented by σx and σy, and the mathematical expectation is represented by E; both x and y
are normalized.

The linear relationship is shown in Figure 9. Figure 9a–i shows the Pearson correlation
coefficients between the ship length, breadth molded, draught, stem angle, velocity, ice
thickness, flexural strength, propeller diameter, and propeller number and the propulsion
power, respectively. The correlation (linear fitting) between the nine features (ship, ice,
propeller) and the output is evaluated within [−1, 1] after normalization of the training
dataset, where +1 and −1 stand for strong positive and negative correlation, respectively,
and 0 represents no correlation.
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In the FSICR, the calculation of propulsion power is based on the ice resistance value,
and accurate ice resistance prediction is the premise of calculating the propulsion power.
Our study of the ANN-IR shows that the ANN model has excellent generalization ability
and can be used as a reliable and accurate tool for ice resistance prediction compared with
the traditional full-scale test, model test, and semi-empirical formula in polar ship design.
According to the calculation formula of propulsion power in the FSICR, two features,
propeller diameter and propeller number, are added based on ANN-IR feature selection.

The linear correlation (Pearson correlation coefficient) between each feature and the
propulsion power can be seen in Table 7. This shows that ice thickness, ship length, ship
width, draught, propeller diameter, and propeller number are highly correlated with
propulsion power, while the flexure strength, stem angle, and velocity are less dependent
on the propulsion power.

In feature correlation analysis, there is a high degree of dispersion between inputs
and outputs, mainly due to the Pearson correlation coefficient being sensitive to the linear
relationship between the two variables, while the input variable and propulsion power
are nonlinear. In addition, the sample data selection is dependent on the experimental
environment, and the quality of sample data directly affects the dispersion between the
two variables.
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Table 7. Selected input variables for the ANN.

Category Input Notations Unit Pearson Correlation
Coefficient Range

Ship parameters

Length L m 0.3966 79.6–440.5

Breadth B m 0.3947 15.85–88.5 (m)

Draught T m 0.3826 5.715–36 (m)

Stem angle φ ◦ 0.0195 18–35 (◦)

Velocity V m/s −0.0007 0–12 (knots)

Ice parameters
Ice thickness hi m 0.5171 0.2–2.5 (m)

Flexure strength σf kPa 0.2339 208–690 (kPa)

Propeller
parameters

Propeller diameter DP m 0.4169 3.8–7.4 (m)

Propeller number Z - 0.2454 1–3 (-)

The Pearson correlation coefficient is the covariance ratio of the standard deviation,
which is highly dependent on the database. In the construction of an ANN model, the
first thing to consider is the quality of the database. There are several aspects that should
be considered when using the database. First, under the IACS, the polar ship propulsion
power requirements of each classification society have their own algorithms, which are
not universal for ship tests under different working conditions. Secondly, during an
experiment, the selection and recording of some parameters and data have a certain degree
of subjectivity, and some factors may be idealized or ignored. One example is that the
FSICR is aimed at the navigation area in the Baltic Sea, and the power calculation is based
on the resistance performance requirements of each ship type in first-year ice, and the
propulsion power may be overestimated when ships sail in other areas.

5. RBF-PSO Algorithm

An ANN model with better prediction accuracy and generalization effects needs to be
considered due to the high prediction error between the prediction values of the RNNM
and the ANN-IR-FSICR. In the ice resistance prediction model, RBF was introduced to
construct the neural network model, and PSO was used to optimize the model. The results
indicate that the RBF-PSO is a good algorithm model. Therefore, a prediction model of
propulsion power based on RBF-PSO is proposed.

5.1. Propulsion Power ANN Overview

The propulsion power can be predicted for the target ship through the propulsion
requirements of classification societies and the ANN model. The prediction of propulsion
power using the ANN model is divided into two parts: prediction based on the ANN-IR
and the FSICR, and direct prediction based on ANN-Power. The first part involves the
indirect prediction of propulsion power. By using the ANN-IR proposed by Sun et al. [3]
and combining it with the FSICR propulsion power calculation formula, the propulsion
power of ships sailing in ice regions can be obtained. The second part involves directly
predicting the propulsion power, establishing an RNNM model for dataset selection, and
establishing an RPF-PSO model for the direct prediction of propulsion power. The final
ANN model can be created by combining this with the parameter distribution. The process
is illustrated in Figure 10.
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5.2. RBF and PSO Algorithm

RBF is a three-layer feed-forward neural network. The basic idea is to use RBF to
convert the input vector from a low-dimensional, linear, non-separable vector to a high-
dimensional, linear, separable vector [33]. The commonly used activation function is a
Gaussian function:

R(x− c) = exp
(
− 1

2σ2 ‖x− c‖2
)

(4)

where the Euclidean norm is represented by ‖x− c‖, the input sample is represented by x,
the center of the Gaussian function is represented by c, and the variance of the Gaussian
function is represented by σ.

The functional relationship of the output layer is represented as:

yj =
h

∑
i=1

wijR
(
xp − ci

)
j = 1, 2, · · · , n (5)

where the pth input sample is represented by xp, the center of the node of the network
hidden layer is represented by ci, the connection weight between the hidden layer and the
output layer is represented by wij, the number of hidden layer junctions is represented by
h, and yj is the actual output of the jth output node of the network corresponding to the
input sample.

When the training sample is {(Xi, ŷi)}P
i=1, the cost function for using LS is shown below:

σ =
1
P

p

∑
i=1
‖ ŷi − yi‖ 2 (6)
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where p = 1, 2, 3, · · · , P, P is the total number of samples, ŷi is the expected output value,
yi is the actual output of the ith output, and σ is the variance of the basis function.

The PSO algorithm is an optimization algorithm of swarm intelligence which was
first proposed by Eberhart and Kennedy in 1995 [34]. The basic idea of the PSO algorithm
is to solve optimization problems through cooperation and information sharing among
individuals in a group; that is, particles have the ability to learn and remember their own
evolution and group evolution in order to find the optimal solution.

In PSO, each particle has a fitness value determined by an optimized function. The
direction and distance of a particle flying in the problem space are determined using its
assigned random speed [35]. Assume the population of particles in an n-dimensional search
space is initialized with the random vector position Xi = (xi1, xi2, . . . , xin) in the range of
the dataset patterns and the velocity Vi = (vi1, vi2, . . . , vin). Each particle keeps track of
its coordinates in the problem space associated with the best solution (fitness). We define
the fitness to determine whether a particle is close to the optimal solution. The particle
moves in the solution space and updates the individual position by tracking the individual
extreme pbest and the group extreme gbest. pbest refers to the best fitness position of
particle Xi, and gbest refers to the best fitness position of the particle swarm. The above
PSO optimization algorithm flow is shown in Figure 11.
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In the global environment, the update equations for PSO velocity and position are
shown below [36,37].

For the ith iteration:

vk
id = wvk−1

id + c1r1

(
pbestid − xk−1

id

)
+ c2r2

(
gbestd − xk−1

id

)
(7)

xk
id = xk−1

id + vk−1
id (8)

where xk−1
id is the velocity of particle i at the (k− 1)th iteration in d dimensions; vk

id is the
updated velocity of particle i at the kth iteration in d dimensions; c1 and c2 represent the
acceleration factor in the interval [0, 2], which is used to adjust the inertial weight of local
and social areas; r1 and r2 are uniformly distributed random numbers generated in the
range [0, 1] [38,39]; and w is the inertial weight, whose function is to control the influence
of the velocity between particles.

The essence of PSO-optimized RBF is to replace the original gradient descent algorithm
with the particle swarm algorithm on the basis of an unchanged model. Figure 12 is the
schematic diagram of algorithm optimization, and the hyperparameters of the ANN model
are listed in Table 8.
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Table 8. Hyperparameters of RBF-PSO ANN model.

Hyperparameters Values

Hidden layer numbers 3

Hidden layer sizes (40,20,10)

Loss function MSE

Maximum number of iterations 1000

Learning rate 0.001

Number of initialization particles 100

Kernel function Gaussian

The ANN model built in this study is a multi-input, single-output model. After the
model is trained, parameters such as the variance coefficient and weight no longer change,
and the output result is a numerical value that only changes with the input parameters.
The results do not have randomness. After the parameters shown in Table 7 and used in
Figures 13–18 are optimized by the PSO algorithm, the functional relationship is as follows:

y = W · exp
(
− 1

2σ2 ‖X− b‖
)

(9)
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The input sample is represented by X, the center of the hidden layer node of the
network is represented by b, the connection weight from the hidden layer to the output
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layer is represented by W, and the actual output of the network corresponding to the input
sample is represented by y.

σ = 1, W =



−0.0220 −0.0217 0.0211 0.0205 · · ·
−0.1643 −0.2023 0.2047 0.1923
0.0220 0.0216 −0.0210 −0.0205
0.0182 0.0446 −0.0388 −0.0125
0.0226 0.0201 −0.0198 −0.0210
−0.0018 0.0231 −0.0192 0.0023
0.0219 0.0227 −0.0220 −0.0204
−0, 1577 −0.0170 0.0258 0.1219
−0.0288 0.0604 −0.0520 −0.0176
−0.0021 −0.0880 0.0827 0.0270
...



, b =



0.0202
0.1445
−0.0201
−0.0964
−0.0194
−0.0446
−0.0204
0.2078
−0.1650
0.3746
...


Here, W is a 20 ∗ 40 matrix, and the numbers in W are the matrix parameter values

after the model training is completed; b is a 20 ∗ 1 matrix.

6. Results and Validation

A polar carrier model test, R/V Sikuliaq full-scale test, and icebreaker PSV model test
were selected to test and verify the ANN model. Trend and error analyses of propulsion
power with different ship speeds and ice thicknesses were undertaken.

6.1. Polar Carrier (Model Scale)

A polar carrier model test was performed by Ji et al. [15]. The resistance prediction
was based on the ANN-IR, and the propulsion power prediction of FPP and CPP was based
on RBF-PSO, the FSICR, and the ANN-IR-FSICR. The corresponding results are plotted in
Figure 13.

The model test mainly considers icebreaking and propulsion at low speeds. In Figure 13,
the predicted ice resistance of the ANN-IR shows an obvious upward trend compared with
the measured value after the ship speed of 1 m/s. In the ANN-IR training set, the maximum
ice thickness is 1.5 m, and its prediction trend is affected by the training feature range
to some extent. The error range between the predicted ice resistance and the measured
value is 0.7–18.1%, with an average error of 7.8%. In propulsion power prediction, the
average error between the predictions based on the RBF-PSO model and the FPP and CPP
propulsion values is 14.1% and 22.3%, respectively. Based on the ANN-IR, the average
errors between the FSICR and the FPP and CPP propulsion values are 48.6% and 56.6%,
respectively. The average errors between the propulsion power calculated using the FSICR
and the propulsion values of FPP and CPP are 68.2% and 47.5%, respectively. The error
of the ice resistance predictions based on the ANN-IR is small, but the error between the
predicted value and the measured value is high after the FSICR calculation. The error of the
propulsion power prediction based on the ANN is the smallest, and the stability is the best.
In addition, among the three methods for power prediction of the FPP and CPP propulsion
modes, RBF-PSO has the smallest prediction error for the FPP propulsion mode, which is
related to the large number of sample sets of the FPP propulsion mode in the training set.

6.2. R/V Sikuliaq (Full Scale)

The R/V Sikuliaq is an icebreaking research vessel, and its full-scale trials were
conducted in the Bering Sea during March and April 2015. Figure 14 shows the model
prediction results and full-scale measurements [13].

On the basis of Figure 7, the RBF-PSO model is added for propulsion power prediction,
and different speeds are added on the basis of measured speeds to verify the reliability and
accuracy of the ANN model.
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In Figure 14, the ice resistance prediction by the ANN-IR model changes significantly
with the increase in ship speed. In propulsion power prediction, the predicted value based
on the ANN model is generally higher than the measured value. Among the three groups
of measured data, the RBF-PSO model prediction lies between measurements and the ANN-
IR-FSICR curves. The average error of the RBF-PSO prediction is 24.5%, and the average
error of the ANN-IR-FSICR prediction is 24.06%. The minimum error between the RBF-PSO
model and the measurements is 7.1% when the ship speed is 5.5 m/s. The propulsion
power from the two methods varies with the ship speed, where the ANN-IR-FSICR is more
speed sensitive, and the RBF-PSO model is less influenced by the ship speed. From the
trend, it can be seen that the RBF-PSO model has a similar trend to the measurements, and
the error between the predictions of RBF-PSO and the measured values decreases with the
increase in ship speed.

Four working conditions can be seen from Table 4. In Figure 15, the predicted trend of
the RBF-PSO model is closest to the measurements, and the average error of its predicted
values is 5.4%. The average error from the ANN-IR-FSICR is 9.3%. Under the same working
conditions, the prediction accuracy of RBF-PSO is much higher than that of the RNNM.

As can be seen from Figure 16, the predicted values of ice resistance under differ-
ent ship speeds increase slowly with the increase in ice thickness. In propulsion power
prediction, it can be observed that the predictions of the RBF-PSO model are generally
higher than those of the ANN-IR-FSICR with the increase in ice thickness at the same ship
speed. The propulsion power value increases rapidly under the RBF-PSO model when the
ship speed is 5 m/s. The difference reflects that the RBF-PSO model is more ice thickness
sensitive, while the ANN-IR-FSICR is less influenced by the ice thickness. In terms of error
analysis and comparison, in the range of the input features, the ice resistance prediction
and propulsion power prediction based on RBF-PSO accord with the general law and have
a good generalization effect.

6.3. Icebreaker PSV (Model Scale)

The icebreaker PSV model test data were presented by Yum et al. [14]. The data were
scaled up to full scale. The resistance predicted by the ANN-IR and the propulsion power
predicted using three methods are considered and compared with the experiment data.
The corresponding results are plotted in Figures 17 and 18.

It can be observed from Figure 17 that the predictions of ice resistance from the ANN-
IR model and measurements show a similar trend, with an average error of 8.7%. In
propulsion power prediction, the predictions of the ANN-IR-FSICR are consistent with
the trend of the calculated values of the FSICR, with average errors of 19.2% and 29.8%,
respectively, compared with the measurements. The error between the predictions and the
measurements of RBF-PSO is the smallest, with an average error of 4.7%. In addition, the
predictions are basically the same as the measurements with the ship speed at 0.5 m/s and
1.5 m/s. The FSICR and the ANN-IR-FSICR overestimate the results to some extent. This
should be the case, since the ANN model performs mathematical computation on more
ship tests while the FSICR is aimed at navigating ships in the Baltic Sea region.

In order to verify the reliability and accuracy of the ANN model, we consider the three
propulsion power prediction trends with different ice thicknesses and ship speeds. It can be
seen from Figure 18 that the prediction results of ice resistance show an upward trend with
the increase in ice thickness, which is in line with the general rule. In propulsion power
prediction, the RBF-PSO model has a similar trend compared with the ANN-IR-FSICR
when the ice thickness of icebreaker PSV is under 0.6 m. When the ice thickness is above
0.6 m, the RBF-PSO model is more sensitive, while the ANN-IR-FSICR is less influenced by
the ice thickness.

7. Discussion

Predicting ship propulsion power in ice water is critical. A polar ship propulsion
power prediction model based on an ANN was proposed herein. The theoretical founda-
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tions of the ANN model were introduced in detail, and the reliability of the model was
verified by a case study.

The ANN propulsion power prediction model introduced herein can be considered
for use in a variety of scenarios; however, few training datasets were used in this study.
Sufficient and high-quality training data play an important role in prediction accuracy
improvement with an ANN model. Data preprocessing can effectively reduce the training
time and ensure the stability of the model prediction results on the basis of sufficient
and high-quality training data. Among them, normalization is one of the most common
methods used to reduce the influence of the dimension to some extent and keep the feature
weight in a comparable range.

We proposed an ANN model to predict ship propulsion power which showed good
prediction ability for ship tests under different working conditions. The RBF-PSO model
had a good generalization effect, and could accurately predict ice resistance and propulsion
power. Based on this algorithm, the error and stability of the ANN model directly predict-
ing propulsion power were better than the propulsion power requirement calculation of
classification societies based on the ANN-IR. Currently, the evaluation of the propulsion
power of polar ships is mainly based on estimation methods using the propulsion require-
ments of various classification societies. However, these formulas may not be universal
and usually require additional parameters to be continuously extended.

The ANN model is highly dependent on the quality of the dataset, where most
propulsion power data are collected at low speed. More research may be needed to verify
whether the prediction results for propulsion power under high speeds are consistent with
this interpretation. As for the ANN model, more ship full-scale test and model test data
will be added, and, through data enhancement to improve the training dataset, we will
be able to reduce the degree of dispersion between different variables and investigate the
scale effect. Moreover, ANN models with different algorithms and different combinations
of features could be considered in future work to find a more suitable hypothesis function
and improve its performance. In the calculation of ice resistance, the ship speed and ice
resistance have a strong correlation, while the calculation method for the propulsion power
specification of each classification society has little correlation with the ship speed.

8. Conclusions

A method for predicting ship propulsion power in ice-covered waters based on the
ANN method was proposed herein. A neural network model for the direct prediction of
propulsion power was proposed by selecting suitable datasets, and it was compared with
ANN-IR-based propulsion power calculation and FSICR methods.

• The propulsion power RBF-PSO model has good generalization ability and high
prediction accuracy, and it is more sensitive to ship speed and ice thickness than the
traditional FSICR prediction. The FSICR is aimed at ships in the Baltic Sea, and its
propulsion power calculation is overestimated compared with the measured value
and the predicted value of the RBF-PSO model;

• The Pearson correlation coefficient between ship speed and propulsion power is the
smallest. The low-speed data in the training sample being relatively concentrated is one
aspect. In addition, the Pearson correlation coefficient only measures the linear relation-
ship; even if the correlation coefficient is 0, there may be a meaningful relationship;

• The propulsion power ANN model performs mathematical computation on more ship
tests. It has a good generalization effect when dealing with high-dimensional, nonlin-
ear problems compared with full-scale testing and model testing, and its prediction
results have high accuracy and reliability in the range of parameter selection;

• In the dataset, the vast majority of the ice conditions we selected related to level ice,
laying the foundation for the model’s propulsion power prediction under level ice
conditions. In addition, the model has strong sensitivity to ice thickness, and the large
range of ice thickness variation is one reason for this. If the dataset is not normalized,
the changes in ice thickness may significantly change the prediction results.
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The present ANN model takes several parameters into account, and other relevant,
important factors can be added in future work.

Author Contributions: Conceptualization, L.Z. and Q.S.; writing—original draft, L.Z. and Q.S.;
writing—review and editing, S.D. and S.H.; visualization, Q.S. and A.W.; supervision, L.Z. and S.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the National Key Research and Development Program
(grant 2022YFE010700) and the General Projects of the National Natural Science Foundation of China
(grant 52171259).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
Definition Abbreviation
Artificial neural network ANN
American Bureau of Shipping ABS
Canada Classification Society CASPPR
China Classification Society CCS
Computational fluid dynamics CFD
Controllable-pitch propeller CPP
Finnish–Swedish Ice Class Rules FSICR
Feed-forward neural network FNN
Ice resistance artificial neural network model ANN-IR
FSICR power calculated based on ice resistance artificial neural network model ANN-IR-FSICR
Full-scale and model-scale test data Dataset-1
Full-scale tests, model-scale tests, and design data Dataset-2
Fixed-pitch propeller FPP
International Association of Classification Societies IACS
Propulsion power artificial neural network ANN-Power
Russian Maritime Register of Shipping RMRS
Reference neural network model RNNM
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