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Abstract: Ship collisions are a major maritime accident; various systems have been proposed to
prevent them. Through investigating and analyzing the causes of maritime accidents, it has been
established that ship collisions can either caused by delaying actions or not taking the sufficient
actions to avoid them. Recognizing the limitations in providing quantitative numerical values for
avoiding ship collisions, this study aimed to use Bayesian regularized artificial neural networks
(BRANNs) to suggest the proper time and sufficient actions required for ship collision avoidance
consistent with the Convention on the International Regulations for Preventing Collisions at Sea. We
prepared the data by calculating the proper times and sufficient actions based on precedent research
and used them to train, validate, and assess the BRANNs. Subsequently, an artificial neural network
controller was designed and proposed. The data of the proposed neural network controller were
verified via simulation, validating the controller. This study is limited in cases such as overtaking a
ship in front. However, it is expected that this controller can be improved by establishing the criteria
for an appropriate overtaking distance after further examining the closest point of approach (CPA)
and time to the CPA (TCPA) for overtaking a ship in front and using the method presented herein.

Keywords: ship collision avoidance; proper time; sufficient action; simulation validation

1. Introduction

Maritime accidents continue to occur, and ship collisions are recognized as a major
event based on maritime accident statistics in major countries, such as the EU, Canada,
and Japan [1–3]. To provide a solution to such collisions, autonomous ships are being
developed based on advances in artificial intelligence (AI) systems and technologies [4]. As
the development of autonomous ships is still in its early stages, ship collisions are a major
threat to the navigation safety at sea [5]. Additionally, ship collisions cause a considerable
level of environmental pollution, loss of lives, and economic losses [6]. It is known that
the primary cause of ship collisions is human error [7–9], and autonomous ships may
provide a solution to this problem. The International Maritime Organization (IMO) is
making various efforts for the safety and security of life at sea, the protection of the marine
environment, and global trade [10], as it believes that at least 80% of such accidents depend
on the expertise and capabilities of seafarers.

A crucial challenge for autonomous ships is the development of a system that ensures
safety by including an autopilot system [4]. In this context, an autopilot system is one
that performs autonomous navigation using algorithms based on AI and deep learning.
Autonomous navigation can provide a solution to the issues of maritime collisions [4,11].
To prevent maritime collisions, research is currently being conducted in areas under the
categories of ship motion prediction, own ship (OS) trajectory prediction, collision situation
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detection, and collision avoidance (CA) algorithm development [12]. Recent studies have
investigated CA methods using AI techniques [13–15]. Xu et al. [13] proposed a method for
avoiding the collisions of autonomous ships using an optimal algorithm for unidentified
obstacles via deep reinforcement learning. Studies are also being conducted on multi-ship
CA via deep learning and training [14,15].

Many studies related to ship collisions have been conducted as the data provided by
the Convention on the International Regulations for Preventing Collisions at Sea (COLREG),
which form the base of ship CA at sea, are not quantitative [16]. STCW Convention A-II/1
requires seafarers on duty to have a sufficient level of knowledge, understanding, and
proficiency of COLREG for preventing close encounters or collisions with other ships,
and to understand ships’ maneuvering characteristics, including the turning circle and
the stopping distance. In addition, seafarers on duty are also required to determine the
appropriate and sufficient maneuvers to avoid a maritime collision (decisions to amend
the course and/or speed should be timely and in accordance with the accepted navigation
practices). However, COLREG’s Rule 6 “Safety speed” and Rule 8 “Action to avoid collision”
do not clearly state when and how to avoid a maritime collision [17]. Therefore, the proper
time and sufficient actions required to avoid a collision is usually determined by a seafarer
with a lot of experience on duty and understanding with regard to maneuvering a ship [18].
For inexperienced seafarers, a human error can occur in the decision-making process
regarding the proper time and sufficient actions required for CA. This means that even
though seafarers can have a good understanding of the COLREG, mistakes in this process
can lead to collisions as a consequence. Therefore, the objective of this research was to
recognize the limitations in providing quantitative numbers for ship CA and suggest the
proper times and sufficient actions required for CA that are consistent with the rules of
the COLREG.

This study proposed a timely and proper action for CA based on the information
from navigation equipment, such as from RADAR and automatic identification systems
(AIS), which can provide information on OSs and target ships (TSs). The information
obtained using the navigation equipment provided the input to the proposed model, and
the corresponding outputs revealed the values for the proper time and sufficient actions
required for CA based on the empirical knowledge of seafarers, which was collected herein
based on literature reviews, theoretical considerations, case laws, and navigator surveys.
As neural networks can solve a non-linear problem and deal with a large amount of data,
they are employed to develop models that are both trained and validated to provide the
quantitative representations of the abstract concepts of the proper time and sufficient actions
for generalized CA [19]. Artificial neural networks (ANNs) can help solve the problem
of CA via training and verification by processing a lot of data for non-linear problems.
Moreover, a representative reason for choosing Bayesian regularized ANNs (BRANNs) over
many ANNs is due to their advantage of preventing overfitting when solving problems
in areas where data are sparse. By providing quantitative indicators of the proper time
and sufficient actions for CA, this work will help prevent ship collisions and contribute in
improving the maritime safety and protecting the marine environment. It can also be used
in assessing the proper time and sufficient actions for the CA of autonomous ships.

The organization of this paper is as follows: Section 2 presents the research method-
ology and describes the theoretical considerations for avoiding collision situations and
seafarers’ empirical knowledge obtained using questionnaires. Section 3 describes a method
for realizing a general model that employs a neural network to compute values for the
inputs. We also analyzed the results of the proposed time and sufficient action for a general
model which was implemented using neural networks. In Section 4, the results of simula-
tion analysis performed to validate the model are presented, and a discussion was provided
to clarify the contributions and differences of this work in comparison to precedent research.
Finally, in Section 5, we present our conclusions.
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2. Methodology

The research methodology employed herein is based on a review of the available litera-
ture regarding the determination of the proper time and sufficient actions for CA consistent
with the COLREG. The signals obtained from the navigation equipment were classified
based on the positions relative to the OS for generating input values via calculations, and
a neural network was employed to obtain the proper time and sufficient actions for CA.
Moreover, a model was developed by training the neural network using data. The results
obtained from the developed model were verified via simulation.

2.1. Review of Vessel Collisions

The IMO issued the 1972 COLREG to prevent collisions and ensure the safe navigation
of ships, with a focus on the decision-making processes of the seafarers [13,17]. In this
context, human errors that cause the largest proportion of collisions include negligence
in watch keeping, the continuous monitoring of TSs, and the inadequate cooperation of
give-way vessels [20,21]. To further investigate the causes of collisions, the marine accident
investigation reports of each country are usually analyzed. Table 1 summarizes the major
merchant vessel collisions off the coasts of South Korea and Japan over the past decade.
As shown in Table 1, analyzing situations according to the occurrence of a collision can
confirm the path and the speed of OSs and TSs, respectively, as well as the time of the first
recognition and the time and the extent of the first CA. Owing to the nature of marine
casualty reports, accessing all the information was not available; therefore, although several
collisions occurred, only a limited number of them have been reported. Nevertheless,
vessels first recognize another vessel when the distance between them is sufficiently less,
which corresponds to an average of 16 min before collision. However, it can be seen that the
first action to avoid a TS is taken as when a collision is almost imminent, with an average
time of 4.1 min before collision (i.e., the action is not taken early), and that the action taken
to avoid a collision is not sufficient (meaning substantial action is not taken), which is
different from the action required as per the COLREG Rules 8 and 16, respectively.

Table 1. Analysis of the situation of collision occurrence.

Related Work Ship’s
Code

Course
(◦)

Speed
(Knots)

Ship
Length

(m)

Time of the First
Recognition

(before
Collision)

Time of the First
Collision

Avoidance Action
(before Collision)

Type of the
Avoidance Action

Investigation report of
a collision accident

(KMST, 150915)

A 050 17.0 159.5 10 min 2 min Port steer from
050◦ to 040◦

B 270 10.7 66.7 1 min 1 min Hard a starboard

Investigation report of
a collision accident

(KMST, 150204)

A 213 6.0 87.8 24 min 4 min Hard a port

B 021 11.5 225.0 34 min 8 min Starboard steer
from 021◦ to 050◦

Investigation report of
a collision accident
(JTSB, MA2019-6)

A 012 12.2 397.7 13 min 2 min Stop engine and
hard a port

B 285 5.7 147.8 8 min 7 min Increasing speed

Investigation report of
a collision accident
(JTSB, MA2021-3)

A 040.6 18.0 338.2 27 min 7 min Port steer from
040.6◦ to 019.7◦

B 290 13.8 141.0 12 min 2 min Starboard 10◦

Abbreviations: KMST, Korea Maritime Safety Tribunal; and JTSB, Japan Transport Safety Board.

2.2. Proper Time for Collision Avoidance

The COLREG Rule 8 stipulates that “any action taken to avoid collision shall be taken
in accordance with the rules and shall, if the circumstances of the case admit, be positive,
made in ample time and with due regard for the observance of good seamanship” [17].
This means that the appropriate evasive maneuvers to avoid a collision must be performed
at a proper time (i.e., within a sufficient amount of time to avoid a collision). The COLREG
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was written in general terms to be applicable to as many situations as possible [22], and it
requires decisions to be made based on the experience of seafarers with the rules and the
culture at sea [23]. Notably, it has the limitation of not being able to provide quantitative
guidance to seafarers [16]. The way to resolve a conflict is to answer the question of what
actions were taken to prevent the collision [24]. To answer the question, collision risk can
be assessed through many ways [12].

First, the concept of a ship domain proposed by Fujii and Tanaka [25] was employed
in studies related to collision risk assessment to evaluate the collision risk. This concept
was later carried forward in various forms by Goodwin [26], Davis [27], and Coldwell [28].
With the development of electronic navigation equipment, the use of this equipment, such
as RADAR and AISs on ships became essential, and collision risk assessment using time to
the closest point of approach (TCPA) began to be studied [29]. This concept was extended,
and risk indices, such as the relative distance [30] and the velocity ratio [31] for collision
cases were introduced. In recent years, ship maneuverability and the encounter angles
between ships have been actively researched [32–36]. Many studies were conducted on
action lines to identify the risk of a collision and to determine the proper timing of actions
to avoid the collision [12,37]. The action line is represented by a line that shows the last
chance for the OS to avoid a collision through a CA action [38]. Determining the action line
depends on simulations rather than the judgment of an expert, and it has been referred by
various terms in the literature, such as the last line of defense, or the critical distance [39].
As shown by several studies on CA, action lines, vessel encounter angles, risk assessments,
etc., do not address the question of proper timing. The reason for this is that the timing
of ship CA is obtained by actual navigators according to the general customs of seafarers,
such as the myths of 3 miles as the minimum visibility distance for sidelights and 6 miles as
the minimum visibility distance for mast lights. Furthermore, the numbers for the proper
time for CA suggested by empirical numbers or judicial precedents vary with the situation
depending on the size and the speed of the ship. Therefore, determining the proper time
for CA is based on the relative distance to another ship and the TCPA if the distance of
the closest point of approach (DCPA) is close to zero. The reason for utilizing the TCPA is
that it is insensitive to the speed and direction of the TSs and OSs, which can yield some
distance to the TS if the TCPA is the same [40,41]. The relationship between the Oss and the
TSs, the two ships at a risk of collision, is depicted in Figure 1. Based on this, the distance
and the direction of these two ships in a CA situation can be derived as follows.

First, the ship proceeds from the point of CA between the OS and the TS at a veering
angle α; the ship movement does not occur in a linear manner until reaching the veering
point OSv after time ∆t. Therefore, the ship’s veering has a turning radius of its reach,
where the reach is generally approximately as one-to-two times of the ship length. LOS
is the length of the OS, ROS is the turning force coefficient of the OS, and ∆t is the time it
takes to proceed from the start of the CA action. The CA action is the ship’s movement
based on ∆t and α for the OS to avoid the TS.

The distance of collision avoidance position, Dpca, is obtained through Equation (1). In
other words, Dpca is defined as the margin distance required for collision avoidance (here,
the intended TCPA is multiplied by the ship’s speed) and the turning delay. The intended
TCPA, ∆t, was set as 15 min, as applied multiple times in a number of past studies and
cases [42–44]. In this study, as described above, reach is 1 to 2 times the length of the ship,
meaning ROS, the median value of the reach point range, was set to 1.5. In addition, by
dividing the ship’s speed by Dpca, Tpca, which is defined as the time from the collision
point to the point of collision avoidance, can be obtained, as shown in Equation (2).

Dpca = ROSLOS + VOS∆t, (1)

Tpca =
ROSLOS + VOS∆t

VOS
. (2)
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Figure 1. Coordinate system of a collision situation between the own ship (OS) and the target ship
(TS). (red is position of collision and blue line is own ship’s avoiding action line).

As shown in Figure 1, in the case where the ship’s course is COS and the other ship’s
course is CTS, the relative bearing ∅Φ between the ships at the collision point can be
calculated by Equation (3), which is as follows,

∅Φ =

{
i f |CTS − COS| < π, π − |CTS − COS|
i f |CTS − COS| ≥ π, |CTS − COS| − π

. (3)
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Here, the distance Dr and the azimuth β between these two ships can be found using
Equations (4) and (5), respectively, given that the time until the CA action is Tpca.

Dr =

√
(VTSTpca cos∅+ VOSTpca)

2 +
(
VTSTpca sin∅

)2, (4)

β =

i f (VTSTpca cos∅+ VOSTpca) < 0, π − tan−1 VTSTpca sin∅
|(VTSTpca cos∅+VOSTpca)|

i f (VTSTpca cos∅+ VOSTpca) ≥ 0, tan−1 VTSTpca sin∅
|(VTSTpca cos∅+VOSTpca)|

. (5)

2.3. Sufficient Action for Collision Avodiance

As previously discussed, the COLREG requires evasive maneuvers to be actively taken
to avoid collisions, and these maneuvers should be performed in an appropriate time under
good seamanship [17]. This rule recommends that the extent of the initial response should
be based on the subjective judgment along with the experience of the ship operator based on
the ship’s operating environment at the time. However, as not all navigators have proper
experience in making excellent judgments on evasive maneuvers, providing sufficient
evasive maneuvers and initial deflection angles can thereby contribute to the prevention
of these ship collisions. To solve this problem, many studies have been conducted on CA
methods; these methods involve the departing of ships (manned or unmanned) from their
planned trajectory to avoid potential undesired physical contacts with other ships [12]. Yim
and Park [45] obtained the minimum distance for CA via regression analysis. Ahn et al. [46]
proposed a collision prevention method using fuzzy logic which used the ship’s length,
speed, DCPA, and TCPA for CA. Recently, algorithms incorporating AI technologies have
been employed to demonstrate how to avoid collisions [47,48]. These studies arbitrarily
selected and used ship-to-ship transverse distances for passage under different navigation
environments. In this study, the open sea was selected as the navigation environment, and
the criteria obtained from actual navigators were reviewed to develop objective criteria
for determining the proper time of the initial evasive maneuver and the sufficient evasive
maneuver. We examined the subjective criteria for the initial evasive maneuver judgment
of the navigators who had already learned the COLREG Rule 8 “Action to avoid collision”.
Lee et al. [49] conducted a survey of 192 mariners, including captains, and the resulting
minimum safe separation distances are detailed in Table 2.

Table 2. Survey result for the minimum safe distance.

Distance
Rank

Third Officer Second Officer Chief Officer Captain

0.5 mile 2 (6.9%) 13 (21.6%) 32 (35.6%) 5 (38.5%)
1.0 mile 24 (82.8%) 46 (76.7%) 52 (57.8%) 7 (53.8%)
2.0 miles 2 (6.9%) 1 (1.7%) 5 (5.5%) 1 (7.7%)
3.0 miles 1 (3.4%) 0 (0.0%) 1 (1.1%) 0 (0.0%)

Source: Lee et al. [49].

As shown in Table 2, seafarers perceived the minimum safe separation distance as
1.0 mile, and this trend was characterized by a higher percentage of respondents at lower
ranks. The higher the rank, the closer the response to 0.5 mile. Herein, the threshold for the
initial evasive maneuver was calculated as 1.0 mile. As shown in Figure 2, this criteria can
be observed in the CA maneuver between two ships at a collision risk [50]. With regard to
the relationship between the OSs and the TSs, we defined the slope of a tangent to a circle
with the radius D as m1 and m2. The calculation of the slope m along the two ships’ course
is given by Equation (6).

m =
VTS × cos∅−VOS

VTS × sin∅ . (6)
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Here, if the point coordinates of the TS are (xo, yo), then the equation of a straight line
through the point with a slope m is given by Equation (7).

mx−mxt0 − y + yt0 = 0. (7)

The perpendicular distance D from the origin in a Cartesian coordinate system X–Y to
the straight line given above can be calculated using Equations (8) and (9) below,

D =
−mxt0 + yt0√

m2 + 1
, (8)

m =
−2xt0yt0 ±

√
(2xt0yt0)

2 − 4(D2 − xt02)(D2 − yt02)

2(D2 − xt02)
. (9)

Here, given the point coordinates of the TS and the value of the distance D, we can
find the slope m. An m with a value of >0 indicates that the TS is approaching from the
starboard side of the OS, while an m with a value of <0 indicates that the TS is approaching



J. Mar. Sci. Eng. 2023, 11, 1384 8 of 21

from the port side of the OS. Additionally, two slope values—m1 and m2—were obtained,
and if |m1| < |m2|, this indicates that m1 corresponds to the TS passing the port side of the
OS, and m2 corresponds to the TS passing the starboard side of the OS, respectively.

The slope m (including m1 and m2) can be represented as follows, using the rel-
ative orientation ∅ at the point of collision, and the initial deflection angle α using
Equations (10) and (11).

m =
VTS cos∅−VOS cos α

VTS sin∅−VOS sin α
, (10)

VTS(cos∅−m sin∅) = VOS(cos α−m sin α). (11)

If we substitute the relative orientation of the collision point ∅, we can obtain the
initial deflection angle α using Equation (12); that is, if we use VTS(cos∅−m sin∅) = k,
we get the following:i f m > 0, α = ± cos−1

(
k

VOS
√

m2+1

)
− tan−1(m)

i f m < 0, α = ± sin−1
(

k
VOS
√

m2+1

)
+ tan−1

(
1
m

) , (12)

where −180◦ < α < 180◦.
Herein, D was calculated to be 1.0 mile, which is consistent with the results of a

previous study [49].

2.4. Use of Artificial Neural Networks (ANNs)

Several studies have been conducted on detecting and avoiding collision risks. Previ-
ously, studies using the fuzzy theory were primarily conducted. Hasegawa [51] attempted
to model the degree of collision risk using a fuzzy inference system with the TCPA and
DCPA values.

In recent years, many studies on the CA maneuver and the course prediction of ships
have been conducted using ANNs [46,52,53]. This is because ANNs have an extremely
high ability to learn complex relationships from imprecise data. Moreover, they can be
employed to extract the patterns and detect the trends that are too complex for humans or
other computer technologies to recognize. They are thought to be a versatile and powerful
way to analyze samples, generalize and predict data, remember the features of the data,
and match or connect new data [54]. Thus, a well-trained neural network can be considered
as an “expert”.

Neural networks begin with a simple model of the neural organization of the human
brain. ANNs are a computational organization that learns from past experiences to make
abstract values concrete, thereby providing a way to extract features from uncorrelated
data or to generalize results from the inputs that cannot be estimated [55].

Recently, deep learning-based neural networks have been found to exhibit superior
performances compared to other machine learning algorithms [56]. Deep neural networks
with vast hidden layer structures have solved many problems in neural networks that were
previously either unsolved or poorly solved [57]. However, deep learning requires relatively
longer computation times than other machine learning models, owing to its deep hidden
layer structure. With regard to this, Bayesian inference and regularization were introduced
to reduce the computation time while maintaining the predictive power on a deep learning
level. The prediction results of the Bayesian neural networks are not significantly different
from those of the deep neural networks, but the probability distribution of the Bayesian
statistics is used to reduce the computation time [58]. The structure of BRANN’s model
is shown in Figure 3. In particular, the models of BRANNs are robust enough to not
require the validation procedures needed for regular regression methods. In the supervised
learning step, we typically change the weights to reduce the mean squared error. The main
problem with these techniques is the possibility of overfitting and overtraining, leading
to noise fitting and a loss of generalization of the network. To reduce the likelihood of
overfitting, a mathematical technique, known as Bayesian regularization, was developed to
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convert the non-linear system into a well-defined problem [59,60]. In general, the training
step aims to reduce the sum of the squared errors between the model output and the target
value. Bayesian regularization is expressed by the following equation:

F = βEd + αEw, (13)

where F is the objective function, Ed is the sum of the squared errors, Ew is the sum of
the square of the network weights, and α and β are the objective function parameters [60].
Bayesian network weights are considered as random variables; therefore, the density
function can be written according to Bay’s rules [61]:

P(w|D, α, β, M) =
P(D|w, β, M)P(w|α, M)

P(D|α, β, M)
, (14)

where w is the vector of network weights, D is the data vector, and M represents the neural
network model in use.
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Forsee and Hagan [61] proposed an approximation of the Gauss–Newton algorithm
using the Levenburg–Marquardt training algorithm, with the assumption that the noise in
data is Gaussian. This technique reduces the likelihood of hitting a local minima, increasing
the generalizability of the network. Although this technique has the advantage of knowing
the probabilistic nature of the network weights associated with a given dataset and a model
framework, the size of the neural network increases with the additional hidden layer of
neurons, dramatically increasing the likelihood of overfitting and requiring a validation
set to determine the stopping point. In Bayesian regularized networks, overly complex
models are penalized by effectively treating the unnecessary linkage weights as zero. The
network is computed and trained with non-trivial weights, known as the effective number



J. Mar. Sci. Eng. 2023, 11, 1384 10 of 21

of parameters. This converges to a constant as the network grows [59]. This allows for a
more compact network that reduces the likelihood of overfitting, while also increasing the
data available for training by eliminating the need for a validation step.

Herein, the Levenburg–Marquardt training algorithm was employed to determine
the proper time and sufficient actions for a ship to avoid a collision using a BRANN,
which improves on the Levenburg–Marquardt training algorithm, reduces the likelihood of
overfitting, and reduces the need for a validation phase.

3. Determining the Proper Time and Action of Evasive Maneuver Using ANNs

Herein, an ANN was designed by applying the above-mentioned methods to deter-
mine the proper time and sufficient actions for avoiding ship collisions. The designed
neural network was validated by calculating the mean squared errors (MSEs). Moreover,
the controller designed using the ANN was verified by changing the OS speed, OS length,
and TS course (the relative position of the OS and the TS).

3.1. Design of an ANN

An ANN was designed to determine the proper time and sufficient maneuver for
avoiding ship collisions. In this study, from the information obtained by employing the
commonly used navigation equipment, such as RADAR and AISs, five parameters were
considered as inputs with regard to CA: OS course (COS); OS speed (VOS); TS course
(CTS); TS speed (VTS); and OS length (LOS). Based on these input values, the following
two parameters were selected as the outputs: CA timing (Dpca) and the initial deflection
angle (α). Considering this, the inputs and outputs of the controller designed using the
neural network were configured, as shown in Figure 4.
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To train the configured neural network, a training data model was built. The five
inputs were obtained using the following rules, and the two outputs were calculated using
the methodology described previously in Section 2:

• COS and CTS were obtained at 30◦ intervals from 000◦ to 330◦, respectively;
• VOS and VTS were obtained in five-knot intervals from 10 to 25 knots, respectively;
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• LOS was obtained in 50 m intervals from 100 to 200 m, respectively;
• The configuration is limited to cases where the ship is performing evasive maneuvers;

therefore, only the following cases are considered: the ships encounter each other
head-on, the ships overtake each other, and when the TS is on the starboard side of
the OS in the case of crossing;

• When overtaking another ship in front, the difference in their speeds is not large
enough to meet the TCPA of 15 min and the passage distance of 1 mile; therefore, this
case was not included in this study.

Based on the above rules for generating inputs, 3816 case data were generated. Table 3
partially summarizes these inputs and the outputs that were calculated using these inputs.

Table 3. Evaluation of the model.

Case No.
Input Output

VOS (Knots) COS (◦) VTS (Knots) CTS (◦) LOS (m) Dpca (Mile) α

1 10 0 15 300 200 3.5 −122.7
2 20 120 15 0 200 7.8 12.4
3 25 180 25 150 100 3.3 −30.0
4 15 300 25 210 150 7.5 25.4
5 15 270 20 90 150 9.0 14.8

. . .
3816 25 330 20 300 100 3.2 18.5

With regard to α (◦), positive numbers indicate starboard-side deflection, while negative numbers indicate
port-side deflection, respectively.

We used 70% (2672) of the generated data as the training data, 15% (572) as the
validation data, and 15% (572) as the testing data, respectively. Moreover, BRANNs were
designed as a neural network with ten hidden nodes in one hidden layer.

3.2. Analysis Results of the ANN

The number of epochs is an important part to solve the problem of the overfitting and
underfitting of the dataset. To ensure the sufficient convergence of training, the batch size
was set to 100 and the epochs to 1000 in this study [62], among which the weight with the
lowest MSE value was designed with, and the MSE value of 9.0745, as shown in Figure 5.
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To verify the controller results, they were compared with the calculation results using
the following rules:

• CTS was validated at 3◦ intervals from 180◦ to 330◦, respectively, to determine changes
in the encounter angle between the OS and the TS;

• VOS was validated in 0.2 knot increments from 15 to 25 knots, respectively;
• LOS was validated in 2 m intervals from 150 to 250 m, respectively.

3.2.1. Result of the Encounter Angle of the OS with the TS

Figures 6 and 7 show a comparison of the calculated values of the proper time and the
sufficient maneuver for ship CA as the TS course changed from 180◦ to 330◦ in 3◦ intervals,
respectively, with the corresponding values of the controller designed in this study. As
shown in Figure 6, with regard to the proper time, the difference between the calculated
and the corresponding controller values was the smallest at a TS course of 252◦. Addition-
ally, this difference increased when the OS was closer to the TS or closer to overtaking.
Specifically, we found an error of approximately 2.34 miles at 330◦, which was caused by
the relatively short distance between the two ships, despite being based on a sufficient
time. Moreover, in this case, a larger angle was required, and sometimes it was deemed
to be necessary to turn to the other side. As shown in Figure 7, the sufficient maneuvers
showed a close match until the TS course was between 180◦ and 310◦, respectively, after
which the error increased considerably as the ships approached the overtaking situation.
This error was deemed to be likely due to the short relative distance between these two
ships resulting in a large deflection angle, as discussed earlier.
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Figure 6. Action distance for collision avoidance versus the TS course.

As the TS course changed from 180◦ to 330◦ at 3◦ intervals, respectively, the controller
began the CA at approximately 0.74 mile later than the calculated value but deflected
approximately 2.72◦ more than the required deflection angle for a sufficient maneuver,
which was thereby considered as a good overall design.
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Figure 7. First action angle for collision avoidance versus the TS course.

3.2.2. Result of Changing the OS Speed

Figures 8 and 9 show a comparison of the calculated values of the proper time and the
sufficient maneuver for ship CA with the corresponding values of the controller designed
in this study as the OS speed varied from 15 to 25 knots in 0.2 knot increments, respectively.
As shown in Figure 8, with regard to the proper time, the difference between the calculated
value and the corresponding controller value was approximately 0.008 miles at an OS speed
of 18.6 knots, which was found to be the smallest error. This error increases as the OS
speed decreases or increases. Specifically, at 25 knots, we found an error of approximately
1.47 miles. We believe that this error was formed due to the fact that as the difference
between the speeds of the two ships increases, their relative velocity increases and their
maneuver becomes faster as a result. As shown in Figure 9, with regard to the sufficient
maneuver, the difference between the calculated and the corresponding controller values
was determined to be the smallest (approximately 0.038◦) at an OS speed of 23.8 knots.
Although these two values do not have a considerable error, the error increased slightly as
the OS speed decreases. We believe that this error was due to the fact that as the difference
between the speeds of these two ships increases, the proper time is accelerated as a result,
requiring more initial maneuvers.

The controller was confirmed to be well designed overall, as the corresponding proper
time for CA was only approximately 0.60 mile later compared to the calculated value for
the OS speed varying from 15 to 25 knots in 0.2 knot increments, while the deflection angle
required for the sufficient maneuver was approximately 0.75◦ more than the corresponding
calculated value, respectively.

3.2.3. Result of Changing the OS Length

Figures 10 and 11 show the calculated values of the proper time and sufficient maneu-
ver for ship CA as the OS length varied from 150 to 250 m in 2 m intervals, respectively;
these values were compared with the corresponding values of the controller designed in
this study. The error between the calculated and the corresponding controller values was
found to be almost constant; the difference was not substantial. This was believed to be the
result of a proportional increase in the proper time and the sufficient maneuver with the
OS length.
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Figure 9. First action angle for collision avoidance versus the OS speed.

As the OS length varied in 2 m intervals from 150 to 250 m, the proper time for CA
was found to approximately be 0.30 mile later compared to the calculated value, while the
deflection angle required for the sufficient maneuver was found to be approximately 0.90◦

more, respectively, suggesting that the overall design is good.
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4. Discussion
4.1. Research Validation

To verify the performance of the controller designed herein, the full-mission ship-
handling simulator of the Korea Institute of Maritime and Fisheries Technology (KIMFT)
was employed (Navi-Trainer Professional 5000 from Wärtsilä as a navigational simulator)
(Figure 12). KIMFT’s simulators meet the DNV class A code and are equipped with 360◦

visual projection and shipborne equipment. Thus, they are employed for research, as
well as for the training of captains and pilots. Moreover, these simulators can store and
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analyze important data, such as the position, course, and speed of ships used in simulation
exercises [63].

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 22 
 

 

To verify the performance of the controller designed herein, the full-mission 
ship-handling simulator of the Korea Institute of Maritime and Fisheries Technology 
(KIMFT) was employed (Navi-Trainer Professional 5000 from Wärtsilä as a navigational 
simulator) (Figure 12). KIMFT’s simulators meet the DNV class A code and are equipped 
with 360° visual projection and shipborne equipment. Thus, they are employed for re-
search, as well as for the training of captains and pilots. Moreover, these simulators can 
store and analyze important data, such as the position, course, and speed of ships used in 
simulation exercises [63]. 

 
Figure 12. Full-mission ship-handling simulator of the Korea Institute of Maritime and Fisheries 
Technology. 

The ship used to verify the performance of this controller was a container ship with a 
length of 203.6 m, a width of 25.4 m, and a maximum speed of 19.4 knots. Other details of 
this ship and simulation conditions are summarized in Table 4. 

Table 4. Detailed information about the simulation ship and its conditions. 

Ship Specifications Simulation Condition 

Ship type 
Container 

carrier Depth 9.6 m Wind force 5 knots Visibility 10 miles 

Length overall 203.6 m Displacement 32,025 tons 
Wind direc-

tion 000° Target ship 
Same as the 

own ship 
Breadth 25.4 m Ship’s max speed 19.4 knots Wave 0.4 m Rate of turn 10°/min 

To verify the controller via simulation, four scenarios were considered. Each sce-
nario was simulated by calculating the proper time and the sufficient maneuver for CA 
using the controller in advance, as shown in Table 5. 

Table 5. Detailed conditions of each simulation scenario. 

Scenario 
𝑽𝑽𝐎𝐎𝐎𝐎  

(Knots) 𝑪𝑪𝐎𝐎𝐎𝐎 (°) 
𝑽𝑽𝐓𝐓𝐎𝐎  

(Knots) 𝑪𝑪𝐓𝐓𝐎𝐎 (°) 𝑳𝑳𝐎𝐎𝐎𝐎 (m) 
𝑫𝑫𝐩𝐩𝐩𝐩𝐩𝐩 

(Miles) 𝜶𝜶 (°) 

Case 1 

19.4 000 19.4 

180 

203.6 

10.0 12.3 
Case 2 225 10.2 14.4 
Case 3 270 7.9 14.0 
Case 4 315 2.4 26.2 

Figure 12. Full-mission ship-handling simulator of the Korea Institute of Maritime and Fisheries
Technology.

The ship used to verify the performance of this controller was a container ship with a
length of 203.6 m, a width of 25.4 m, and a maximum speed of 19.4 knots. Other details of
this ship and simulation conditions are summarized in Table 4.

Table 4. Detailed information about the simulation ship and its conditions.

Ship Specifications Simulation Condition

Ship type Container carrier Depth 9.6 m Wind force 5 knots Visibility 10 miles

Length overall 203.6 m Displacement 32,025 tons Wind
direction 000◦ Target ship Same as the

own ship

Breadth 25.4 m Ship’s max speed 19.4 knots Wave 0.4 m Rate of turn 10◦/min

To verify the controller via simulation, four scenarios were considered. Each scenario
was simulated by calculating the proper time and the sufficient maneuver for CA using the
controller in advance, as shown in Table 5.

Table 5. Detailed conditions of each simulation scenario.

Scenario VOS (Knots) COS (◦) VTS (Knots) CTS (◦) LOS (m) Dpca (Miles) α

Case 1

19.4 000 19.4

180

203.6

10.0 12.3

Case 2 225 10.2 14.4

Case 3 270 7.9 14.0

Case 4 315 2.4 26.2

Simulations were conducted using a container ship for the four scenarios. For each
scenario, a precalculated CA maneuver was performed using the controller at the proper
time. In particular, the ship’s course was changed while maintaining a turning rate of
10◦/min, which is the turning rate that is typically used when the ship is maneuvered
safely (except in special cases) [63]. After performing these simulations, the obtained data
were used to measure the closest point of approach (CPA) between the two ships. The
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navigation of the ship according to these simulations is shown in Figure 13; the detailed
results are presented in Table 5.
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As shown in Case 3, Table 6, right-angle crossing exhibited the smallest error between
the intended passage distance and the simulation-validated CPA; the error between the
two CPAs for each scenario was approximately −0.18–0.22 miles, indicating that the proper
time and sufficient maneuver for CA recommended by the controller has been validated.

Table 6. Simulation results.

Scenario Original CPA
(Mile)

Passage Distance (D)
(Mile)

Revised CPA by the
Controller (Mile)

Error
(Mile)

Case 1

0 1.0

1.03 +0.03

Case 2 1.22 +0.22

Case 3 0.92 −0.08

Case 4 0.82 −0.18



J. Mar. Sci. Eng. 2023, 11, 1384 18 of 21

4.2. Research Contributions

The contributions of this research can be summarized as follows.
Herein, a controller was designed using a neural network to propose the proper time

of the evasive maneuver and the sufficient maneuver for ship CA, which were proposed
via regression analysis conducted by previous studies. The proposed proper time of the
evasive maneuver and the sufficient maneuver were validated through simulations. It is
anticipated that this controller will be able to provide guidance to inexperienced seafarers
for avoiding ship collisions by utilizing these suggested evasive and sufficient maneuvers.
The provision of such guidance will contribute considerably to the prevention of ship
collisions at sea.

Moreover, the controller proposed in this study can further contribute to the develop-
ment of an alarm system to avoid missing the proper time for an evasive maneuver and an
autonomous ship collision–avoidance system, such as a ship’s autopilot.

This study is somewhat limited in the case of overtaking a ship in front and other
similar cases as the distance between the two ships was smaller than the distance to
ensure safety, despite the sufficient time suggested in the previous study being applied.
However, if further research is conducted to examine the CPA and the TCPA of overtaking,
and if criteria for appropriate overtaking distances by surveying experienced seafarers is
established, it may be possible to train the neural network controller in a way similar to
that used in this work for further improving it.

5. Conclusions

Ship collisions at sea constitute a major maritime accident, causing the loss of lives
and properties. After investigating and analyzing maritime accidents, it was found that
ship collisions are caused by either missing the timing of a maneuver or not taking enough
maneuvers. Therefore, the objectives of this research were to recognize the limitations in
providing quantitative numbers for ship CA and to design a neural network controller
that provides the proper time and sufficient maneuvers for CA in accordance with the
COLREG rules. The data for training, validating, and assessing BRANNs were prepared by
calculating the proper time of the evasive maneuver and the sufficient maneuver based on
previous studies. Finally, an ANN controller was designed, and this designed controller
was successfully verified via simulations.

The contributions and limitations of this study can be summarized as follows. The
controller proposed in this study will be able to prevent ship collisions by suggesting the
proper time for the evasive maneuver and sufficient actions for inexperienced seafarers.
It has also been anticipated that this controller will contribute to CA warning systems,
course-maintaining equipment, such as ship autopilots, and CA maneuvering systems for
autonomous ships. This study is however limited for cases such as overtaking a ship in
front. However, it is expected that the controller will be further improved by establishing
criteria for the appropriate overtaking distance after further examining the CPA and TCPA
for overtaking using the method presented in this study.
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