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Abstract: Image recognition is vital for intelligent ships’ autonomous navigation. However, tradi-
tional methods often fail to accurately identify maritime objects’ spatial positions, especially under
electromagnetic silence. We introduce the StereoYOLO method, an enhanced stereo vision-based
object recognition and localization approach that serves autonomous vessels using only image sen-
sors. It is specifically refined for maritime object recognition and localization scenarios through the
integration of convolutional and coordinated attention modules. The method uses stereo cameras
to identify and locate maritime objects in images and calculate their relative positions using stereo
vision algorithms. Experimental results indicate that the StereoYOLO algorithm boosts the mean
Average Precision at IoU threshold of 0.5 (mAP50) in object recognition by 5.23%. Furthermore, the
variation in range measurement due to target angle changes is reduced by 6.12%. Additionally, upon
measuring the distance to targets at varying ranges, the algorithm achieves an average positioning
error of 5.73%, meeting the accuracy and robustness criteria for maritime object collision avoidance
on experimental platform ships.

Keywords: object detection; stereo vision; attention mechanism; deep neural network; YOLO

1. Introduction

With the deployment of innovative unmanned vessels such as the USV Mariner and
LUSV Ranger by the U.S. Navy, a pivotal shift in ship autonomy, maritime navigation,
and surveillance technology is marked. Despite these advancements, maritime target
recognition still relies on active detection methods, such as radar, ESM, sonar systems, and
Automatic Identification System (AIS). While radar and sonar are fundamental tools for
identifying other vessels, they often lack rich texture information and typically require data
fusion with other sources like AIS and ESM for effective target detection [1]. However,
AIS and ESM are not equipped on all vessels, and their update frequency fails to meet the
real-time requirements of autonomous navigation. Importantly, radar, as a radio emission
source, is unusable in scenarios where unmanned vessels need to navigate autonomously
while maintaining radio silence. Therefore, leveraging passive detection technologies, such
as computer vision, is crucial for enhancing situational awareness under silent conditions,
vital for improving the autonomy and safety of unmanned ships.

The shift from traditional computer vision methods to deep learning in image recog-
nition has been decisive. Traditional computer vision methods, such as the Sobel [2] and
Canny [3] edge detection algorithms, identify object contours and edges by analyzing
changes in image brightness. The Sobel algorithm highlights edges by calculating the
gradient of image brightness, while the Canny algorithm further optimizes edge detection
through a multi-stage process, enhancing accuracy and robustness. Histogram of Oriented
Gradients (HOG) is another significant traditional method, building feature descriptors by
tallying the direction and magnitude of gradients in local image areas [4]. Scale-Invariant
Feature Transform (SIFT) detects and describes local image features for feature matching
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and object recognition. SIFT, with its scale invariance, effectively handles problems caused
by image scaling, rotation, and partial changes in perspective [5]. These traditional methods
have played a crucial role in initial feature identification and extraction in images. However,
they typically require manual adjustments and are less effective in handling the complexity
of high-dimensional image data encountered in modern applications [6,7].

Deep neural networks present unique advantages over traditional computer vision
methods. With their deep structure, they can automatically learn and extract hierarchical
feature representations from vast image data [8], a capability particularly crucial in the field
of computer vision. In object detection, deep neural networks can effectively distinguish
and identify different objects by analyzing various patterns and textures in images [9].
In image segmentation tasks, they segment images into multiple regions, identifying the
attributes and boundaries of each [10], which is essential for understanding image content
and context. Furthermore, in image classification tasks, deep neural networks accurately
categorize images into predefined classes by analyzing both global and local features [11].

As autonomous driving technology continues to evolve, the importance of computer
vision-based target localization algorithms has become increasingly prominent. Some
automobile manufacturers have adopted pure vision detection methods that do not rely
on high-precision maps, using multi-camera systems for autonomous driving, presenting
a promising alternative [12]. In this context, researchers have proposed methods for
target tracking and angle tracking using stereo images [13] and introduced the Stereo R-
CNN algorithm for implementation [14]. Additionally, studies have focused on geometric
information from stereo images, using Stereo Centernet to detect and locate targets in three-
dimensional space, supporting the autonomous driving of vehicles [15]. As target detection
networks have evolved, adjusting algorithms for the spatial and channel-wise distribution
probability of detected features has become an important form of improvement in the
image recognition field [16–18]. However, these algorithms are designed for terrestrial
applications and have not been specifically optimized for marine target characteristics.

The uniqueness of marine target recognition tasks lies in large-scale variations, poten-
tial occlusions, overlaps, and blurriness of targets in images. Furthermore, marine targets in
images are predominantly located near the sea–sky line. Thus, algorithms need to be specif-
ically improved for marine target recognition tasks. Some studies have designed algorithms
for maritime conditions and achieved good results [19], such as ISDet, which improved
the accuracy of marine target recognition by enhancing the ShuffleNet network structure
and applying the PD-NAML training method [20]; CLFR-Det, which enhanced recognition
accuracy by using features of different levels and semantics, combined with cross-layer
deformed convolution and a multi-scale feature refinement mechanism for enriching the se-
mantic information of small vessels [21]; and methods that improved recognition accuracy
by merging multiple visual features and segmenting sea-surface images after detecting
the sea–sky line [22]. YOLO-based object detection algorithms, tailored for marine targets,
have also demonstrated real-time target recognition capabilities, capable of recognizing
ship targets in satellite [23–25], aerial [26], and horizontal perspective images [27], proving
the feasibility of deep learning-based marine target recognition algorithms. However, they
often require data fusion with spatial information obtained from radar to locate targets [28],
hindering their use under radio silence conditions for maritime target localization.

An ideal approach to achieve marine spatial information perception based solely on
images is to utilize stereoscopic vision algorithms. In maritime platform applications, binoc-
ular stereo vision, monocular vision, and point cloud semantic segmentation algorithms
have achieved significant success, especially in 3D reconstruction performance. Binocular
stereo vision algorithms estimate depth information by capturing images from two cameras
at different angles and comparing the differences between these images [29]. Monocular
stereo vision relies on a single camera, combining data from Inertial Measurement Units
(IMU) and analyzing changes in image disparity to perceive three-dimensional space [30].
Point cloud semantic segmentation algorithms classify objects in three-dimensional space
by analyzing point cloud data obtained from LiDAR or other 3D scanning devices [31,32].
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The application of these technologies, particularly in complex maritime environments, has
significantly improved the accuracy and efficiency of sea surface stereoscopic perception.
However, these efforts have focused on spatial perception in maritime environments with-
out integrating with target recognition methods to obtain distance and location information
to support ship autonomy.

Therefore, to meet the requirements of autonomous ship navigation for marine target
recognition and localization, combining deep learning-based marine target recognition
with stereoscopic vision algorithms is both feasible and urgent. This paper proposes
the StereoYOLO algorithm, which improves the YOLOv5 object recognition algorithm
by incorporating stereo vision and attention mechanisms, thereby achieving recognition
and localization of marine targets. By analyzing a large dataset of marine targets, a deep
convolutional neural network-based method for recognizing marine targets is developed.
The algorithm accurately identifies the category of marine targets based on their spatial
and channel characteristics. Then, using stereo vision algorithms for depth perception
of recognized marine targets and transforming the coordinates into world coordinates
to obtain the location of marine targets. Additionally, to apply the algorithm to small,
unmanned surface vessels, it is necessary to adapt the algorithm for use with the NVIDIA
Jetson embedded development board in experiments.

2. StereoYOLO: A Maritime Target Recognition and Motion State Detection Algorithm
2.1. Target Recognition and Motion State Detection Process

The stereo camera system comprises left and right cameras that capture corresponding
images independently. Initially, the left image is processed through an attention-integrated
deep target recognition network, encompassing a Focus network, a main feature extraction
network, and an enhanced feature extraction network. This sequential processing leads
to the identification of target anchor boxes. In the subsequent stage within the enhanced
feature extraction framework, these identified anchor boxes guide the precise selection of
feature points from both left and right images of the stereo pair. For the purpose of matching
these feature points, the Semi-Global Block Matching (SGBM) algorithm is employed [33].
SGBM is adept at identifying distinct and reproducible features in stereo imagery, achieved
by aggregating matching costs across multiple directions and implementing a semi-global
optimization strategy. This strategy is instrumental for ensuring reliable feature point
matching, a critical factor for computing accurate disparity. Following the matching phase,
a disparity-to-depth conversion is applied to the selected feature points to obtain their
three-dimensional relative coordinates. The precision inherent in this feature point selection
and matching procedure plays a crucial role in estimating distances accurately, which is
fundamental to the robustness and precision of the three-dimensional localization process.

The target distance is calculated using the stereo ranging algorithm and further refined
by applying the K-means clustering algorithm to the distance information of multiple
feature points. The overall framework of the algorithm is shown in Figure 1.

2.2. Stereo Vision Model

The stereo vision measurement principle is depicted in Figure 2. O1 and O2 represent
the optical centers of the left and right camera imaging planes, with pixel coordinates (uO1,
vO1) and (uO2, vO2), respectively. O1x1y1z1 and O2x2y2z2 define the coordinate systems for
the left and right cameras. The target feature point Xc, with coordinates (x, y, z) in the left
camera coordinate system, projects onto the left camera imaging plane (X1O′

1Y1) at point
p1 and onto the right camera imaging plane(X2O′

2Y2) at point p2. O1O′
1 and O2O′

2 denote
the focal lengths f of the left and right camera lenses.
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In the process of stereo matching using the SGBM algorithm, the homogeneous pixel
coordinates of the projection points p1 and p2 for the maritime target feature point Xc on the
imaging planes of the left and right cameras are computed as P1 = (u1, v1) and P2 = (u2, v2).
We should first convert the pixel coordinates of the feature points into homogeneous
coordinates, i.e., P′

1 = (u1, v1, 1) and P′
2 = (u2, v2, 1). The homogeneous coordinates

are back-projected to obtain the three-dimensional coordinates relative to each camera’s
coordinate system:
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X̃c1 = M−1
1 · P′

1
X̃c2 = M−1

2 · P′
2

(1)

In Equation (1), the matrices M1 and M2 represent the 3 × 3 intrinsic parameter
matrices of the left and right cameras, respectively, which are obtained post-calibration and
determined by the camera sensor’s physical characteristics.

The point in the right camera’s coordinate system is transformed to the left camera’s
coordinate system using the relative rotation matrix R and translation vector t:

X̃′
c2 = R · X̃c2 + t (2)

With the point expressed in both camera coordinate systems, triangulation methods are
employed to resolve the actual three-dimensional coordinates of Xc: The three-dimensional
coordinates Xc are obtained by solving Equation (3):

λ1 · X̃c1 = λ2 · X̃c2 (3)

Here, λ1 and λ2 are scale factors, determined by minimizing the disparity between the
two expressions using Levenberg–Marquardt algorithm. The three-dimensional coordinates
Xc (x, y, z) are computed by applying the scale factor λ1 to the inverse of the left camera’s
intrinsic matrix M1 and multiplying it with the homogenized image coordinates P′

1 as
Equation (4):

Xc = λ1 · M−1
1 · P′

1 (4)

This computational approach is anchored in the principles of triangulation inherent to
stereo vision, leveraging the disparity in perspectives of the same point as observed by two
distinct cameras to ascertain its position in three-dimensional space.

In maritime target detection tasks, we need a horizontal coordinate to localize the
object. So, we should correct the coordinate system defined by Xc (x, y, z) which the Z-axis
extends perpendicularly from the imaging plane.

To calculate the horizontal distance of an object on the water surface, taking into
account the ship’s roll, pitch, and yaw, we can use rotation matrices to adjust the object’s
position onto a 2D plane where the y-axis represents the ship’s forward direction on the
water’s surface, and the x-axis represents the lateral direction. The process is as follows:

Define rotation matrices for roll, pitch, and yaw angles as Rroll(α), Rpitch(β), and Ryaw(γ)
adjustments. These matrices are given in Equation (4):

Rroll(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)



Rpitch(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)



Ryaw(γ) =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


(5)

Apply these rotations to Xc to adjust for the ship’s orientation as Equation (6):

Xhorizontal = Ryaw(γ) · Rpitch(β) · Rroll(α) · Xc (6)

Here, the Xhorizontal[0] and Xhorizontal[1] distance of the horizontal plane can be extract
from Xhorizontal. And the distance can be calculated as Equation (7):
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Dhorizontal =

√
Xhorizontal [0]

2 + Xhorizontal [1]
2 (7)

The schematic diagram of the improved marine distance measurement algorithm is
shown in Figure 3:
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2.3. Improved Maritime Target Detection Algorithm
2.3.1. Algorithm Framework

The target recognition network algorithm in StereoYOLO is based on the improved
YOLOv5 object detection algorithm, a leading algorithm in the field of object detection.
The algorithm divides the image into grids and detects objects within these grids. Each
grid cell is responsible for detecting targets within itself. Due to its excellent efficiency and
accuracy, YOLO has become one of the most famous object detection algorithms.

Since its release, YOLOv5 has continuously improved its algorithm to enhance effi-
ciency and accuracy. In this paper, we use the YOLOv5 v6.0 version code implementation.
The model size can be divided into YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. The weights of the five models are stacked sequentially. The algorithm is based
on the improved YOLOv5s detection model.

The target recognition network framework in the StereoYOLO algorithm is shown in
Figure 4. The main structure of the algorithm consists of the Backbone, Feature Pyramid
Network (FPN), and Yolo Head. Here, Resunit represents the residual module, Conv
represents the convolutional block, BN represents batch normalization, SiLU represents
the activation function, Concat represents merging arrays, and MaxPool represents max
pooling. Channel Attention represents the channel attention module, Spatial Attention
represents the spatial attention module, and complex network structures are established by
combining basic modules. This algorithm replaces the CSP1_X module in the backbone
network with the improved CSPCBAM and CSPCA modules with attention mechanisms,
using channel and spatial attention mechanisms to apply targeted weighting for maritime
target recognition scenarios, thus optimizing the detection accuracy of maritime target
detection tasks.

2.3.2. Backbone Network

The algorithm uses the CSPDarknet backbone network to extract features from the
input images and output them as feature layers. This process is performed three times to
obtain three feature layers, called effective feature layers.

At the input end, the backbone network employs the Focus network structure, ex-
tracting a value from every other pixel in each image to generate four independent feature
layers. This expands the input channel count by four times, resulting in a better depth
compared to the three-layer structure in other networks.
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The backbone network extensively employs residual networks (Resunit), where the
residual edges are not processed, and the input and output of the backbone are directly
combined to avoid gradient dispersion and network degradation problems. The use of
residual networks alleviates the vanishing gradient problem caused by increased depth in
the backbone network. At the same time, CSPnet splits the stacking of residual blocks, with
the main part continuing the stacking of the original residual blocks and the remaining part
directly connected to the end after minimal processing. Additionally, the backbone network
employs SiLU as the activation function, which has characteristics such as unbounded
upper, bounded lower, smooth, and non-monotonic. By smoothing the ReLU activation
function, SiLU performs better than ReLU in deep models.

The final part of the backbone network is the spatial pyramid pooling (SPP) structure,
which extracts features through max pooling with different kernel sizes, increasing the
receptive field.

2.3.3. Feature Extraction Network

The main function of the enhanced feature extraction network is to perform feature
fusion on the three effective feature layers output by the backbone network, combining
features of different scales to enhance feature extraction. In the feature utilization part,
the algorithm extracts three feature layers for target detection by extracting multiple
feature layers.

The three feature layers are located at different positions in the backbone part of
CSPdarknet, specifically in the middle layer, middle-lower layer, and bottom layer. These
three effective feature layers will be used to build the FPN layer, allowing FPN to fuse
feature layers of different sizes, thus promoting feature extraction and generating three
enhanced features.

2.3.4. Detection Head

The main function of the detection head is to convolve the three enhanced features
generated by FPN separately and determine whether there are objects corresponding to the
feature points in the feature map.
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By inputting the three enhanced features with dimensions (20,20,1024), (40,40,512), and
(80,80,256) obtained from the FPN feature pyramid into the detection head, the prediction
results are obtained.

2.3.5. Loss Function

The loss function of the model uses Generalized Intersection over Union (GIoU) as the
loss function for bounding box regression, which is derived from the improvement of the
Intersection over Union (IoU) loss function.

The calculation of the IoU loss function is shown in Equation (8):

IoU =
|A ∩ B|
|A ∪ B| (8)

where A is the predicted box and B is the ground truth box. IoU calculates the overlap
between the predicted box and the ground truth box, reflecting the detection result and
performing backpropagation. However, when used as a loss function, if there is no inter-
section between the ground truth box and the predicted box, IoU = 0, and the gradient is
zero. Without gradient backpropagation, backpropagation cannot continue. Therefore, an
improved loss function is needed to ensure that the gradient is not zero when there is no
overlap between the ground truth box and the predicted box, allowing for backpropagation.

The GIoU calculation formula is shown in Equation (9):

GIoU = IoU − |C\(A ∪ B)|
|C| (9)

The GIoUloss calculation formula is shown in Equation (10):

GIoUloss = 1 − GIoU (10)

where C is the minimum convex closure containing both A and B. By taking the difference
set of C, GIoU is non-zero and decreases as C.

2.3.6. Attention Mechanism-Based Maritime Target Detection Algorithm

In maritime target recognition tasks, camera-captured maritime targets are predom-
inantly located near the sea–sky line, necessitating tailored attention mechanisms for
enhanced detection. These targets, often represented as tensors, exhibit spatial correlations
critical for recognition.

To capitalize on this, a spatial attention module is employed, assigning higher weight
values to tensor regions where targets are more likely to emerge, typically the lower half
of the image in maritime scenarios. Concurrently, the unique environmental backdrop
of bluish skies and greenish seas in these tasks influences the pixel values in captured
images. Specifically, in the red, green, and blue (RGB) channels, blue, and green values
tend to be higher due to this backdrop, whereas pixels containing maritime targets display
varied channel values, reflective of distinct target features. This variation underscores the
necessity of channel-specific attention.

By introducing channel attention, the algorithm can differentially weigh the RGB
channels based on their relevance to target features, enhancing detection accuracy. Such
channel-specific adjustments, in synergy with spatial attention, forge a more nuanced and
effective approach to maritime target recognition, optimizing the likelihood of accurate
target identification.

Due to the specificity of maritime target recognition tasks, this paper uses the attention
mechanism to improve the maritime target detection algorithm, expecting to achieve better
target detection accuracy. In this paper, CBAM attention module and CA attention module
are separately introduced into the backbone network to improve recognition accuracy by
targeting the distribution characteristics of targets to be recognized in space and channels in
maritime target recognition tasks. Attention modules are introduced after the CSP feature
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extraction module to change the model’s sensitivity to different regional features. The
improved CSPCBAM and CSPCA network structures are shown in Figure 5:
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Figure 5. CSPCBAM (top) and CSPCA (bottom) attention module.

In the figure, Channel Attention represents channel attention, Spatial Attention rep-
resents spatial attention, X-Axis Avg Pool represents X-axis average pooling, Y-Axis Avg
Pool represents Y-axis average pooling, X-Axis Attention represents X-axis attention, and
Y-Axis Attention represents Y-axis attention.

CBAM combines channel attention and spatial attention mechanisms. Given an
intermediate feature map, the module sequentially infers attention maps along the two
independent dimensions of channels and space, and then multiplies the attention maps by
the input feature map for adaptive feature refinement.

In the CBAM attention module, given an intermediate feature map F ∈ RC×H×W

as input, the module successively infers a 1D channel attention map Mc ∈ RC×H×W and
a 2D spatial attention map Ms ∈ RC×H×W . The algorithm structure is represented by
Equation (11):

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′ (11)

where F represents the output tensor of the CSP module, F′ represents the weight tensor
after channel attention processing, and F′′ represents the weight tensor after channel-spatial
attention mechanism processing. ⊗ represents the tensor inner product.

The Convolutional Block Attention Module (CBAM) sequentially applies two distinct
attention mechanisms to the input tensor: first, the channel attention module assesses
the importance of each feature channel, then the spatial attention module evaluates the
significance of different spatial regions. The tensor is progressively refined through these
mechanisms, with the final output reflecting the enhanced feature representation after
attention has been applied.

The properties of the CBAM attention module can take into account both channel
attention and spatial attention, and affect the weights of related feature values, which
meets the needs of maritime target recognition tasks. Therefore, this paper introduces
it into the feature extraction backbone network for the improvement of maritime target
recognition tasks.

CA attention utilizes the different probabilities of detecting targets in image width and
height to optimize target detection tasks. It encodes precise target information in image
width and height, inputs the feature map, and performs global average pooling operations
in the h and w directions, respectively, to obtain feature maps in the h and w directions. The
formula is shown in Equation (12):

zh
c (h) =

1
W ∑

0≤i≤w
xc(h, i)

zw
c (w) = 1

H ∑
0≤j≤h

xc(j, w)
(12)
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The feature maps along the h and w directions are concatenated, and then sent into a
1 × 1 convolution block with shared weights. The feature map F1 is then subjected to batch
normalization and sent into a Sigmoid activation function to obtain the feature map f, as
shown in Equation (13):

f = σ
(

F1

[
zh

c , zw
c

])
(13)

Following that, perform a 1 × 1 convolution on the feature map f according to the
original height and width, obtaining new feature maps Fh and Fw. After applying the
Sigmoid activation function, the attention maps for the h and w directions, gh and gw, can
be obtained, as shown in Equation (14):

gh = σ
(

Fh

(
f h
))

gw = σ(Fw( f w))
(14)

Finally, compute the multiplication of the attention weights gh and gw with the original
feature maps in the h and w directions, respectively, to obtain the feature maps with
attention weights in the h and w directions, as shown in Equation (15):

yc(i, j) = xc(i, j)× gh(i)× gw(j) (15)

The CA attention module primarily focuses on spatial attention and refines it into
attention weights in the image height and width directions, generating attention-weighted
feature maps. This provides a targeted improvement for the greater probability of targets
appearing near the sea–sky line in maritime target recognition tasks.

2.3.7. Experimental Platform

Our research is based on the ZED stereo camera for development, as shown in Figure 6,
with a resolution of 1920 × 1080 (single-lens) and capturing 30 frames per second. The
development platform utilizes a Windows 10 21H2 operating system, 64 GB RAM, a CPU
i7-10700F with a base frequency of 2.9 GHz, a GPU RTX A4000, and Python 3.9.7 as the
experimental platform.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 20 
 

 

i7-10700F with a base frequency of 2.9 GHz, a GPU RTX A4000, and Python 3.9.7 as the 
experimental platform. 

  
Figure 6. ZED stereo camera (left) and experimental vessel (right). 

The experimental platform uses a 1.8 m test boat as the target. By performing target 
detection, ranging, and positioning experiments on the platform, the accuracy of the mar-
itime target recognition algorithm and ranging errors can be verified, thereby validating 
the target positioning algorithm. 

To meet the real-time and offline computing requirements of maritime target recog-
nition and ship motion state monitoring tasks, the mobility and power requirements of 
the monitoring platform must be considered. Therefore, it is necessary to port the mari-
time target recognition algorithm to make it suitable for small, embedded devices. 

The embedded platform in this research adopts the Ubuntu 20.04 operating system, 
with NVIDIA Jetson AGX Orin as the hardware platform [34]. It has 32 GB RAM, 
5.32TFLOPS of Single-Precision floating-point performance, and supports CUDA 11.3. 

The detailed parameters of the development and embedded platforms are shown in 
Table 1: 

Table 1. Hardware platform parameters. 

Platform Information Development Platform Embedded Platform 
CPU 8 Core Intel i7-10700F@2.9GHz 12 Core Arm Cortex-A78AE@1.3GHz 
RAM 64 GB 32 GB 
GPU NVIDIA RTX A4000 2048 Core NVIDIA Ampere GPU 

FP32 Performance 19.2 TFLOPS 5.32 TFLOPS 
Operation System Windows10 21H2 Ubuntu20.04 

Power Consumption 300 W 60 W 

The detection results, including three-dimensional position and speed data, are trans-
mitted from the embedded platform to the lower-level machine via the CAN bus interface. 
This transmission encompasses the target’s identification number and its position and 
speed in three dimensions. Additionally, the lower-level machine is connected to an Iner-
tial Measurement Unit (IMU), enabling it to calculate two-dimensional horizontal posi-
tioning information. The transmitted data are formatted in an extended frame, consisting 
of the target sequence number, category, three-dimensional positions (x, y, z), and veloc-
ities (x speed, y speed, z speed). 

3. Model Training and Experiment 
3.1. Model Training and Evaluation Metrics 

According to the needs of maritime target recognition tasks, the public dataset Sea-
ships7000 [35] is used for data augmentation and model training. The dataset classifies 
ship targets into six types: ore carrier, bulk cargo carrier, general cargo ship, container 
ship, fishing boat, and passenger ship. The dataset uses VOC format annotation, and VOC 

Figure 6. ZED stereo camera (left) and experimental vessel (right).

The experimental platform uses a 1.8 m test boat as the target. By performing target
detection, ranging, and positioning experiments on the platform, the accuracy of the
maritime target recognition algorithm and ranging errors can be verified, thereby validating
the target positioning algorithm.

To meet the real-time and offline computing requirements of maritime target recogni-
tion and ship motion state monitoring tasks, the mobility and power requirements of the
monitoring platform must be considered. Therefore, it is necessary to port the maritime
target recognition algorithm to make it suitable for small, embedded devices.
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The embedded platform in this research adopts the Ubuntu 20.04 operating sys-
tem, with NVIDIA Jetson AGX Orin as the hardware platform [34]. It has 32 GB RAM,
5.32TFLOPS of Single-Precision floating-point performance, and supports CUDA 11.3.

The detailed parameters of the development and embedded platforms are shown in
Table 1:

Table 1. Hardware platform parameters.

Platform Information Development Platform Embedded Platform

CPU 8 Core Intel i7-10700F@2.9GHz 12 Core Arm Cortex-A78AE@1.3GHz
RAM 64 GB 32 GB
GPU NVIDIA RTX A4000 2048 Core NVIDIA Ampere GPU

FP32 Performance 19.2 TFLOPS 5.32 TFLOPS
Operation System Windows10 21H2 Ubuntu20.04

Power Consumption 300 W 60 W

The detection results, including three-dimensional position and speed data, are trans-
mitted from the embedded platform to the lower-level machine via the CAN bus interface.
This transmission encompasses the target’s identification number and its position and
speed in three dimensions. Additionally, the lower-level machine is connected to an Inertial
Measurement Unit (IMU), enabling it to calculate two-dimensional horizontal positioning
information. The transmitted data are formatted in an extended frame, consisting of the
target sequence number, category, three-dimensional positions (x, y, z), and velocities
(x speed, y speed, z speed).

3. Model Training and Experiment
3.1. Model Training and Evaluation Metrics

According to the needs of maritime target recognition tasks, the public dataset Sea-
ships7000 [35] is used for data augmentation and model training. The dataset classifies
ship targets into six types: ore carrier, bulk cargo carrier, general cargo ship, container
ship, fishing boat, and passenger ship. The dataset uses VOC format annotation, and VOC
annotations are used to convert VOC format dataset annotations to COCO format dataset
annotations. The dataset contains a total of 7000 images, divided into test, training, and
validation datasets at a ratio of 1:9:0.9, resulting in 700 test images, 6300 training images,
and 630 validation images. The ship target categories, positions, and the aspect ratio of the
target’s width and height in the images are shown in Figure 7:

As can be seen, in maritime target recognition tasks, the probability of targets appear-
ing in the camera detection area in the y-direction between 0.3 and 0.6 is relatively high.
Due to the specificity of maritime target recognition tasks, the algorithm should apply
different confidence levels to different areas of the image. By using attention mechanisms,
targeted performance optimization can be achieved for maritime target recognition tasks.

During model training, to accommodate the GPU memory capacity of the experimental
platform, the actual loaded images are scaled and padded to obtain input images with a
training resolution of 640 × 640. Model training uses the Adaptive Moment Estimation
(Adam) optimizer, with an initial learning rate of lr0 = 1 × 10−3, a batch size of 16, and
100 epochs. When loading training data, data augmentation techniques such as mosaic,
image distortion, changing brightness, contrast, hue, adding noise, random scaling, random
cropping, flipping, rotation, and random erasing are used.

3.2. Simulation Experiment Analysis of Ship Target Detection Based on CBAM Improvement

The maritime target recognition algorithm proposed in this paper is based on improve-
ments to the YOLOv5 algorithm. Ablation experiments are conducted on the Seaships
dataset for ship target detection to determine the optimal position of the attention module
in the algorithm improvement. This experiment uses the development platform, and some
test parameters are shown in Table 2:



J. Mar. Sci. Eng. 2024, 12, 197 12 of 19

Table 2. Hyperparameters of ablation experiment.

resolution 640 × 640
maximum epoch 100

optimizer Adam
batch Size 16

Training data 6300
Val data 700

pretrained No

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 12 of 20 
 

 

annotations are used to convert VOC format dataset annotations to COCO format dataset 
annotations. The dataset contains a total of 7000 images, divided into test, training, and 
validation datasets at a ratio of 1:9:0.9, resulting in 700 test images, 6300 training images, 
and 630 validation images. The ship target categories, positions, and the aspect ratio of the 
target’s width and height in the images are shown in Figure 7: 

 
Figure 7. Dataset target category (a), Anchor Boxes Visualization (b), Normalized Coordinates (c), 
Normalized size (d). 

As can be seen, in maritime target recognition tasks, the probability of targets ap-
pearing in the camera detection area in the y-direction between 0.3 and 0.6 is relatively 
high. Due to the specificity of maritime target recognition tasks, the algorithm should ap-
ply different confidence levels to different areas of the image. By using attention mecha-
nisms, targeted performance optimization can be achieved for maritime target recognition 
tasks. 

During model training, to accommodate the GPU memory capacity of the experi-
mental platform, the actual loaded images are scaled and padded to obtain input images 
with a training resolution of 640×640. Model training uses the Adaptive Moment Estima-
tion (Adam) optimizer, with an initial learning rate of lr0 = 1 × 10−3, a batch size of 16, and 
100 epochs. When loading training data, data augmentation techniques such as mosaic, 
image distortion, changing brightness, contrast, hue, adding noise, random scaling, ran-
dom cropping, flipping, rotation, and random erasing are used. 

  

Figure 7. Dataset target category (a), Anchor Boxes Visualization (b), Normalized Coordinates (c),
Normalized size (d).

To evaluate the detection performance of the ship target detection algorithm that
incorporates the CBAM attention mechanism, the detection results of introducing the
CBAM attention module after the CSP1_X layer and the CONV layer at different positions
in the model are compared with the detection results of the YOLOv5s target detection
algorithm for maritime targets. Figure 8 shows the loss function value curves obtained
during the network training process when the CBAM attention mechanism is added after
the CSP1_4 layer, after all CSP layers, and after the CONV_1 and CONV_2 layers. Figure 9
removes the improved algorithms with less improvement, retaining only the improved
StereoYOLO network with the CBAM attention mechanism module added after the CSP1_4
layer and the YOLOv5s network loss function curve.
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By conducting ablation experiments on the CSPCBAM-improved backbone feature
extraction network, replacing the CSP1_X module with the CBAM attention mechanism
at different positions in the CSPDarknet backbone network, we observed changes in the
training process of the StereoYOLO target detection network. Notably, introducing the
attention mechanism after the last CSP layer resulted in a noticeable modification in the
network’s performance. In the absence of pre-training, the model achieved a final conver-
gence mean Average Precision at IoU threshold of 0.5 (mAP50) of 78.70%. This represents
an improvement over the YOLOv5s algorithm, suggesting the potential effectiveness of the
algorithmic enhancements.

The optimal weights during the training process are taken when the CBAM attention
mechanism is added at different positions in the backbone network, and comparative
experiments are conducted on the Seaships test set. The test results are shown in Table 3:

Table 3. Results of the ablation experiment.

Modified Module mAP50/%

CSP1_1 77.69
CSP1_4 78.70

CSP1_1/CSP1_2/CSP1_3/CSP1_4 78.09
YOLOv5s 76.99
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By adding the CBAM attention mechanism after the fourth CSP layer in the backbone
feature extraction network, the detection accuracy is increased from 76.99% to 78.70%. The
maritime target detection algorithm with the added CBAM attention mechanism improved
the mAP50 by 1.71% compared to the YOLOv5s target detection network in the Seaships
dataset test. At the same time, the algorithm’s performance requirements are the same as
the original algorithm, and overfitting problems can be effectively avoided. The detection
results of the improved StereoYOLO target detection algorithm are shown in Figure 10.
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It can be seen that the target detection algorithm improved based on the attention
mechanism has a higher prediction box accuracy in the test dataset after mosaic image
enhancement (left) and the standard maritime images without image enhancement (right)
and can complete the image detection task of maritime ship targets.

3.3. Simulation Analysis of Ship Target Detection with Improved Maritime Target Detection
Algorithm Based on Multiple Attention Mechanisms

According to the experimental results in Section 3.2, the introduction of the attention
mechanism can significantly improve the accuracy of the maritime target algorithm. To
explore the role of different attention mechanism modules in maritime target recognition
tasks, we introduce different attention mechanism modules to improve the algorithm
and determine the direction of attention mechanism improvement by calculating the
arithmetic average of 5 repetitions to eliminate the errors caused by the randomness of
neural networks.

After improving the algorithm by adding CA attention module and CBAM attention
module behind CSP1_4 layer, the model accuracy mAP50 is obtained, and the influence
of adding CA attention module and CBAM attention module on the mAP50 accuracy of
maritime target recognition tasks in YOLOv5 algorithm is compared with the original
algorithm mAP50 accuracy, as shown in Table 4:

Table 4. Results of the improved object detection algorithm.

Experiment ID Attention Plugins FLOPs mAP50/%

1 None 15.8G 77.48
2 None 15.8G 75.35
3 None 15.8G 76.20
4 None 15.8G 76.10
5 None 15.8G 76.25
6 CA 15.9G 77.04
7 CA 15.9G 77.66
8 CA 15.9G 78.80
9 CA 15.9G 86.14
10 CA 15.9G 87.86
11 CBAM 15.9G 80.31
12 CBAM 15.9G 76.53
13 CBAM 15.9G 77.87
14 CBAM 15.9G 77.22
15 CBAM 15.9G 79.78

The mAP50 target recognition accuracy after adding CA attention mechanism or
CBAM attention mechanism to the backbone network CSP1_4 of YOLOv5 algorithm is
81.50% and 78.34%, respectively, while the original YOLOv5 algorithm target recognition
accuracy is 76.27%. That is, the accuracy of YOLOv5 algorithm after adding CA attention
and CBAM attention improvements is increased by 5.23% and 2.07% compared to the
original algorithm. At the same time, the model calculation cost only increases from
15.8GFLOP to 15.9GFLOP, with a computational performance loss of 0.6%. Using the CA
attention mechanism, the accuracy of maritime target recognition tasks can be improved
with minimal computational cost, providing precise reference for the fusion of stereo vision
maritime target recognition algorithm.

3.4. Experiment on Ship Trajectory Detection Method Fused with Stereo Vision

To validate the effectiveness of our experimental platform, we established a controlled
experimental environment in a closed water area. Here, we utilized the platform to
measure the distance to a target ship, comparing these measurements with data from a laser
rangefinder to ascertain the accuracy of our experimental data. It is important to note that
the laser rangefinder provides single-point ranging data, while our stereo vision ranging
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algorithm extracts edge feature points within the target recognition range for K-nearest
calculation, leading to a systematic difference in results. In these experiments, the average
error was found to be 5.73%, as detailed in Table 5. For all experiments, the same trained
network was consistently used, and the experimental platform boat remained uniform in
type and size. This consistency was maintained to ensure the reliability and comparability
of our results across different measurements.

Table 5. Distance measurement results of the stereo vision algorithm.

Experiment ID Detect Distance/m Actual Distance/m

1 2.306 2.253
2 4.35 4.6
3 5.3 5.8
4 8.9 10.14
5 11.41 10.654
6 8.2 7.616
7 5.6 5.519
8 3.5 3.467

In the binocular stereo camera-based ranging experiment of the target ship, the stan-
dard error in the distance measurement results for the same target was initially 9.59%.
This percentage reflects the variability in the distance measurements due to factors such as
camera angle, environmental conditions, and inherent limitations of the pre-improvement
algorithm. After the maritime positioning algorithm was enhanced, the coefficient of varia-
tion in the ranging results was significantly reduced to 3.47%. This reduction indicates a
substantial increase in the consistency and reliability of the distance measurements under
varying conditions. The detailed experimental setup involved controlled conditions where
the target ship’s distance and relative angle to the cameras were systematically varied.
The data were then rigorously analyzed to assess the impact of these variables on the
ranging accuracy. Figure 11 illustrates the relationship between the target’s relative camera
angle and the target ranging results, both before and after the algorithmic improvements,
providing a visual representation of the enhanced accuracy and consistency achieved by
the refined algorithm.
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It can be seen that the improved ranging results correct the ranging errors caused by the
camera’s orientation angle, thereby improving the positioning accuracy of maritime targets.

4. Conclusions

This paper proposes an improved maritime target detection and positioning method
based on stereo vision. During the training phase, the Seaships ship dataset and maritime
target images in the COCO general dataset are used for forward propagation of the ship
through deep neural networks, and the weight gradient calculation and backpropagation
in the deep neural networks are performed using the annotation information in the dataset,
ultimately obtaining the improved maritime target detection algorithm for ships. In the
recognition and positioning phase, target recognition is performed through deep neural
networks, and spatial positioning of key points in the target area is performed in conjunction
with stereo vision to obtain the relative position of the target. The algorithm has undergone
several improvements based on the attention mechanism and has been compared with the
YOLOv5 algorithm for target detection accuracy. The research results show:

1. The CBAM attention mechanism-improved StereoYOLO algorithm has increased
target recognition accuracy compared to the original algorithm while keeping the
computational requirements almost unchanged. Among them, adding the atten-
tion module after the CSP1_4 layer achieves the highest accuracy improvement for
maritime target recognition tasks, reaching 1.71%. In subsequent multiple tests, the
improved algorithm achieved a 2.07% increase in mAP50 performance compared to
the original YOLOv5;

2. The CA attention-based improved StereoYOLO algorithm, which performs feature
pooling operations separately for the h-direction and w-direction, has a higher de-
tection accuracy compared to other attention algorithms, with a mAP50 accuracy
improvement of 5.23% compared to the pre-improvement algorithm;

3. Enhancements to the distance measurement algorithm have significantly increased
the robustness of positioning accuracy in maritime target recognition tasks, especially
under the conditions of a ship’s angular oscillations in three dimensions. This im-
provement becomes evident when detecting the same target at consistent distances,
where the refined algorithm has notably reduced the coefficient of variation in data
deviation, attributable to the ship’s roll, pitch, and yaw movements, from 9.59%
to 3.47%;

4. The SGBM feature point matching algorithm used in the algorithm has limitations.
The use of stereo transformer and other depth neural network-based multi-view
vision algorithms to improve target positioning accuracy will become the focus of
subsequent research.
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Nomenclature

AI Artificial Intelligence
AIS Automatic Identification System
SVM Support Vector Machine
NPU Neural Processing Unit
CNN Convolutional Neural Network
FPN Feature Pyramid Network
CBAM Convolutional Block Attention Module
CA Coordinate Attention Module
YOLO You Only Look Once
SGBM Semi-Global Block Matching
mAP mean Average Precision
IoU Intersection over Union
GIoU Generalized Intersection over Union
TFLOPS Tera Floating Point Operations Per Second
GFLOP Giga Floating Point Operations
⊗ tensor inner product
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