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Abstract: The real-time transmission of ship status data from vessels to shore is crucial for live
status monitoring and guidance. Traditional reliance on expensive maritime satellite systems for
this purpose is being reconsidered with the emergence of the global short message communication
service offered by the BeiDou-3 navigation satellite system. While this system presents a more cost-
effective solution, its bandwidth is notably insufficient for handling real-time ship status data. This
inadequacy necessitates the compression of such data. Therefore, this paper introduces an algorithm
tailored for real-time compression of sequential ship status data. The algorithm is engineered to
ensure both accuracy and the preservation of valid data range integrity. Our methodology integrates
quantization, predictive coding employing an attention-averaging-based predictor, and arithmetic
coding. This combined approach facilitates the transmission of succinct messages through the
BeiDou Navigation System, enabling the live monitoring of ocean-going vessels. Experimental trials
conducted with authentic data obtained from ship monitoring systems validate the efficiency of
our approach. The achieved compression rates closely approximate theoretical minimum values.
Consequently, this method exhibits substantial promise for the real-time transmission of parameters
across various systems.

Keywords: ship data compression; predictive coding; attention averaging; Convolutional Neural
Networks (CNNs)

1. Introduction

The advent of concepts such as smart ships and unmanned vessels has highlighted the
growing need for remote ship status monitoring. Ships generate a multitude of operational
parameters, such as speed, engine torque, and fuel consumption. By analyzing these data,
insights into the ship’s operational status and its energy-saving impact can be derived.
The real-time transmission of these data allows onshore management personnel to analyze
the system’s status based on these parameters and issue real-time instructions to enhance
energy efficiency and safety.

With the help of real-time data, common risk factors, such as equipment failure, human
operational errors, and navigation accidents, can be promptly identified and eliminated by
the shore-based data analysis system [1,2]. The shore-based system can issue more efficient
dispatch instructions, such as Virtual Arrival, to save carbon emissions by utilizing the
ship’s position and speed data [3].

Traditional monitoring systems typically rely on costly maritime satellite systems to
transmit data. To address the cost issue, the global short message communication service
offered by the BeiDou-3 navigation satellite system can be leveraged for the nearly cost-free
transmission of ship monitoring data [4,5]. However, its bandwidth falls significantly
short of the requirements for this scenario. Specifically, within the global short message
communication service of the BeiDou-3 navigation satellite system, each message cannot
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exceed 560 bits in length, and a single civil communication card can only send one message
per minute [4]. The success rate decreases as the message length increases, sometimes
dropping as low as 50% [6–8].

In our dataset, for instance, there are 41 fields to transmit, which would require
1312 bits when encoded in float32. The monitoring system records a data point every 10 s,
with no tolerance for data loss. Although existing methods, such as utilizing multiple
communication cards to increase bandwidth [9] and employing channel coding to eliminate
data loss [8,9], can be adopted, the capacity of Beidou falls significantly short of the
number of data to be transmitted. Therefore, data compression is necessary to minimize
its length. Furthermore, both the compression algorithm’s allowable calculation time and
the computing power of both the sender on the ship and the receiver in the database
are relatively abundant. Hence, optimizing the compression rate becomes the primary
objective in the compression problem for the real-time transmission of ship data via Beidou
Navigation System.

In this paper, we introduce our QAAPA method, a novel method combining Quantization,
Attention-Averaging-based Predictive coding, and Arithmetic coding and facilitating the
real-time transmission of ship data via the Beidou Navigation System. Our contributions
can be summarized as follows:

• To address the challenge of economically transmitting real-time ship status data via
the Beidou system, we have developed the QAAPA Method. This method comprises
a series of tailored steps designed to compress data in real-time while maintaining
fixed precision.

• Unlike traditional compression methods that transmit entire datasets, our approach
transmits only the residuals, resulting in a significant reduction in data size. This
transmission of residuals is made possible through a critical step in our method:
attention-averaging-based predictive coding. Here, we compute the difference be-
tween actual and predicted data, reconstructing it at the receiver’s end. Our predictor
is built on a foundation of linear regression models and Convolutional Neural Net-
works (CNNs), incorporating appropriate weights. This framework ensures accurate
real-time predictions by leveraging historical data, enabling precise reconstruction of
transmitted residuals.

• Experimental Validation: We conducted experiments using actual ship monitoring
system data. Results showcase that QAAPA achieves compression rates approaching
theoretical minimums estimated by commercial algorithms, surpassing traditional
approaches for similar problems.

The remainder of this paper is structured as follows: Section 2 discusses existing
compression solutions, highlighting the absence of suitable methods for real-time ship
status data transmission via Beidou. Section 3 details the QAAPA method tailored for
Beidou-based ship data transmission. Section 4 presents experiments validating QAAPA’s
performance. Finally, Section 5 concludes the paper and outlines future work.

2. Related Work

The BeiDou-3 navigation satellite system’s global short message communication ser-
vice is integral to numerous monitoring systems operating where ground-based commu-
nication systems are unavailable [10–13]. However, prevalent encoding formats within
these systems often lack significant compression effects or prove unsuitable for our specific
challenge. Traditional methods usually use related techniques of signal processing [11,13].
In recent years, many studies have used machine learning for data compression [14]. Com-
pression algorithms combined with machine learning are mainly used for images, sound
and video, and text [15–18], and machine learning is rarely used in the compression of
instrument status data. Common compression algorithms applied to numerical data, such
as vector quantization [19] and transformation coding [20], fail to ensure our fixed precision
goals while maintaining high compression rates.
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Predictive coding presents the potential to achieve both objectives. Crucial to ensuring
fixed precision is the encoding of residuals in predictive coding. The approach proposed
by Zhidan Yan et al. [21] involves reducing the value range of residuals, while another
approach proposed by Fout Nathaniel and Ma Kwan-Liu [22] adopts a variable precision
floating-point format for encoding residuals, reducing precision for larger absolute values.
However, both of them neglected meeting fixed precision goals, while neither approach
guarantees fixed precision, especially considering sharp changes in ship states during
engine start/stop cycles, rendering these methods unsuitable.

The utilization of machine learning-based prediction in predictive coding holds
promise for enhancing the precision of predicted values. Past research in the compression
of text or genome data has demonstrated successful applications of predictive coding. For
example, Goyal Mohit et al. [23] and Cox David [18] approached data as symbol sequences,
employing prediction methodologies across the spectrum of potential data values. How-
ever, our scenario involving ship status data predominantly comprises floating-point data
spanning an extensive range of potential values. This broad spectrum renders predicting
every possible value’s probability nearly unattainable, a challenge not present in the more
confined scope of letters or genomes. Consequently, the application of their compression
methodologies to our scenario is unfeasible. Chen Yong [13] proposed a data compression
method specifically tailored for enabling communication through Beidou’s short message
system. This method combines the Spinning Door Transformation algorithm for initial
lossy compression and the Pre-special byte method for subsequent lossless compression.
Nevertheless, this compression methodology is optimized for scalar sequences and cannot
be readily adapted and optimized for our specific ship-status data structure, which consists
of vector sequential data.

The state-of-the-art data compression techniques available are primarily designed
for general or specific scenarios that diverge significantly from the unique nature of our
situation regarding real-time transmission of ship status data, particularly vector sequential
data. Consequently, none of the existing methodologies can be directly applied to our con-
text. This predicament underscores the necessity of devising a bespoke data compression
methodology tailored explicitly to our specific scenario. This necessity has served as the
driving force behind our research endeavors, which will be comprehensively expounded
upon in the subsequent sections.

3. Methodology
3.1. Preliminaries
3.1.1. Formal Definition

The compression problem for the real-time transmission of ship data via the BeiDou
Navigation System can be described as follows:

Periodically, the sender generates a set of ship status data, denoted as xt ∈ Rn,
representing variables such as the ship’s speed, engine torque, and fuel consumption, at
the current time t. Both the sender and receiver maintain a record of all historical data
sequences, x<t, which have been previously transmitted. These historical sequences are
integral to the compression algorithm.

The sender employs an encoding function, denoted as E, to encode xt into a binary
string c = E(xt|x<t), which is then transmitted via the BeiDou short message communica-
tion system. Upon receiving this message c, the receiver performs decoding, resulting in an
approximation of the original message, x′t = D(c|x<t).

Additionally, predetermined upper and lower limits exist, denoted as Lu, Ld ∈ Rn, as
well as transmission decimal places, denoted as a ∈ Zn. These limits and decimal places are
determined by the monitoring system’s administrator according to their specific require-
ments. Our compression algorithm must encompass all potential values of xt, ensuring
that the decoded approximation, x′t, meets the required level of accuracy. Moreover, the
algorithm must strive to minimize the average coding length of the message c.

Formally, the compression algorithm must guarantee that:
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∀xt ∈ Rn, xt,i ∈ [Ld,i, Lu,i], c = E(xt|x<t), x′t = D(c|x<t), |x′t,i − xt,i| ≤ 10−ai , 0 ≤ i < n (1)

and minimize the average coding length of the message c. When applying this problem in
practical scenarios, we make the following key assumptions:

• The interpretation of each dimension within the data vector, denoted as x, remains
constant, and each dimension represents a parameter associated with the ship’s
internal state.

• Both the sender and receiver utilize computers, as opposed to circuit boards, to
process the data. They possess sufficient computing power and time (several seconds)
to execute intricate compression algorithms.

• With the help of appropriate channel coding [8,9], the communication process is reliable.

3.1.2. Quantization

Quantization is a fundamental process involving the approximation of continuous
signal values or a vast array of discrete values into a finite and often reduced set of discrete
values [24]. It is used to ensure the fixed accuracy goal required in the problem while
eliminating the unnecessary precision of the data.

3.1.3. Predictive Coding

Predictive coding, utilized in data compression, minimizes the data needed to repre-
sent information by transmitting or storing only the information that cannot be accurately
predicted. Initially, it identifies repetition and similarity within the data, generates predicted
values using a model, and compares them with actual values to derive residuals. These
residuals, ideally smaller in size than the original data, facilitate more efficient transmission
or storage [25]. The accuracy of the chosen predictive model significantly influences the
effectiveness of predictive coding. It particularly excels in scenarios with high correlation
or predictability between successive data points.

3.1.4. Arithmetic Coding

Arithmetic coding is a technique used in data compression to encode a sequence
of symbols or characters with variable-length codes. Unlike more common methods like
Huffman coding, which assigns fixed-length codes to individual symbols, arithmetic coding
encodes entire sequences of symbols into a single code. Its typical process involves the
following steps:

• Symbol Probability Modeling: The process starts with a probability model that esti-
mates the probability of each symbol in the input sequence.

• Defining the Range: Represent the entire range of possible values with a fractional
range between 0 and 1. This range is divided proportionally to the probabilities of
the symbols.

• Mapping Symbols to Subranges: Each symbol in the input sequence is then mapped
to a subrange within the total range based on their probabilities.

• Iterative Encoding: As each symbol is encoded, the subrange corresponding to that
symbol is selected and used to narrow down the overall range further.

• Outputting the Code: The final output is a binary fraction within the narrowed range,
which represents the compressed form of the entire input sequence.

Arithmetic coding is advantageous in that it can achieve higher compression ratios
compared to methods like Huffman coding because it utilizes the probabilities of entire
sequences rather than individual symbols. However, it requires more computational
resources and may be more complex to implement efficiently.

3.1.5. Linear Regression and Convolutional Neural Networks (CNNs)

In our ship status data compression process, linear regression and CNN models are
used. Linear regression is a fundamental statistical method used to model the relationship
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between two or more variables. Its simplicity and interpretability make it a widely applied
technique in various fields, including economics, social sciences, health sciences, and
machine learning.

At its core, linear regression aims to establish a linear relationship between a dependent
variable (the outcome of interest) and one or more independent variables (predictors or
explanatory variables). The model assumes that the relationship between these variables
can be approximated by a straight line.

Mathematically, the linear regression model can be represented as:

ŷ = θ0 + θ1x1 + θ2x2 + . . . + θnxn (2)

The predictive values ŷ are calculated as the weighted sum of input features, with n
representing the number of features, xn representing the ith feature value, and θj repre-
senting the jth model parameter (particularly, θj is the intercept, indicating the value of y
when all independent variables are zero) [26]. However, it should be noted that these linear
regression models assume a linear relationship by default [27].

In recent years, it has become popular to use neural networks to simulate the learning
process of the human brain to construct models and provide automated solutions within the
field of Artificial Intelligence (AI). Neural networks consist of interconnected neurons with
numerous parameters, and they exhibit layers connecting input and output [28]. Convolu-
tional Neural Networks (CNNs) [29] represent a class of deep neural networks specifically
designed to process visual data. They have revolutionized various fields, ranging from
computer vision to natural language processing, due to their capability to automatically
extract intricate features from input data. Originally inspired by the visual processing mech-
anism of the human brain, CNNs have demonstrated remarkable success in tasks such as
image classification, object detection, and segmentation. The essence of CNNs lies in their
architecture, which comprises convolutional layers, pooling layers, and fully connected
layers. Convolutional layers apply learnable filters to input images, extracting features
hierarchically by convolving across the image. Pooling layers subsequently downsample
these features, reducing computational complexity while retaining essential information.
Fully connected layers, situated at the end of the network, utilize these learned features for
classification or regression tasks. If the two-dimensional convolution in its convolutional
layer is changed to a one-dimensional convolution, it can also be used for sequence data.
In our ship data compression scenario, we applied CNNs in the predictive coding step and
achieved relatively higher prediction accuracy than other deep neural networks, such as
RNNs (Recurrent Neural Networks).

3.2. Overview of Proposed Method

The real-time transmission of ship status data comprises three primary stages (see
Figure 1). Initially, at the ship’s end, the ship status data undergoes encoding to reduce
the message length for transmission. This encoding process encompasses quantization,
predictive coding, and arithmetic coding steps. Subsequently, the compressed message
is transmitted via the Beidou system to the intended receiver. Finally, upon reception,
the receiver decodes (recovers) the message, initiating a reverse arithmetic decoding step
followed by another predictive coding step. It is noteworthy that all blocks, except for
quantization, maintain a lossless nature.

For a formal definition of the input, steps, and output involved in the encoding
and decoding processes, refer to Algorithms 1 and 2 for detailed descriptions. Subse-
quent sections will elaborate on each step sequentially, providing in-depth insights into
the methodologies.
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Algorithm 1 Encoding algorithm
Input:

xt ∈ Rn: current data to be compressed
{yτ}t−1

τ=t−m ∈ Zn·m: synced recent historical data
P : Zn·m → Zn predictor
Q : Rn → Zn quantizer
Ae : Zn → binary string arithmetic encoder with pre-calculated frequency table

Output: c: encoded message
yt ← Q(xt)
y′t ← P({yτ}t−1

τ=t−m)
et,i ← (yt − y′t)i mod Li
c← Ae(et)

Algorithm 2 Decoding algorithm
Input:

c: encoded message
{yτ}t−1

τ=t−m ∈ Zn·m: synced recent historical data
P : Zn·m → Zn pre-trained predictor
Ad : binary string→ Zn arithmetic decoder with pre-calculated frequency table

Output: x′t ∈ Rn approximation of the original data
et ← Ad(c)
y′t ← P({yτ}t−1

τ=t−m)
yt,i ← (y′t + et)i mod Li
x′t ← yt

3.3. Quantization

Quantization, as introduced in Section 3.1.2, serves as a pivotal process to approximate
continuous signal values or extensive discrete datasets into a finite and often condensed
set of discrete values. In the domain of ship sensor data, this principle holds significant
relevance for several reasons. Firstly, sensor measurement accuracy faces inherent limita-
tions owing to environmental noise, technological constraints, or sensor precision, making
the transmission of sensor readings with absolute accuracy unnecessary for the monitor-
ing system. Instead, the system can maintain data precision to a specific decimal level.
Moreover, ensuring sensor readings adhere to a predefined range is crucial, preventing
the inclusion of outliers or erroneous values due to sensor anomalies. Effectively mapping
floating-point sensor readings to a finite set of integers capitalizes on these properties.
Quantization, as the initial step in the compression process, offers the system the capability
to establish accurate thresholds consistently for all xt ∈ STH—a critical factor in aligning
the algorithm with precise ship monitoring requirements. In essence, quantization strikes a
balance between data precision and efficiency. It reduces data volume while maintaining
a level of precision that precisely aligns with monitoring needs. Hence, we employed
quantization to reduce ship sensor data volume while preserving the necessary precision.
Fulfilling the demands of data precision and efficiency, the quantization step necessitates
a configuration table. This table elucidates the practical significance of ship sensor data
and defines the effective range required by the Beidou system. Practically, we prepared
and maintained the configuration table in JSON format. Formally, the quantization step is
described as follows:

Q(x)i = round(
xi − Ld,i

10ai
) (3)

where round stands for the round function, which finds the closest integer of any real number.
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Figure 1. Flow chart of our proposed method. This figure is only used to show the global process of
our data compression approach; therefore, it does not contain the technique details of each step. The
corresponding specific structures or implementation details can be found in the subsequent sections.

The post-quantization data yt ∈ Zn are defined as yt = Q(xt). Each dimension of yt is
limited to Li possible values, a constraint arising from finite accuracy goals and specific
upper and lower limits. Notably, Li exhibits considerable variability across our dataset,
ranging from 100 to 100,000. This substantial variation poses a challenge during subsequent
encoding procedures.

3.4. Attention-Averaging-Based Predictive Coding

Following the quantization step, a pivotal aspect of our proposed method to reduce
data size involves the attention-averaging-machine-learning-based predictive coding step.
In this process, a predictive model anticipates data values, comparing them with the actual
values to derive errors or residuals. These residuals, representing the difference between
predicted and actual data, are transmitted or stored in a reduced data size instead of the
entire dataset.

The effectiveness of predictive coding hinges on the precision of the applied pre-
dictive model. Machine-learning-based prediction offers potential for generating more
accurate predicted values, which are notably successful in compressing textual and ge-
nomic data [18,23]. However, text and genomic data’s limited symbol variations enable
the generation of probability values for each input symbol, facilitating their application
in arithmetic encoding. Yet, directly applying existing predictive coding methods to ship
status data presents a challenge. The extensive range and volume of ship status data values
make generating probability values for each integer point impractical.

To address this, we designed a tailored predictive coding process for ship status
data, enabling the transmission of residual errors between predicted and true values
instead of transmitting the entire sensor data for arithmetic coding. This approach proves
feasible for ship status data due to its periodic generation and transmission, maintaining
continuous time correlations. Leveraging transmitted historical data at the receiver end,
we can pre-train a predictor based on this historical ship sensor data. Calculating the
residual error between predicted and true values of current real-time ship data enables us
to transmit only these residuals to the next arithmetic coding step. These residuals can be



J. Mar. Sci. Eng. 2024, 12, 300 8 of 16

reconstructed at the receiver end using the same predictor, ensuring the retrieval of the
complete required data.

Figure 2 illustrates the specific process of our custom-designed predictive coding
method. This method’s key sub-step involves pre-training a predictor based on historical
ship sensor data, utilized to generate predicted values for both ship and shore-side data.
This pre-trained predictor enables the transmission of significantly smaller residual errors
rather than the entire dataset to the subsequent arithmetic coding step. Formally, the
predictor P forecasts the quantized current data yt using the most recent m quantized
historical data {yτ}t−1

τ=t−m
1.

Figure 2. Flowchart of attention averaging based predictive coding.

Subsequently, only the predicted error et,i = (yt − y′t)i mod Li is transmitted, fa-
cilitating the reconstruction of yt as yt,i = (et + y′t)i mod Li. Both sender and receiver
independently calculate y′t using synchronized historical data {yτ}t−1

τ=t−m, ensuring iden-
tical results. Given that et tends to be close to zero most of the time, predictive coding
substantially reduces message length, aided by arithmetic coding in Section 3.5.

3.4.1. Attention-Averaging-Based Predictor

In predictive coding, the accuracy of the predictor directly influences the length of
transmitted information. Optimal predictor selection significantly impacts the efficacy of
predictive coding. In our approach, we employed a predictor utilizing a blending concept
akin to the attention-based averaging method proposed in [30]. This approach enables
the blending of a linear model with a CNN, enhancing prediction accuracy. Our blending
strategy stems from empirical observations of solely employing the linear or CNN models
to predict ship status data. These observations revealed differing strengths of both models
across different data fields. Consequently, to leverage their respective advantages, we
designed an attention-averaging-based method, assigning different weights to the linear
model and CNN based on distinct data properties.

Figure 3 illustrates the structure of our attention-averaging-based predictor. Initially,
the predictor takes historical data as input for both the linear regression and CNN models.
The linear regression model, unique in this paper, operates without normalization, differing
from conventional linear prediction methods common in data compression. It processes
2-D historical data as input and produces a 1-D vector as a predicted value for all fields.
The weights in the linear model are calculated using the SVD algorithm, optimizing their
performance based on historical training data rather than being theoretically derived.

Concerning the CNN model, we adopted the WaveNet architecture [31], renowned
for its success in audio processing. Within a WaveNet block, multi-layer convolutional
kernels of size 2 and gradually increased diffusion rates are employed. The global CNN
model structure includes normalization in the first layer, followed by a WaveNet block, a
flattening layer, and two densely connected layers (as shown in Figure 4b). To optimize the
model size, we applied valid padding.
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Subsequently, the outputs from both the linear regression and CNN models are fed
into our attention averaging network alongside the original historical data. This network,
comprising three densely connected layers, determines the suitable weights for the linear
regression and CNN models based on current data characteristics. Notably, the weights
generated by the attention averaging network are vectors rather than scalars. This dis-
tinction allows field-specific variation in the weights of the linear model and CNN in the
weighted average, enabling the model to adapt predictors to diverse field characteristics.

Figure 3. Structure of predictor.

(a) (b)
Figure 4. CNN model used in the attention averaging based predictor. (a) WaveNet Convolutional
Layers. (b) The global CNN architecture.

Moreover, the attention averaging model, by considering both the original inputs and
outputs of the prediction models, dynamically adjusts weights based on different input
conditions. Consequently, this approach amalgamates the strengths of linear models and
neural networks. Additionally, to ensure the sum of output weights in each dimension
equals 1, the Softmax function serves as the output layer activation function.

Once the attention averaging-based predictor determines suitable weights for the
two models, it computes the final predicted values using these generated weights. The aim
is to optimize prediction accuracy specifically tailored to ship data.

3.4.2. Residual Generation

Following the prediction by our attention averaging-based predictor, the values are
quantized into integers. This quantization enables the calculation of residuals—derived by
subtracting the quantized predicted values from the quantized actual values of the current
ship data—to be fed into the arithmetic encoder, generating the final codes.

The process of computing residuals involves only integer operations, eliminating
potential precision issues. Assuming the data to be sent is x, the most recent historical data
(typically the latest 50 data points in this context) is fed into the predictor to compute a
predicted value x′. Given that the receiver (typically the shore side) possesses an identical
predictor and historical data, transmitting solely the predicted residual x− x′ facilitates
complete reconstruction of the original data x at the receiver’s end.
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3.5. Data-Frequency-Based Arithmetic Coding

Our observations on ship status data reveal varying frequency distributions among
values. For instance, in the “Boiler Heavy Oil Density” field, although values range from
825 to 845, a significant portion tends to hover around 835. Leveraging this insight, arith-
metic coding algorithms, with the typical ideas assigning shorter encoding for frequently
occurring values and longer encoding for occasional ones, are quite suitable to be ap-
plied for our ship status data. This approach compresses data further while minimizing
information loss, functioning as an almost optimal entropy encoding method [32].

The challenge of applying arithmetic coding algorithm to our scenario lies in the fact
that our maritime vessel state data can be viewed as a fixed-dimensional multidimensional
vector, whereas arithmetic coding is typically utilized in symbol sequences of variable
lengths. Given the diversity of fields in ship status data, each field necessitates an in-
dependent frequency table. Subsequently, the code vectors generated for all fields are
combined into a single binary string—the final form transmitted to the receiver (typically
the shore side). Notably, both sender (typically the ship side) and receiver share estimated
data frequencies. During the encoding process, the frequency statistic tables remain static
and are not dynamically updated or transmitted. Estimating frequencies for each value
within a field is challenging directly, thus necessitating estimation from historical data. For
every field in the dataset, the estimated frequency pi of the i-th value is computed using
the formula:

pi =
fi + 1
m + l

(4)

Here, m represents the total historical data entries, l denotes the possible values in the
field, and fi signifies the occurrence count of the i-th value in the data.

Subsequently, the residuals obtained from the preceding predictive coding step are
encoded using these frequency tables and transmitted to the receiver.

4. Experiments and Results

In this section, we introduce our experimental settings and discuss the experiment
results we obtained.

4.1. Experimental Setting
4.1.1. Our Used Datasets

Our dataset comprises real sensor monitoring data collected from a ship’s energy
efficiency monitoring system over a two-month period. We have quantized the dataset
according to the precision requirements and numerical limits of actual ship monitoring
system, using quantization techniques discussed in Section 3.3. Our ship status data include
41 floating-point fields (Figure 5 shows a part of the data fields), which mainly describe
the real-time fuel consumption related data fields, the rotate speed, the torque and the
power of the main engine, the ship speed data fields, ship-drought-related data fields, and
the real-time weather-related data fields. With data logged approximately every 10 s, this
compilation spans 479, 742 rows.

Figure 5. The screenshot of our quantized ship status dataset.
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In applying our compression algorithm to the ship monitoring system, the number
of fields for transmission in the practical application may not precisely match those in the
experimental dataset. However, we assume similarity in the nature of the data between the
application scenario and our experimental datasets.

To avoid overfitting, we chronologically divided the dataset into training, validation,
and test sets, adhering to a 7:2:1 ratio. The training set serves for predictor training in our
predictive coding step and for estimating data frequencies applied in arithmetic coding.
The validation set aids in adjusting hyperparameters and method comparison. Lastly, the
test set is reserved to validate the efficacy of our QAAPA approach, mitigating potential
overfitting concerns.

4.1.2. Experimental Environments

Throughout our research, we conducted experiments using various compression
methods for ship status data under the following configurations: The primary remote
machine2 boasted robust specifications with an Intel Core i9-10900 CPU3, Nvidia GeForce
RTX 3090 GPU4, and 128GB of RAM; Operating on Ubuntu 20.04, we utilized Python 3.9,
TensorFlow 2.5.0, tmux for prolonged program execution, and a Jupyter server hosted at
a research institute under the Chinese Academy of Sciences. We accessed the remoted
machine via SSH. After SSH connection, the Jupyter server on the remote machine linked
to the local machine’s 8888 port. We executed and debugged code using Microsoft Visual
Studio Code5’s Jupyter Notebook and Python. The high specifications of the remote
machine expedited training and model exploration, typically requiring mere minutes for
neural network model training. For practical implementation, less resource-intensive
servers or cloud services could be employed to curtail costs during model training.

4.1.3. Experimental Design

Our primary objective in the ship status data transmission scenario is to compress real-
time data approaching its theoretical minimal length, enabling real-time transmission via
the Beidou navigation system. Our optimization focus lies in achieving a long-term average
compression rate for compression algorithms, reflected in the average code length post-
compression. Given the steps involved in these algorithms—initially estimating symbol
occurrence probabilities followed by arithmetic coding—the average code length closely
aligns with the information entropy value calculated from these probabilities.

In our approach, we estimate the summed code length of encoding methods using
the information entropy of estimated probabilities. This estimation enables us to gauge the
compression rate of different algorithms. Sequential information entropy is estimated using
commercial compression software, calculated as the compressed file size divided by the
number of data points. Notably, the minimum achieved result across various configurations
of compression software stands at 141 bit.

We devised a series of experiments to assess the effectiveness and reliability of our
designed compression algorithm for real-time ship status data:

• Experiments to estimate data frequency estimation effectiveness: We evaluated the
validity of the frequency estimation method employed in our study for future data.
This analysis involved learning curves and performance comparison on training and
validation sets. Estimation used the early part of the training data to gauge frequency
and calculate information entropy.

• Ablation Experiments on our compression algorithm (QAAPA): We conducted ex-
periments to analyze the key steps in our QAAPA method—Quantization, Attention-
Averaging-based Predictive Coding, and Arithmetic Coding. We trained the attention
averaging-based predictor by initially training the linear and CNN models separately.
The subsequent training of the attention averaging model involved freezing linear
model parameters for 20 epochs and using a constant learning rate of 5e-4. We im-
plemented models in Keras with TensorFlow as the backend, trained on an Nvidia
Quadro K620 GPU. We compared the summed coding length before and after applying
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our QAAPA method across training, validation, and test datasets. Additionally, we
assessed individual steps within QAAPA by comparing it with alternative methods:

– Original: only encoding data in float64 format without data compression
– Q Method: Solely employing Quantization for data compression.
– QA method: Employing Quantization and Arithmetic Coding for data compression.

All of the above methods remove one or more steps from our QAAPA method. The follow-
ing two methods replace the averaging-attention-based predictor of our QAAPA method:

– QLRPA: Replacing the attention-averaging-based predictor in QAAPA with linear-
regression-based predictive coding and including Quantization, linear-regression-
based predictive coding, and Arithmetic coding for data compression.

– QCNNPA: Replacing the attention-averaging-based predictor in QAAPA with
CNN-based predictive coding and including Quantization, CNN-based Predictive
coding, and Arithmetic coding for data compression.

• Experiments on the reliability of our QAAPA method: This experiment involved
comparing compression results using our QAAPA method across training, validation,
and test sets. The compression results are evaluated by the following descriptive
statistics, including the mean value, standard deviation, minimum value, 25th per-
centile, median (50th percentile), 75th percentile, and maximum value. In addition, we
analyzed the transmitted code length via Beidou over time to evaluate the reliability
of our method.

4.2. Results and Discussion
4.2.1. Results on the Effectiveness of Data Frequency Estimation

Figure 6 shows our frequency estimation evaluation results. The information entropy
calculated from the estimated frequency remains stable when the data constitute more
than 15% of the total training dataset. This stability across varying data indicates that the
frequency estimation method exhibits no significant overfitting tendencies. Conclusively,
the frequency estimation derived from historical data demonstrates consistency, validating
its suitability for future data and ensuring the reliability of the subsequent arithmetic
coding step.

Figure 6. The estimated information entropy with different number of data.

4.2.2. Results on Ablation Experiments on our QAAPA Method

As introduced in Section 4.1.3, the coding lengths are obtained by summing the
information entropy of all data fields. Figure 7 shows the separate information entropy of
examples data fields. As we can see from it, with our tested dataset, the linear regression
predictor is able to provide shorter coding lengths than the CNN predictor for most of
the data fields, which indicates that a simple algorithm is sufficient to provide satisfactory
compression effectiveness for most cases. However, there are still data fields that can
achieve shorter coding lengths using more complicated CNN models, which proves the
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necessity to combine different algorithms. As expected, our attention-averaging-based
algorithm can achieve the shortest coding lengths by assigning suitable weights for both
algorithms for all data fields.

Based on the above-introduced summation method, we can obtain the average coding
lengths of using different data compression methods shown in Table 16. As we can see,
Quantization alone reduced the average coding length to approximately 40% of the origi-
nal data size. Incorporating arithmetic coding further halved the average coding length.
Introducing predictive coding enhanced compression, with linear-regression-based predic-
tion outperforming CNN-based prediction for most ship status data fields. The complete
QAAPA method achieved the most substantial compression, reducing the original data size
to less than 10%. These results collectively demonstrate the effectiveness of each step within
the QAAPA approach and highlight the superior performance of the complete method in
compressing real-time ship status data.

Figure 7. The separate information entropy of data fields of the training dataset obtained using
linear regression predictor (LR), CNN predictor (CNN), and our proposed attention-averaging-based
predictor (Attention Averaging).

Table 1. Ablation study: average coding length of different data compression methods.

Methods
Average Coding Lengths (bits)

Training Dataset Validation Dataset

Original 1312 1312
Q 504 504

QA 263 274
QLRA 122 120

QCNNPA 216 240
QAAPA 110 108

4.2.3. Experiments on the Reliability of Our QAAPA Method

We evaluated our proposed method in the test set and compared the performance
on the test set with those on the train and valid set. The results of the test are shown
in Table 2. As we can see from it, the compression effectiveness observed in the test set
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remained consistent with the training and validation sets, demonstrating stability and
absence of overfitting. The graphical representation of generated code length versus time
(Figure 8) illustrates the stability of compression effectiveness over time. The average
coding length achieved by the proposed QAAPA method closely aligns with the sequential
information entropy estimated earlier, indicating compression results nearing the theoretical
minimum. These findings confirm the robustness and reliability of the QAAPA method for
compressing real-time ship status data without significant overfitting issues.

Table 2. Average coding length of our QAAPA method.

Dataset
Statistics in Bits

Mean Std Min 25% 50% 75% Max

train (70%) 109.96 18 68 96 108 120 360
valid (20%) 108.38 18 68 96 104 120 360
test (10%) 104.10 20 68 88 100 112 348

Figure 8. The generated code length versus time.

5. Conclusions and Future Work

This study presents QAAPA, a novel methodology facilitating real-time transmission
of ship data via the Beidou Navigation System. The approach involves the real-time com-
pression of sequential ship status data, achieving precision while adhering to predefined
data ranges. QAAPA integrates quantization, attention-averaging-based predictive coding,
and arithmetic coding algorithms to compress the data stream effectively. Experimental
evaluation using real ship monitoring data showcases the efficacy of QAAPA. The re-
sults demonstrate its proximity to the theoretical minimum estimated through commercial
compression algorithms, surpassing traditional approaches in similar contexts.

Future research avenues include expanding the method’s utility in analogous scenarios,
such as dynamically adjusting coding accuracy to limit message lengths and integrating
incremental learning to eliminate the need for pre-training. Additionally, optimizing
the structure of the predictive coding predictor stands as a promising area for enhanced
efficiency and effectiveness of the QAAPA approach.
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Notes
1 m empirically set to 50.
2 sourced from Shanghai, China
3 Manufactured by Intel Corp., Santa Clara, CA, USA
4 Manufactured by Nvidia Corp., Santa Clara, CA, USA
5 Version 1.86.0
6 The bold numbers indicate that our method has the best performance compared to other methods.
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