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Abstract: Aiming to reduce motor speed estimation and torque vibration present in the permanent
magnet synchronous motors (PMSMs) of rim-driven thrusters (RDTs), a position-sensorless control
algorithm using an adaptive second-order sliding mode observer (SMO) based on the super-twisting
algorithm (STA) is proposed. In which the sliding mode coefficients can be adaptively tuned. Similarly,
an iterative learning control (ILC) algorithm is presented to enhance the robustness of the velocity
adjustment loop. By continuously learning and adjusting the difference between the actual speed and
given speed of RDT motor through ILC algorithm, online compensation for the q-axis given current
of RDT motor is achieved, thereby suppressing periodic speed fluctuations during motor running.
Fuzzy neural network (FNN) training can be used to optimize the STA-SMO and ILC parameters of
RDT control system, while improving speed tracking accuracy. Finally, simulation and experimental
verifications have been conducted on the vector control system based on the conventional PI-STA
and modified ILC-STA. The results show that the modified algorithm can effectively suppress the
estimated speed and torque ripple of RDT motor, which greatly improves the speed tracking accuracy.

Keywords: rim-driven thruster (RDT); permanent magnet synchronous motor (PMSM); position-
sensorless control; super-twisting algorithm (STA); iterative learning control (ILC); fuzzy neural
network (FNN)

1. Introduction

Electric propulsion systems have undergone significant development in recent years
due to their advanced control efficiency and performance. The rim-driven thruster (RDT)
is a new type of low-carbon emission electric thruster, which integrates the propeller blade
and the motor together by embedding the motor into the duct. This new type of electric
thruster can eliminate the need for shaft transmission, mechanical seals, and oil circuit
systems in traditional ship propulsion systems. It can save space for cabins on ships,
improve motor efficiency and hydrodynamic efficiency, and reduce system installation
complexity and manufacturing costs [1]. For the development of this new type of electric
thruster, the selection of the propulsion motor RDT and its control algorithm are the key
technologies.

At present, alternating current (AC) induction motors, brushless direct current (BLDC)
motors, permanent magnet synchronous motors (PMSM), and high-temperature super-
conducting motors are included for the selection of RDT motors. Considering the work
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efficiency, manufacturing costs and processes performance of RDT, PMSM is currently
considered the best choice for RDT propulsion motor. In order to accomplish the vector
control of PMSM, it is necessary to obtain accurate rotor position information using position
sensors. However, traditional mechanical position sensors (i.e., photoelectric encoders,
resolvers, etc.) need to be mounted on the transmission shaft, which does not exist in RDT.
They also have problems regarding large size, high costs, and low reliability, especially in
specific engineering applications. RDT has a compact structure without the transmission
shaft that can work in a harsh underwater environment, see Figure 1. Therefore, it is of great
significance to develop anti-chattering position-sensorless control algorithms for RDT drive
motors to realize high-performance control [2,3]. The PMSM position-sensorless control
algorithms mainly include direct calculation methods, back-EMF integration methods,
model reference adaptive methods, and various observer methods [4–8].
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Of these, the sliding mode observer (SMO) can reduce the dependence on motor
parameters with advantages of having a fast response speed, strong robustness, and simple
structure. Therefore, it is widely used in the position-sensorless control of PMSM [9]. The
chattering will occur in the control system when using the SMO algorithm due to the
switching of the sliding mode surface [10]. Especially in the vector control of PMSM at
low speeds, it causes relatively large torque ripples. Therefore, it is necessary to eliminate
chattering while maintaining control accuracy when using the SMO algorithm. The current
research mainly focuses on the comprehensive improvement of switching function, sliding
mode gain, estimation accuracy, etc. [11–14]. The first-order SMO always has chattering
problems, which have a negative impact on the stability of the system. The second-order
SMO can effectively eliminate chattering while maintaining the system robustness [15,16]
and is well received by many scholars.

Due to the influences of motor design, inverter nonlinearities, and current detection
errors, the PMSM control system suffers from torque vibration with current harmonics,
which also reduces speed control accuracy. Usually, the vibration of motor torque is
suppressed by optimizing motor design or improving the motor control strategy. However,
it is difficult to modify the design after completing the original motor design [17]. With
the development of control theory, many improved control strategies have been proposed
to reduce torque vibration suppression, such as harmonic voltage injection, proportional-
integral quasi-resonant compensator, and dead-zone feedforward compensation [18,19].
Iterative learning control (ILC) is an approach to improve the performance of a system that
executes repetitively and periodically over a fixed time interval by learning from previous
executions (trials, iterations, and passes) [20]. It does not rely on the mathematical model
of systems and can be used in PMSM control to effectively improve tracking performance
and compensate the control signal through continuous learning [21].

This paper presents a RDT position-sensorless control algorithm using an adaptive
second-order SMO based on the super-twisting algorithm (STA). An adaptive algorithm
is used to tune the sliding mode coefficients. Furthermore, a torque ripple suppression
method based on ILC algorithm is proposed. A closed-loop PI-ILC algorithm with a
forgetting factor is introduced to compensate for the q-axis given current through iterative
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learning, thereby reducing the real-time speed error. Considering the error and error rate of
motor speed as input, and fuzzy neural network (FNN) training is used to optimize the ILC
and STA-SMO parameters to improve the accuracy and stability of the control system. The
proposed control algorithm can suppress the motor speed torque vibration and improve
the speed tracking accuracy. The main innovations of this paper are as follows:

(1) A RDT control strategy using an adaptive second-order SMO based on the STA is
designed.

(2) To reduce the torque ripple suppression of RDT motor, a closed-loop PI-ILC algorithm
is introduced to compensate the speed real-time error to the q-axis given current.

(3) FNN training is used to optimize the ILC and STA-SMO parameters to improve the
accuracy and stability of the current loop.

The rest of this paper is organized as follows: Section 2 introduces the materials
and methods of RDT motor model and proposed control algorithm. Section 3 introduces
the application of multi-parameter FNN for parameter tuning. Section 4 introduces the
simulation results and discussions of a RDT motor sensorless control model on MATLAB
R2017b/Simulink environment. Section 5 introduces the experimental results and the
discussions of a RDT motor sensorless control system on experimental setup. The final
section presents the conclusions and subsequent ideas of the topic covered in this paper.

2. Materials and Methods

The mathematic current model of the RDT motor in the αβ-axis reference system can
be expressed as: { diα

dt = − Rs
Ls

iα +
1
Ls

uα − 1
Ls

eα
diβ

dt = − Rs
Ls

iβ +
1
Ls

uβ − 1
Ls

eβ

(1)

where iα and iβ and uα and uβ represent the current and voltage in αβ-axis reference system,
respectively. Ls and Rs represent the inductance and resistance of stator winding.

eα and eβ represent the back EMFs in αβ-axis reference system and can be expressed as:

{
eα = −ωψ f sin θ

eβ = ωψ f cos θ
(2)

where ψ f is the flux linkages and ω and θ represent the rotor speed and position of the
RDT motor.

2.1. Adaptive STA-SMO

The super-twisting algorithm (STA) was first proposed by A. Levant to effectively elim-
inate the chattering problem of first-order SMO. The basic form of STA with perturbation
was designed as [22]: {

dx1
dt = −k1|x̃1|1/2sgn(x̃1) + x2 + z1(x1, t)

dx2
dt = −k2sgn(x̃1) + z2(x2, t)

(3)

where x1, x2, and x̃1 are the state variables, error between estimated values, and actual
values of the state variables. k1 and k2 are designed to be the sliding-mode coefficients of
STA. z1 and z2 are perturbation terms of system.

The stable conditions of STA have been proved in [23,24], demonstrating that the
perturbation terms should be globally bounded by:{

|z1| ≤ δ1|x1|1/2

|z2| = 0
(4)
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And the sliding mode coefficients k1 and k2 should satisfy (5) to stabilize the system:{
k1 > 2δ1

k2 > k1
5δ1k1+4δ2

1
2k1−4δ1

(5)

where δ1 > 0 and is a normal number.
In order to obtain the estimated value of the back EMF, the stator currents of RDT

motor are estimated using STA based second-order SMO [15,16]:
dîα
dt = − Rs

Ls
îα +

1
Ls

uα +
1
Ls

k1

∣∣∣ĩα

∣∣∣1/2
sgn(ĩα) + 1

Ls

∫
k2sgn(ĩα)dt

dîβ

dt = − Rs
Ls

îβ +
1
Ls

uβ +
1
Ls

k1

∣∣∣ĩβ

∣∣∣1/2
sgn(ĩβ) +

1
Ls

∫
k2sgn(ĩβ)dt

(6)

in which îα and îβ denote the estimated values of iα and iβ. By comparing Equation (3) with
Equation (6), it can be concluded that perturbation terms z1 and z2 are designed through:{

z1(îα, t) = − Rs
Ls

îα +
1
Ls

uα

z1(îβ, t) = − Rs
Ls

îβ +
1
Ls

uβ
, z2 = 0 (7)

By substituting Equation (7) into Equation (4), we obtain:{
− Rs

Ls
îα +

1
L uα − δ1

∣∣îα∣∣1/2 ≤ 0

− Rs
Ls

îβ +
1
L uβ − δ1

∣∣îβ

∣∣1/2 ≤ 0
(8)

For a sufficiently large δ1, the validity of the above inequality can be met. The state
equations of currents errors in αβ-axis reference system can be derived by subtracting
Equation (1) from Equation (6):

dĩα
dt = − Rs

Ls
ĩα +

1
Ls
(k1

∣∣∣ĩα∣∣∣1/2
sgn(ĩα) +

∫
k2sgn(ĩα)dt + eα)

dĩβ

dt = − Rs
Ls

ĩβ +
1
Ls
(k1

∣∣∣ĩβ

∣∣∣1/2
sgn(ĩβ) +

∫
k2sgn(ĩβ)dt + eβ)

(9)

When the system reaches the sliding surface and the estimated error is close to 0
(̃iα = 0, ĩβ = 0). The equivalent back-EMFs eα and eβ can be obtained by the equivalent
control method, it can be concluded that:eα = −k1

∣∣∣ĩα∣∣∣1/2
sgn(ĩα)−

∫
k2sgn(ĩα)dt

eβ = −k1

∣∣∣ĩβ

∣∣∣1/2
sgn(ĩβ)−

∫
k2sgn(ĩβ)dt

(10)

where k1 and k2 are the sliding mode coefficients. It is difficult to determine the actual
values of k1 and k2 in practice. And different sets of k1 and k2 will influence the stability
conditions of STA-SMO. Therefore, it is crucial to adaptively adjust the sliding mode
coefficients. The adaptive algorithm is given as:{

k1 = σ1ω
k2 = σ2ω2 (11)

in which σ1 and σ2 are adaptive coefficients. The stability of the adaptive algorithm has
been proved in [16].

The rotor position estimation method based on the arctangent function will directly
introduce the sliding mode chattering into the division operation, resulting in significant
estimation errors. Therefore, the PLL structure is used to extract the rotor position informa-
tion of the RDT motor. It can suppress chattering and maintain good control performance.
The structure block diagram of the adaptive STA-SMO is shown in Figure 2.
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2.2. Design of ILC Algorithm

By analyzing the previous control data, ILC can find appropriate control input through
real-time online iteration, theoretically obtaining accurate tracking trajectories.

Traditional PI control achieves satisfactory results by selecting appropriate propor-
tional and integral parameters but struggles to meet high-precision control requirements.
By introducing the ILC algorithm to form an ILC controller, the q-axis given current of
motor can be obtained with ILC controller and traditional PI controller.

The type of PI-ILC algorithm is adopted to acquire the learning law [19]:

iq,k+1 ∗ (t) = (1 − α)iq,k ∗ (t) + ηek+1(t) + ξ
∫

ek+1(t)dt (12)

where iq,k+1 ∗ (t) is the reference signal of the current cycle’s q-axis current; iq,k ∗ (t) is the
reference signal of the q-axis current in the previous cycle called the “learning experience”;
ek+1(t) is the current cycle speed deviation signal, which is mainly used to compensate
for the “learning experience” loss caused by the forgetting factor; and η and ξ are the
closed-loop learning coefficients. Formula (12) in the z-domain is shown as:

iq,k+1 ∗ (z) = (1 − α)iq,k ∗ (z) + ηek+1(z) + ξ
z

z − 1
ek+1(z) (13)

The iterative process can be regarded as a delay link, which is shown as:

z−N iq,k+1 ∗ (z) = iq,k ∗ (z) (14)

in the above equation, N = fsample/ fsignal , fsample represents the sampling frequency of the
digital control system, while fsignal is the system signal frequency.

When N takes a value of 1, the z-domain transfer function of the equation is shown as:

G(z) =
iq,k+1 ∗ (z)

ek+1(z)
=

(η + ξ)z2 − η

z2 − (2 − α)z + (1 − α)
(15)

The structure block diagram of ILC process and closed-loop PI-ILC are shown in
Figures 3 and 4.
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The design of the ILC controller should not only ensure its stability but also ensure
that the iterative algorithm converges to its true value. The convergence conditions of the
PI type iterative algorithm are determined as follows.

Combining Formulas (12) and (15) through ek+1 = ωre f − ωr,k+1, it can be seen that:

ek+1 = ωre f −
npkt

J

{∫
(1 − α)iq,k ∗+

∫
[ηek+1 + ξ

∫
ek+1dt]dt

}
(16)

where J is the inertia moment, np is the pole pair of the motor, and kt is the torque coefficient.
Therefore, the following formulas are obtained:

∥ek+1∥∝ = max
0≤t≤T

∣∣∣∣(1 − α)ek + αωre f −
npkt

J

∫ t

0
[ηek+1 + ξ

∫ t

0
ek+1dt]dt

∣∣∣∣ (17)

The definition of the infinite parametric number and the absolute value inequality
leads to: ∣∣∣∣1 − npkt

J
(ηt +

1
2

ξt2)

∣∣∣∣∥ek+1∥∝ ≤ |1 − α|∥ek∥∝ + α∥ωre f ∥∝ (18)

When lim
k→∞

ek(t) = 0, the algorithm converges by considering the convergence condi-

tion of the PI-ILC algorithm: ∣∣∣∣ J(1 − α)

J − npktηT − 0.5npktξt2

∣∣∣∣ < 1 (19)

where t ∈ [0, T], T is the system tracking time.

3. Application of Multi-Parameter Fuzzy-Based Neural Network for Parameter
Auto-Tuning

The principle of neural network is to analysis errors based on training and online
results, modify weights and thresholds, and iteratively obtain models with the online
results as outputs. It consists of input and output layer nodes, as well as one or more
hidden layer nodes. The input information must be propagated forward to the hidden
layer, and the activated information is passed to each output node after the activation
function operation of the unit node to obtain the output results.

Fuzzy neural networks (FNNs) have good self-learning and adaptive abilities with
strong robustness that only relies on fuzzy rules [25–29]. They can perform logical reason-
ing through established fuzzy rules which have good approximation abilities for certain
complex nonlinear systems.

The proposed algorithm consists of an ILC algorithm, adaptive STA-SMO algorithm,
and FNN algorithm. FNNs can generate fuzzy rules and adjust affiliation functions through
strong self-learning and adaptive training. The control system transfers the speed deviation
e(t) and the deviation rate ec(t) to the FNN, which can adjust the ILC parameters α, η, and
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ξ and the STA-SMO parameters σ1 and σ2 to achieve better speed control performance after
the fuzzification, fuzzy inference, and anti-fuzzification of the output.

The structure block diagram of FNN is shown as Figure 5. The four layers are input,
fuzzification, fuzzy inference, and output layers in order. The calculation formula for input
layer is shown as follows: 

x1 = e(t)
x2 = ec(t)

o1(i) = [x1, x2]
(20)
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The fuzzification layer considers a Gaussian membership function as the analysis
method, which is shown as:{

o2(i, j) = exp
(
−[o1(i)− cij]

2/(bij)
2
)

i = 1, 2; j = 1, 2, · · · , n
(21)

in which cij is the central value of membership function; bij represents the width of function
curve; and n is the number of fuzzy subsets.

The calculation formula for the fuzzy inference layer is shown as:
o3(i) = o2(1, k)× o2(2, k)

k1 = 1, 2, · · · , 5; k2 = 1, 2, · · · , 5
i = 1, 2, · · · , 25

(22)

The calculation formula for the output layer is shown as follows:o4(i) =
25
∑

j=1
o3(j)× ωij

i = 1, 2, 3
(23)

in which ωij is the weight coefficient.
The ILC and STA-SMO control parameters output by the output layer are shown as:

o4(1) = σ1, o4(2) = σ2, o4(3) = η, o4(4) = ξ, o4(5) = α (24)



J. Mar. Sci. Eng. 2024, 12, 396 8 of 16

The parameters to be learned by the FNN are the affiliation function center value
cij, the width value bij, and the weight value ωij, and the objective function is shown as
follows:

E(k) =
1
2
[r(k)− y(k)]2 (25)

in the formula, r(k), y(k), and r(k)− y(k) are the expected output, actual output of each
network learning, and the control error.

The learning algorithm for the centroid, width, and weight of the affiliation function is
shown as: 

cij(k + 1) = cij(k) + λ
∂E(k)
∂cij(k)

+ µ∆cij(k)

bij(k + 1) = bij(k) + λ
∂E(k)
∂bij(k)

+ µ∆bij(k)

ωij(k + 1) = ωij(k) + λ
∂E(k)

∂ωij(k)
+ µ∆ωij(k)

(26)

where k is the iterative steps of network, λ represents the learning rate, and µ represents
the inertia coefficient.

The block diagram of FNN and control system is presented in Figure 6:

(1) Determine neural network framework through number of layers and nodes in each
network layer and select initial weights, learning rate, and momentum factor.

(2) Calculate the objective function obtained by running k times.
(3) Calculate the input and output values of each network layer.
(4) Calculate the output of the self-disturbance rejection controller.
(5) Perform backpropagation calculations to correct the weights of output and hidden layers.
(6) If successful, end iteration; if not, return to step (2).
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4. Simulation Results and Discussions 
The simulation model in this paper is based on MATLAB R2017b/Simulink environ-
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4. Simulation Results and Discussions

The simulation model in this paper is based on MATLAB R2017b/Simulink environ-
ment. The structure block diagram of sensorless control model for RDT motor is shown in
Figure 7. The main parameters of the RDT motor in simulation are summarized in Table 1.
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Table 1. Main parameters of RDT motor.

Parameters Value

Number of motor pole pairs (p) 10
Rotor flux (ψf) 0.0078 Wb

Rated voltage (U) 48 V
Inertia moment (J) 0.00106 kg·m2

Rated power (Pe) 0.7 kW
Resistance (R) 0.061 Ω
Inductance (L) 0.12 mH

To verify the system control performance based on the proposed algorithm, compar-
isons between conventional PI-STA and modified ILC-STA have been carried out through
simulations. The motor starts with the initial given speed of 1200 r/min, the load torque
changes to 1.5 N·m at 0.4 s, the given speed changes to 800 r/min at 0.6 s, and the load
torque changes back to 0 at 0.9 s.

The simulation results of the RDT motor using conventional PI-STA algorithm are
shown in Figure 8. From top to bottom, the estimated speed and actual speed, the speed
error, the given torque and electromagnetic torque, the estimated and actual position, and
the position error and the three-phase stator currents are presented. It can be seen that the
speed error is about −3 and 22 r/min under the 1200 r/min given speed and about −1 and
12 r/min under the 800 r/min given speed. The torque errors are about −1.2 and 1.1 Nm,
−1.1 and 1.2 Nm, −1.3 and 1.2 Nm, and −0.9 and 0.8 Nm, respectively. The position error
of the RDT motor is about 0.7 rad.

The simulation results of the RDT motor using modified ILC-STA are shown in Figure 9.
It can be seen that the speed error is about −2 and 11 r/min under the 1200 r/min given
speed and about −1 and 7 r/min under the 800 r/min given speed. The torque errors
are about −0.4 and 0.4 Nm, −0.6 and 0.6 Nm, −0.5 and 0.5 Nm, and −0.5 and 0.5 Nm,
respectively. The estimated position error of the RDT motor is about 0.7 rad.

From the simulation results, it can be seen that compared to the conventional PI-STA,
the modified ILC-STA produces smaller speed and torque errors. The estimated position
error is almost the same. The RDT motor speed, torque, and stator currents results display
less chattering. This proves that the modified algorithm obviously maintains better control
performance. Table 2 shows the performance comparison of different control algorithms.
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Table 2. Simulation performance comparison of different control algorithms.

Control Algorithm Speed Error Ripple
(r/min) Torque Ripple (Nm) Maximum Speed

Error (r/min)

Conventional PI-STA 25/13 2.3/2.3/2.5/1.7 22/12
Modified ILC-STA 13/8 0.8/1.2/1/1 11/7

5. Experimental Results and Discussions

In order to verify the performance of the RDT motor sensorless control algorithm,
a TMS320F28335 DSP-based experimental setup was built, as shown in Figure 10. The
experimental setup consists of a magnetic powder brake, a torque sensor, and a test RDT
motor, which are fixed together on a T-slotted platform and connected by elastic couplings.
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The main parameters of the test RDT motor are the same as that in the simulation. And the
experimental results under different conditions are shown in Figures 11–13.
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Figure 10. Experimental setup for the RDT motor. (a) Block diagram of experimental setup. (b) Di-
agram of physical experimental setup. 
Figure 10. Experimental setup for the RDT motor. (a) Block diagram of experimental setup. (b) Diagram
of physical experimental setup.

Condition 1: The tested given speed is set to 1200 r/min with sudden load torque
changes from 0 to 1.5 Nm. Figure 11 shows the experimental results comparison between
the conventional PI-STA and the modified ILC-STA in each case of step change in load
torque. From top to bottom, the estimated speed and actual speed, the speed error, the
given torque and electromagnetic torque, the estimated and actual position, the position
error, and the three-phase stator currents are plotted. It can be observed that the stable error
of the modified algorithm is smaller than that of the conventional algorithm. The motor
speed estimation error ripple is about −2 and 22 r/min, respectively. The motor speed
error ripple is about 24 r/min, and the electromagnetic torque ripples are about 2.2 Nm and
3 Nm, respectively. The rotor position error between the estimate and actual value of RDT
motor is about 0.7 rad. When the modified ILC-STA is used, the motor speed estimation
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errors are about −2 and 11 r/min, respectively. The motor speed error ripple is about
13 r/min, and the electromagnetic torque ripples are about 0.9 Nm and 1 Nm, respectively.
The rotor position error between the estimate and actual value of RDT motor is also about
0.7 rad. From Figure 11, it can be seen that the motor speed and electromagnetic torque
waveforms are more stable, and the ripple is smaller than when using the conventional
algorithm. The RDT motor speed error ripple deceases by 46% and the torque ripple
deceases by 59% and 67%, respectively. The maximum speed error deceases by 11 r/min.
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Figure 11. Experimental results under a step change of the load torque condition. (a) Conventional 
PI-STA. (b) Modified ILC-STA. 

Condition 1: The tested given speed is set to 1200 r/min with sudden load torque 
changes from 0 to 1.5 Nm. Figure 11 shows the experimental results comparison between 
the conventional PI-STA and the modified ILC-STA in each case of step change in load 
torque. From top to bottom, the estimated speed and actual speed, the speed error, the 
given torque and electromagnetic torque, the estimated and actual position, the position 
error, and the three-phase stator currents are plotted. It can be observed that the stable 
error of the modified algorithm is smaller than that of the conventional algorithm. The 
motor speed estimation error ripple is about −2 and 22 r/min, respectively. The motor 
speed error ripple is about 24 r/min, and the electromagnetic torque ripples are about 2.2 
Nm and 3 Nm, respectively. The rotor position error between the estimate and actual 
value of RDT motor is about 0.7 rad. When the modified ILC-STA is used, the motor speed 
estimation errors are about −2 and 11 r/min, respectively. The motor speed error ripple is 
about 13 r/min, and the electromagnetic torque ripples are about 0.9 Nm and 1 Nm, re-
spectively. The rotor position error between the estimate and actual value of RDT motor 

Figure 11. Experimental results under a step change of the load torque condition. (a) Conventional
PI-STA. (b) Modified ILC-STA.

Condition 2: The tested given speed decreases from 1200 r/min to 800 r/min, with a
continuous load torque of 1.5 Nm. Figure 12 shows the experimental results comparison
between conventional PI-STA and modified ILC-STA in case of a step change in given
speed. It is obvious that the stable error of the modified algorithm is smaller than that of
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the conventional algorithm. The motor speed estimation error ripples are about −1 and
12 r/min, respectively. The motor speed error ripple is about 13 r/min, and the electromag-
netic torque ripple is about 2.5 Nm. When the modified ILC-STA algorithm is used, the
motor speed estimation errors are about −1 and 7 r/min, respectively. The motor speed
error ripple is about 8 r/min, and the electromagnetic torque ripple is about 1 Nm. From
Figure 12, it can be seen that the motor actual speed and electromagnetic torque waveforms
are more stable and the ripple is smaller than when using conventional algorithm. The
RDT motor speed error ripple and torque ripple decease by 38% and 60%, respectively. The
maximum speed error deceases by 5 r/min.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 14 of 18 
 

 

is also about 0.7 rad. From Figure 11, it can be seen that the motor speed and electromag-
netic torque waveforms are more stable, and the ripple is smaller than when using the 
conventional algorithm. The RDT motor speed error ripple deceases by 46% and the 
torque ripple deceases by 59% and 67%, respectively. The maximum speed error deceases 
by 11 r/min. 

6 8 10 12
400

800

1200

1600

m
ot

or
 sp

ee
d 

(r
/m

in
)

time (s)

       ω ω̂

6 8 10 12

0

20

m
ot

or
 sp

ee
d 

(r
/m

in
)

time (s)

    ωΔ

6 8 10 12
0.0

2.0

4.0

6.0

8.0

ro
to

r p
os

iti
on

 (r
ad

)

time (s)

          θ θ̂

6 8 10 12

0.7

ro
to

r 
po

sit
io

n 
(r

ad
)

time (s)

    θΔ

6 8 10 12

−2

0

2

4

to
rq

ue
 (N

m
)

time (s)

               TrefT

6 8 10 12
−40

−20

0

20

40
st

at
or

 cu
rr

en
t (

A
)

time (s)

                AI BI CI

(a) 

6 8 10 12
400

800

1200

1600

m
ot

or
 sp

ee
d 

(r
/m

in
)

time (s)

         ω ω̂

6 8 10 12

0

20

m
ot

or
 sp

ee
d 

(r
/m

in
)

time (s)

    ωΔ

6 8 10 12
0.0

2.0

4.0

6.0

8.0

ro
to

r p
os

iti
on

 (r
ad

)

time (s)

          θ θ̂

6 8 10 12

0.7

ro
to

r p
os

iti
on

 (r
ad

)

time (s)

    θΔ

6 8 10 12

−2

0

2

4

to
rq

ue
 (N

m
)

time (s)

          TrefT

6 8 10 12
−40

−20

0

20

40

st
at

or
 cu

rr
en

t (
A

)

time (s)

          AI BI CI

(b) 

Figure 12. Experimental results under a step change of a given speed condition. (a) Conventional 
PI-STA. (b) Modified ILC-STA. 

Condition 2: The tested given speed decreases from 1200 r/min to 800 r/min, with a 
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Condition 3: The tested given speed is set as the speed of 800 r/min with sudden load
torque changes from 1.5 Nm to 0. Figure 13 shows the experimental results comparison
between conventional PI-STA and modified ILC-STA in the case of step change in load
torque. Similarly to the previous conditions, it is obvious that the stable error of the
modified algorithm is smaller than that of the conventional algorithm. The motor speed
estimation error ripples are about −1 and 12 r/min, respectively. The motor speed error
ripple is about 13 r/min, and the electromagnetic torque ripple is about 1.7 Nm. When
the modified ILC-STA algorithm is used, the motor speed estimation errors are about
−1 and 7 r/min, respectively. The motor speed error ripple is about 8 r/min, and the
electromagnetic torque ripple is about 1 Nm. Similarly to the previous conditions, it is
obvious that the motor speed and electromagnetic torque waveform are more stable and
the ripple is smaller than when using conventional method. The speed error ripple and
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torque ripple decease by 38% and 41%, respectively. The maximum speed error deceases
by 5 r/min.

Similarly to the simulation results, it can be seen from the experimental results that
compared to the conventional PI-STA, the modified ILC-STA produces lower speed errors
and smaller electromagnetic torque errors. The motor speed, electromagnetic torque, and
stator currents results also have less chattering. Table 3 summarizes the performance
comparison of the different control algorithms.

Table 3. Experimental performance comparison of different control algorithms.

Control Algorithm Speed Error Ripple
(r/min) Torque Ripple (Nm) Maximum Speed Error (r/min)

Conventional PI-STA
Condition 1 24 2.2/3 22
Condition 2 13 2.5 12
Condition 3 13 1.7 12

Modified ILC-STA
Condition 1 13 0.9/1 11
Condition 2 8 1 7
Condition 3 8 1 7

6. Conclusions

In this paper, a RDT motor position-sensorless control algorithm that uses an adaptive
second-order SMO based on STA is presented to reduce system chattering, and a closed-
loop PI-ILC algorithm with the forgetting factor is used to suppress torque vibration.
In addition, FNN training is used to optimize the ILC and STA-SMO parameters. The
simulation and experimental analysis have been used to verify the proposed algorithm. The
presented RDT sensorless control algorithm can be used to reduce the chattering generated
in the RDT motor speed and torque ripple with improved speed tracking accuracy. The
accuracy and complexity have been balanced and can be used to explore future research.

Our future work will apply the presented RDT sensorless control algorithm to a real
ship, which will greatly contribute to the realization of smart and low carbon emission-
oriented maritime traffic control technology.
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