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Abstract: Wind is a significant factor influencing the stability of breakwater armor stones. However, few
existing studies have considered the effects of wind on these structures. In this study, two-dimensional
laboratory experiments were conducted to examine the effect of wind on the stability of breakwater
armor stones. The stability factor (KD) of the armor stone, fluid velocity, runup, and rundown were
observed under the action of waves and winds. A wind turbine was installed in front of the physical
model of the breakwater to generate extreme wind conditions of 5.5 and 12 m/s. The results showed
that KD decreased by 42.18% at 5.5 m/s and 57.82% at 12 m/s compared with that without wind.
The maximum runup and rundown heights increased with wind velocity, following a Rayleigh
distribution. The fluid velocity distribution conformed to a normal distribution, with the mean
velocity directed offshore. Many studies have suggested that runup, rundown, and fluid velocity are
the main factors affecting the stability of breakwater armor stones. The analysis revealed that wind
affects these factors and lowers the stability coefficient. These wind-induced hydrodynamic changes
suggest the need for a detailed hydrodynamic review of wind-wave conditions.

Keywords: breakwater; wind effect; armor stone stability; laboratory experiment

1. Introduction

Wind plays a crucial role in the planning and design of coastal structures, with recent
designs increasingly incorporating considerations not only for the wave pressure but
also for the effect of wind [1]. However, breakwater armor stone failure is currently
analyzed without considering the effect of wind. Studies on breakwater armor stones are
limited and primarily rely on experimental analysis and field observations that exclusively
consider waves [2]. In particular, methods and data that include wind effects have not been
presented [3]. Wind wave characteristics are reflected in the wave spectrum. However,
there is a notable gap in knowledge regarding the direct effect of wind on breakwater armor
stones. The stability of breakwater armor stones is mainly evaluated using mathematical
methods such as Hudson’s equation [4] and van der Meer’s formulae [5], which consider
only waves. High waves are usually accompanied by strong winds, and strong runup,
rundown, and overtopping occur on rubble-mound structures [6,7]. Hence, runup height
is one of the most important physical factors in the design of coastal structures, such as
breakwater height and revetments [8,9].

Analytical studies under wind wave conditions have been recently conducted to
address the increasing need to consider wind effects. Yamashiro et al. [10] conducted
wave overtopping experiments to investigate the similarity between the experimental
wind velocity and the actual value on a coast. The wave-overtopping experiments were
performed using approximately one year of observational data. The results indicated
that the experimental wind velocity was most accurate when 1/3 of the actual wind
velocity was used. Yamashiro et al. [11] also conducted an experiment on the effect of
parapets on water spray and the reduction of overtopping waves under strong wind
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conditions. The experimental results showed that a parapet of approximately 1 m could
reduce wave overtopping by up to 30–40% under strong wind conditions. Shim and
Kim [12] analyzed revetment overtopping under the condition of wind–wave coexistence.
It was suggested that as the wind velocity increased, the maximum overtopping could
increase by approximately 5–12%. Sous et al. [13] conducted a study on the interaction of
wave breaking points and change in skewness under wind wave conditions and suggested
that wind conditions are physically important factors. Therefore, studies on the effects
of wind and waves are being actively conducted (e.g., [14,15]); however, studies on the
stability analysis of armor stone breakwaters are lacking.

The loss of armor stones owing to high waves is one of the most important failure
modes in the design and analysis of rubble-mound breakwaters. The hydrodynamic
stability of breakwater armor stones has been the focus of numerous studies [4,5,16,17].
The stability analysis of armor stones is based on the results of laboratory experiments;
however, in most cases, the effect of wind has not been considered. Many studies have
suggested the need for a review of the changes in the hydrodynamic characteristics due
to wind.

In this study, the direct effect of wind on the stability of breakwater armor stones
(tetrapod-type) was analyzed. To investigate the effect of wind on the armor stones, winds
of various velocities were generated in front of a breakwater. The wave spectrum was
established using offshore wave-height data. The wave spectrum generated by extreme
wind conditions resembles the Bretschneider–Mitsuyasu spectrum [18]. Therefore, the in-
teraction between the waves and the offshore wind was considered using the Bretschneider–
Mitsuyasu spectrum. The damage wave height and Hudson’s stability factor (KD) under
wind velocity conditions were analyzed. In addition, the fluid velocity, runup, and run-
down were analyzed to study the effects of the changes in the stability coefficient on the
hydrodynamics. The results revealed that the runup, rundown, and fluid velocity are
important factors affecting the tetrapod (TTP) stability. This study emphasizes the need to
consider the influence of wind when analyzing the stability of breakwater armor stones.

2. Experiment
2.1. Laboratory Experiment Setup

The laboratory experiments were conducted in the wave channel at the Korea Institute
of Ocean Science and Technology. Figure 1 shows the wave flume (L: 37 m, W: 0.8 m, and
H: 1.45 m) used in the laboratory experiment. The water depth in front of the physical
breakwater model was 0.5 m, and seven wave gauges were used. The wave gauges, along
with various other sensors (current gauges and anemometers), were installed in front of
the physical model to measure the hydrodynamic characteristics under the coexistence
of waves and wind. The windmaker was installed 0.5 m from the breakwater front as
horizontally as possible (16◦ from the horizontal) at the still water level (S.W.L) of (+)25 cm.
The windmaker angle was confirmed by double-checking the measurement values with
a ruler and protractor application. This height did not interfere with the wave height of
Hm0 = 15 cm. Small normal stresses may occur due to the angle of the windmaker, which
can also affect the hydrostatic pressure of the water. However, considering that the density
difference between water and air is 1000 times, the normal stress of wind is not expected to
have a significant impact. The wind velocity conditions were adjusted using windmakers
with diameters of 400 mm and 500 mm installed at the same location. Additionally, a
camera was installed on the breakwater side to record and analyze the runup, rundown,
and TTP damage.

The slope of the physical model was 1:1.5, and the total height of the breakwater was
1.02 m, which is a non-overtopping condition. The TTP model was mounted on two rows.
The scale ratio used in the laboratory experiment was 1:50 based on the similarity between
the Froude number (Fr). The mass and volume of the TTP model were 160 g and 70 cm3,
respectively, corresponding to 20 ton and 8.77 m3 of the prototype. The nominal diameter
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(Dn) of the TTP used in the experiment is about 4 cm. The core was composed of rubble
stones with an average mass of 1 g, and a 10 g of tripod was placed on the core.
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stones with an average mass of 1 g, and a 10 g of tripod was placed on the core. 

Figure 2 shows the current meter and anemometer used in the experiment. An elec-
tromagnetic current meter was installed in front of the physical model (windmaker loca-
tion in terms of the S.W.L location coordinates: x = +70 cm, z = −20 cm) to measure the fluid 
characteristics in the onshore (+) and offshore directions (−). Based on the preliminary test, 
it was decided to install an electromagnetic current meter with S.W.L of (−) 20 cm in all 
experiments. A hot-wire anemometer can measure wind velocities in the range of 0.05–30 
m/s. It was installed at the S.W.L of (+) 25 cm, where there was no interference with the 
wave height. 

 

Figure 1. Laboratory experiment and cross-sectional view of the experimental setup for breakwater
armor stone stability according to wind velocity.

Figure 2 shows the current meter and anemometer used in the experiment. An
electromagnetic current meter was installed in front of the physical model (windmaker
location in terms of the S.W.L location coordinates: x = +70 cm, z = −20 cm) to measure the
fluid characteristics in the onshore (+) and offshore directions (−). Based on the preliminary
test, it was decided to install an electromagnetic current meter with S.W.L of (−) 20 cm
in all experiments. A hot-wire anemometer can measure wind velocities in the range of
0.05–30 m/s. It was installed at the S.W.L of (+) 25 cm, where there was no interference
with the wave height.
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2.2. Wave and Wind Conditions

The experimental irregular wave was generated using the Bretschneider–Mitsuyasu
(BM) spectrum. The BM spectrum is a function proposed by Bretschneider [19] and
modified with the coefficients proposed by Mitsuyasu [20]. The BM spectral equation
is as follows:

S( f ) = 0.205H2
s T−4

s f−5
[
−0.75(Ts f )−4

]
, (1)

where S( f ) is the wave-spectrum density function, f is the frequency, Hs is the significant
wave height, and Ts is the significant wave period.

Table 1 shows the wave conditions during the experiment. The target wave height
ranged from 7 to 15 cm at 1 cm intervals. The measured wave height represents the values
obtained at WG4~6 of the wave channel described in Section 2.1 above. Input wave height
data was determined by comparing the target and measured values. Although there is a
slight variation in the period Tp depending on the wave height conditions, the difference
is not significant. Therefore, for simplicity in explanation, the period is referred to as the
target period Tp = 1.45 s. The experiment was performed only on irregular waves. Regular
wave was decided to be difficult to conduct long-term experiments due to the beating
effects of the incident and reflected waves.

Table 1. Wave conditions used in the experiment (target: experiment target wave height and period,
measured data: wave height and period measured at WG4~6).

Target Measured Data

Ts (s) Tp (s) Hs (cm) Hm0 (cm) Tp (s)

1.41 1.45

7 7.3 1.52

8 8.2 1.52

9 9.1 1.57

10 10.3 1.54

11 11.4 1.63

12 12.1 1.41

13 13.0 1.41

14 14.2 1.55

15 15.3 1.55

The wind conditions are listed in Table 2. The model wind velocities (Vm) were 0, 5.5,
and 12 m/s measured at x = +70 cm, z = +25 cm (using the coordinates in Figure 2). By
converting the values to the prototype wind velocity (Vp) using the Froude number, the
velocities were calculated as 0, 38.9, and 84.8 m/s. In the case of Typhoon Hinnamnor,
which occurred on the Korean Peninsula in September 2022, the maximum average wind
velocity per minute was 72 m/s, and the average wind velocity per 10 min was 54 m/s.
Hinnamnor was a powerful typhoon that caused extensive damage, such as breakwater
destruction and overtopping, in the southern part of the Korean Peninsula (Jeju Island
and Pohang). The model wind velocity condition of 5.5 m/s represents a medium-sized
typhoon; typhoons of this wind velocity occur yearly on the Korean Peninsula. The model
wind velocity of 12 m/s is higher than that of Typhoon Hinnamnor. Typhoons of this
wind velocity under extreme conditions are classified as super-strong typhoons [21]. When
the model wind velocity is converted using the Froude scale, it is decided that the wind
velocity is greater than that of an actual typhoon occurring on the Korean Peninsula. This
wind velocity seems excessively high.

Importantly, it is worth noting that there is no agreement on the scaling law for wind
velocity under conditions where wind and waves coexist. Inagaki et al. [22] showed that
wind-driven wave overtopping experiments did not follow the Froude number, suggesting
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that additional studies are required to determine the dynamic scaling that should be applied
to wind-induced lift-up effects. Yamashiro et al. [10] found through wind wave experiments
(scale 1/45) that using the Froude number posed a risk of over-scaling the wind velocity
and recommended using a ratio of 1:3 when scaling the wind velocity. As a result, they used
the Froude scale for conditions such as breakwaters and wave heights but recommended
using a value of 1/3 for wind velocity because there was a problem of over-scaling. Using
the scale suggested by Yamashiro et al. [10], the prototype wind velocities were calculated
at Vp = 0, 16.5, and 36 m/s. Wind-induced runup and overtopping experiments are
related to various laws, including Froude’s law for fluid dynamics, Weber’s law for water
sprays, and Reynold’s law for wind forcing. However, it is not possible to combine similar
laws; moreover, this topic is outside the scope of this study. Therefore, the scale of the
wind velocity was assumed to be 1:3 based on the results of Yamashiro et al. [10] and
Inagaki et al. [22]. The experimental wave height was 7–15 cm (varied in ascending order
with 1 cm intervals), and non-breaking wave conditions were used. The wave period was
1.45 s. For each condition, 500 waves were generated, and the duration of the experiment
for each case was 11 min 45 s.

Table 2. Model and prototype wind velocities (Vm: model wind velocity, Vp: prototype wind velocity).

Vm (m/s) Vp (m/s)
[Froude Scale]

Vp (m/s)
[10]

0 0 0

5.5 38.9 16.5

12 84.8 36

2.3. Breakwater Armor Stone Damage

The stability of the breakwater armor stones was analyzed according to the stability
factor (KD) obtained from Hudson’s equation [4]. The stability coefficient KD is a parameter
associated with the weight of the armor stone; it corresponds to the wave height initiating
the damage and serves as a measure of stability under varying wave conditions. Because it
is possible to simply examine the weight and stability of the armor stones, they have been
widely used in the analysis of many hydrodynamic experiments (e.g., [23,24]). Hudson’s
equation for calculating the stability factor (KD) is as follows:

KD =
γsH3

si

W(S − 1)3cot θ
, (2)

where γs is the specific weight of the armor stone, Hsi is the wave height at which the
damage initiates, W is the weight of the armor stone, S is the specific gravity of the armor
stone, and θ is the breakwater front angle. The most important variable for calculating the
stability factor of the armor stones is Hsi.

The TTP damage used to determine the initial damage wave height was defined under
the following conditions: (1) when continuous rocking occurred, and (2) when the TTP
deviated from its original position by more than the TTP diameter (Dn = 4 cm) [25]. The
experiment was conducted by varying wave height from 7 cm to 15 cm in ascending order
at 1 cm intervals. To detect Hsi correctly, the experiment was conducted up to a wave height
that was at least 2 cm higher than the wave height at which the damage occurred for the
first time.

2.4. Wind Velocity Field

Figure 3 shows the wind velocity field. Figure 3a shows the set of measurement points
for measuring the wind velocity field. In total, 26 measurement points (intervals of 5–15 cm)
were used in the wind velocity field analysis. After marking the measurement points with a
dot on the side of the wave channel, their locations were identified and measured using the
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TTP location and a ruler. The average wind velocity data, measured twice for 30 s at each
point, was used. The wind velocity field was generated via linear interpolation through
26 points of data. Figure 3b shows the wind velocity field at Vm = 5.5 m/s. Wind velocities
in the range of 4.5 to 5.5 m/s were observed across the entire surface of the breakwater.
Figure 3c shows the wind velocity field at Vm = 12 m/s. Wind velocities of 11–12 m/s were
generated across the entire breakwater surface. After obtaining the wind velocity field data,
a stability analysis was performed.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 6 of 17 
 

 

5–15 cm) were used in the wind velocity field analysis. After marking the measurement 
points with a dot on the side of the wave channel, their locations were identified and 
measured using the TTP location and a ruler. The average wind velocity data, measured 
twice for 30 s at each point, was used. The wind velocity field was generated via linear 
interpolation through 26 points of data. Figure 3b shows the wind velocity field at 𝑉௠ = 
5.5 m/s. Wind velocities in the range of 4.5 to 5.5 m/s were observed across the entire sur-
face of the breakwater. Figure 3c shows the wind velocity field at 𝑉௠ = 12 m/s. Wind ve-
locities of 11–12 m/s were generated across the entire breakwater surface. After obtaining 
the wind velocity field data, a stability analysis was performed. 

 
Figure 3. Wind velocity field generation results. (a) Reference point. Measurement points were se-
lected at intervals of 5 to 15 cm; (b) Wind velocities under a wind field of 5.5 m/s; (c) Wind velocities 
under a wind field of 12 m/s. 

3. Results and Discussion 
3.1. Hudson Stability Factor (𝐾஽) 

Table 3 summarizes the TTP damage under each wind and wave condition. When 𝑉௠ 
= 0 m/s, the TTP started to rock at 𝐻௠଴ = 12.1 cm and exhibited loss from 𝐻௠଴ = 13.0 cm. 
Similarly, the TTP started rocking at 𝐻௠଴ = 10.3 cm for 𝑉௠ = 5.5 m/s and 𝐻௠଴ = 9.1 cm 
for 𝑉௠ = 12 m/s. 𝐻௦௜ was determined to be 12.1, 10.3, and 9.1 cm for the model wind ve-
locities (𝑉௠) of 0, 5.5, and 12 m/s, respectively. By calculating 𝐾஽ according to the wind 
velocity, the values were 7.79 for 𝑉௠ = 0 m/s, 4.86 for 𝑉௠ = 5.5 m/s, and 3.25 for 𝑉௠ = 12 
m/s. 

Table 3. Results of stability factor (𝐾஽). 𝑅: Rocking TTP cumulative number, 𝐿: Loss TTP cumulative 
number. The values within round brackets represent the reduction rate compared with 𝐾஽ under 
the condition of 𝑉௠ = 0 m/s. 

Wave Height 𝑯𝒎𝟎 (cm) 
Wind Velocity (m/s) 𝑲𝑫 

0 5.5 12 
7.3 - - - 1.68 

Figure 3. Wind velocity field generation results. (a) Reference point. Measurement points were
selected at intervals of 5 to 15 cm; (b) Wind velocities under a wind field of 5.5 m/s; (c) Wind velocities
under a wind field of 12 m/s.

3. Results and Discussion
3.1. Hudson Stability Factor (KD)

Table 3 summarizes the TTP damage under each wind and wave condition. When
Vm = 0 m/s, the TTP started to rock at Hm0 = 12.1 cm and exhibited loss from Hm0 = 13.0 cm.
Similarly, the TTP started rocking at Hm0 = 10.3 cm for Vm = 5.5 m/s and Hm0 = 9.1 cm for
Vm = 12 m/s. Hsi was determined to be 12.1, 10.3, and 9.1 cm for the model wind velocities
(Vm) of 0, 5.5, and 12 m/s, respectively. By calculating KD according to the wind velocity,
the values were 7.79 for Vm = 0 m/s, 4.86 for Vm = 5.5 m/s, and 3.25 for Vm = 12 m/s.

The stability factor was determined under windless conditions. The value of KD = 7.79 at
Vm = 0 m/s, calculated using Hudson’s equation, is consistent with KD = 7 to 8, which is
the stability coefficient of TTP known from many previous experiments [26–28]. However,
the higher the wind velocity, the lower the stability coefficient of the existing TTP. As the
wind velocity increased, initial damage occurred at low wave heights. The reduction rate is
the rate of decrease in the stability coefficient for each wind velocity condition based on the
stability coefficient KD at Vm = 0 m/s. The stability coefficient KD decreased by 37.16% at
Vm = 5.5 m/s and by 58.28% at Vm = 12 m/s.
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Table 3. Results of stability factor (KD). R: Rocking TTP cumulative number, L: Loss TTP cumulative
number. The values within round brackets represent the reduction rate compared with KD under the
condition of Vm = 0 m/s.

Wave Height Hm0 (cm)
Wind Velocity (m/s)

KD0 5.5 12

7.3

-

-
-

1.68

8.2 2.37

9.1 R: 1, L: 0 3.25

10.3 R: 4, L: 0 R: 4, L: 0 4.86

11.4 R: 5, L: 0 R: 5, L: 1 6.50

12.1 R: 1, L: 0 R: 6, L: 1 R: 7, L: 1 7.79

13.0 R: 1, L: 1 R: 8, L: 2 R: 9, L: 2 9.58

14.2 R: 2, L: 2 R: 8, L: 4 R: 9, L: 4 12.54

15.3 R: 6, L: 3 15.59

Calculated KD
7.79
(-)

4.86
(−37.61)

3.25
(−58.28)

Figure 4 shows the runup and rundown photos at the time of TTP loss. The TTP loss
coincided with the rundown following the runup. At Vm = 0 m/s, minimal water spray was
observed during the runup; however, the water spray increased at stronger wind velocities.
Inagaki [22] showed, through wind tunnel experiments, that the excess rates of overtopping
waves and water spray are much larger than those calculated using conventional methods
when considering wind. Considering the amount of water sprayed, it was determined
that the wind acted as a shear force on the water surface and influenced the increase in
the runup. After the runup, a rundown occurred. At this time, the rundown overlapped
with the incident wave, and a strong breaking wave occurred. These powerful breaking
waves have a significant effect on the breakwater slope, leading to TTP loss. It was inferred
that the shear force due to the wind velocity affected the runup and rundown, and the TTP
loss appears to have occurred because of the strong hydrodynamic changes at this time. At
Hm0 = 13.0 cm, rocking and loss were observed under all wind velocity conditions, with
a tendency toward increased loss. Therefore, hydrodynamic analysis was conducted for
Hm0 = 13.0 cm.
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3.2. Hydrodynamics
3.2.1. Wave Spectrum

Figure 5 shows the change in the wave spectrum (in front of the breakwater) for each
experimental wind velocity. This is the spectrum at Hm0 = 13.0 cm when the loss and
rocking of the breakwater armor stone begin to increase. As the wind velocity increased,
lower-frequency waves in the range of 0 to 0.4 Hz showed higher spectral densities. This is
consistent with the result of González-Escrivá [29], where the wind intensity was positively
correlated with an increase in the spectrum within the low-frequency region.
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The wave spectra exhibited different characteristics for each of the three sections. This
means that the higher the wind velocity, the greater the number of waves with high energy,
which is similar to the result reported by González-Escrivá [29]. In the 0.4 to 1.0 Hz range,
the spectra for the various wind velocities were almost identical. Beyond 1 Hz, where the
wave energy was small, no variation according to the wind velocity was found.

3.2.2. Wave Runup and Rundown

The force acting on the breakwater slope can be divided into the wave pressure acting
perpendicular to the slope, runup, rundown, and shear force [30]. These forces acting on
the slope influence the fluid forces, such as the drag and buoyancy of the TTP, and may
affect the stability. The changes in the wave pressure owing to the runup and rundown
accelerate the loss of the TTP [31]. Therefore, we analyzed the effect of wind velocity on
these hydrodynamic changes.

Figure 6 shows the time series of the runup, rundown, and fluid velocities at
Hm0 = 13.0 cm and Tp = 1.45 s. The runup and rundown were assessed by dividing the
side-view images into frames and analyzing the vertical height from the S.W.L. A positive
value (+) represents the runup height, and a negative value (−) represents the rundown
height. The fluid velocity was measured using an electromagnetic current meter in front of
the breakwater, where the (+) value is the fluid velocity in the onshore direction and the
(−) value is the fluid velocity in the offshore direction. R is the rocking point, and L is the
loss point.

At Vm = 0 m/s, the TTP loss occurred approximately 450 s after the start of the
experiment. At Vm = 5.5 and 12 m/s, the TTP loss occurred at approximately 150 to 180 s.
At this point, the loss was accompanied by significant hydrodynamic changes. Table 4
presents the runup, rundown, and fluid velocities that occurred at the time of TTP loss.
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Ru represents the runup, Rd represents the rundown, Vm represents the fluid velocity in
the onshore direction, and Uo f f represents the fluid velocity in the offshore direction. Ru
increased by 27.79% and 18.88% at Vm = 5.5 and 12 m/s, respectively, and Rd increased
by 10.75% under both conditions. Increasing runup is a major factor that has a significant
influence on the design of breakwaters exposed to wave attacks [32]. Uon decreased by
8.02% at Vm = 5.5 m/s and increased by 5% at Vm = 12 m/s. The most significant change
occurred in the fluid velocity in the offshore direction. Uo f f increased by 22.11% and
26.51% at Vm = 5.5 and 12 m/s, respectively. Changes in the fluid velocity in front of a
breakwater covered with a porous material could have a significant effect by generating
strong turbulence owing to the mixing process [33].

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 6. Hydrodynamic time series data via wind velocity (𝐻௠଴ = 13.0 cm, 𝑇௣ = 1.45 s). 𝑅 repre-
sents the rocking point, and 𝐿 represents the loss point. Regarding the runup and rundown, the (+) 
value represents the runup, and the (−) value represents the rundown. Regarding the fluid velocity, 
the (+) value represents the onshore direction, and the (−) value represents the offshore direction 
(red: 𝑉௠ = 0 m/s, green: 𝑉௠ = 5.5 m/s, and blue: 𝑉௠ = 12 m/s). 

At 𝑉௠ = 0 m/s, the TTP loss occurred approximately 450 s after the start of the exper-
iment. At 𝑉௠ = 5.5 and 12 m/s, the TTP loss occurred at approximately 150 to 180 s. At this 
point, the loss was accompanied by significant hydrodynamic changes. Table 4 presents 
the runup, rundown, and fluid velocities that occurred at the time of TTP loss. 𝑅௨ repre-
sents the runup, 𝑅ௗ represents the rundown, 𝑈௢௡ represents the fluid velocity in the on-
shore direction, and 𝑈௢௙௙ represents the fluid velocity in the offshore direction. 𝑅௨ in-
creased by 27.79% and 18.88% at 𝑉௠ = 5.5 and 12 m/s, respectively, and 𝑅ௗ increased by 
10.75% under both conditions. Increasing runup is a major factor that has a significant 
influence on the design of breakwaters exposed to wave attacks [32]. 𝑈௢௡ decreased by 
8.02% at 𝑉௠ = 5.5 m/s and increased by 5% at 𝑉௠ = 12 m/s. The most significant change 
occurred in the fluid velocity in the offshore direction. 𝑈௢௙௙  increased by 22.11% and 
26.51% at 𝑉௠ = 5.5 and 12 m/s, respectively. Changes in the fluid velocity in front of a 
breakwater covered with a porous material could have a significant effect by generating 
strong turbulence owing to the mixing process [33]. 

Table 4. Hydrodynamic values at the time of TTP loss (𝑅௨: runup height, 𝑅ௗ: rundown height, 𝑈௢௡: 
fluid velocity in onshore direction, and 𝑈௢௙௙ : fluid velocity in offshore direction). 𝑅ௗ  and 𝑈௢௙௙ 
have negative values, but absolute values are used for convenience in comparison. 𝑽𝒎 (m/s) 𝑹𝒖 (cm) 𝑹𝒅 (cm) 𝑼𝒐𝒏 (cm/s) 𝑼𝒐𝒇𝒇 (cm/s) 

Figure 6. Hydrodynamic time series data via wind velocity (Hm0 = 13.0 cm, Tp = 1.45 s). R represents
the rocking point, and L represents the loss point. Regarding the runup and rundown, the (+) value
represents the runup, and the (−) value represents the rundown. Regarding the fluid velocity, the
(+) value represents the onshore direction, and the (−) value represents the offshore direction (red:
Vm = 0 m/s, green: Vm = 5.5 m/s, and blue: Vm = 12 m/s).
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Table 4. Hydrodynamic values at the time of TTP loss (Ru: runup height, Rd: rundown height, Uon:
fluid velocity in onshore direction, and Uo f f : fluid velocity in offshore direction). Rd and Uo f f have
negative values, but absolute values are used for convenience in comparison.

Vm (m/s) Ru (cm) Rd (cm) Uon (cm/s) Uoff (cm/s)

0 19.97
(-)

15.53
(-)

74.85
(-)

78.21
(-)

5.5 25.52
(27.79%)

17.20
(10.75%)

68.85
(−8.02%)

95.50
(22.11)

12 23.74
(18.88%)

17.20
(10.75%)

78.59
(5.00%)

98.94
(26.51%)

Table 5 lists the runup and rundown heights for each wind velocity. Ru,max represents
the maximum runup height, Ru,2% is the average runup height of the top 2%, Ru,s is the
average runup height of the top 33%, and Ru,avg is the overall average runup height. Rmax,
R2%, Rs, and Ravg were analyzed to compare the various statistical characteristics of the
runup [34,35]. Rmax increased by 9.5% at Vm = 5.5 m/s and by 23% at Vm = 12 m/s compared
with the corresponding result at Vm = 0 m/s.

Table 5. Changes in wave runup and rundown under different wind velocity conditions. Ru denotes
the runup, and Rd denotes the rundown. The values in the round brackets are the increase in
the runup (rundown) height compared with the value at Vm= 0 m/s. Square brackets contain the
percentage values based on the number of data intervals (max: maximum height, 2%: average height
of the top 2%, s: average height of the top 33%, and avg: total average height).

Runup
height

Vm (m/s)
Number of runup height data Ru,max

(cm)
Ru,2%
(cm)

Ru,s
(cm)

Ru,avg
(cm)~5 cm 5~10 cm 10~15 cm 15~20 cm ~20 cm

0 126
[26.1%]

204
[42.3%]

118
[24.5%]

30
[6.2%]

4
[0.8%]

23.30
(-)

19.20
(-)

13.09
(-)

8.18
(-)

5.5 85
[17.3%]

244
[49.8%]

106
[21.6%]

47
[9.6%]

8
[1.6%]

25.52
(9.5%)

21.49
(11.9%)

13.91
(6.3%)

8.80
(7.6%)

12 66
[14.0%]

250
[53.1%]

104
[22.1%]

43
[9.1%]

8
[1.7%]

28.84
(23.8%)

22.02
(14.7%)

14.08
(7.6%)

8.93
(9.2%)

Rundown
height

Vm (m/s)
Rundown height data number Rd,max

(cm)
Rd,2%
(cm)

Rd,s
(cm)

Rd,avg
(cm)~5 cm 5~10 cm 10~15 cm 15~20 cm ~20 cm

0 127
[26.9%]

235
[49.8%]

100
[21.2%]

10
[2.1%]

0
[0%]

17.75
(-)

15.30
(-)

8.88
(-)

7.23
(-)

5.5 83
[17.7%]

241
[51.3%]

130
[27.7%]

16
[3.4%]

0
[0%]

18.31
(3.2%)

16.09
(5.2%)

9.98
(12.4%)

8.21
(13.6%)

12 48
[10.3%]

264
[56.5%]

122
[26.1%]

33
[7.1%]

0
[0%]

19.41
(9.4%)

16.64
(8.8%)

10.54
(18.7%)

8.92
(23.4%)

Ward et al. [15] showed that runup and overtopping slightly increased at a wind
velocity of 6 m/s, but the maximum runup could increase by more than 20% as the wind
velocity increased to 12 m/s. The results of this study showed that the maximum runup
increased by about 23% at Vm = 12 m/s, which was quite similar to Ward et al. [15] results.
Additionally, Ru,2% increased by 11.9% at Vm = 5.5 m/s and by 14.7% at Vm = 12 m/s. Ru,s
and Ru,avg also tended to increase as the wind velocity increased. The probability that a
large runup of 10 cm or more occurred increased as the wind velocity became stronger:
31.5% at Vm = 0 m/s, 32.8% at Vm = 5.5 m/s, and 32.9% at Vm = 12 m/s. Wind shear stress
can affect wave overtopping and runup by acting on the wave profile at the wall [14,36].

The rundown heights Rd,max, Rd,2%, Rd,s, and Rd,avg were calculated. Rd,max increased
by 3.2% at Vm = 5.5 m/s and by 9.4% at Vm = 12 m/s compared with the value at Vm = 0 m/s.
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The maximum rundowns at Vm = 0 and 12 m/s differed by approximately 1.7 cm. The
difference in the runup height was noticeable at high runups, such as Ru.max and Ru,2%.
However, the rundown showed the greatest difference in Rd,avg, which increased by 13.6%
at Vm = 5.5 m/s and by 23.4% at Vm = 12 m/s. The probability of occurrence of a large
rundown of 10 cm or more increased as the wind velocity became stronger: 23.3% at
Vm = 0 m/s, 31.1% at Vm = 5.5 m/s, and 33.2% at Vm = 12 m/s.

Figure 7 shows the runup and rundown histograms for various wind velocities.
Figure 7a–d present the runup histogram and fitted Rayleigh distribution for each wind
velocity condition. Denissenko et al. [37] and Nielsen and Hanslow [38] suggested that
the probability distribution of runup follows a Rayleigh distribution. Therefore, the runup
height data are represented as histograms and analyzed by fitting them to the Rayleigh
distribution. In the Rayleigh distribution, σ is a scale parameter that determines the kurtosis
of the probability distribution. A larger σ widens and flattens the distribution, whereas a
smaller σ narrows and sharpens it. In other words, an increase in σ leads to an increase in
the variance of the distribution, and a decrease leads to a decrease in variance. σ increased
as the wind velocity became stronger: 6.466 at Vm = 0 m/s, 6.947 at 5.5 m/s, and 7.035 at
12 m/s. As the wind velocity increased, the probability of a runup of less than 10 cm
decreased, whereas that of a runup of more than 10 cm increased.
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wind velocity.

Figure 7e–h shows the rundown histogram and probability distribution according
to the wind velocity. Rundown was defined as a negative vertical height from the S.W.L;
however, it was expressed as an absolute value for easier comparison. Similar to the runup,
the rundown was analyzed using a histogram and Rayleigh distribution. The change in the
rundown was more obvious than that in the runup. There was no significant difference
in the probability distribution of the runup between Vm = 5.5 m/s and 12 m/s. However,
as the wind velocity increased, the probability of a rundown exceeding 10 cm increased
significantly. The scale parameter (σ) of the Rayleigh distribution was 5.709 at Vm = 0 m/s,
6.312 at Vm = 5.5 m/s, and 6.750 at Vm = 12 m/s. These values highlight the effect of wind
on the characteristics of the rundown phenomenon.

The need to consider the influence of wind arises from the phenomena of increased
runup and rundown at strong wind velocities. The increase in the rundown is particularly
noteworthy. Existing experiments on wind-induced hydrodynamic changes have primarily
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focused on the runup and overtopping [11,12,22,39]. However, it is important to analyze
both the runup and rundown to assess the stability of breakwater armor stones. This
is because the current generated via the rundown can pull the armor stones offshore,
leading to damage [40]. In the experiments, the TTP loss mainly occurred under a large
rundown, and water escaped in the offshore direction. This is consistent with the results of
Aniel-Quiroga et al. [40], who observed that during a rundown, the flow dragged down
the armor units at several places. Movements induced by runup, rundown, and rolling
impacts increase the risk of armor stone loss or rocking, consequently reducing the stability
coefficient [41,42].

Many studies have demonstrated the impact of wind on run-up and wave overtopping,
emphasizing the need to consider wind forcing (e.g., [10,15,22,29]). However, the effect
of hydrodynamic change due to wind forcing on armor stone stability is not specifically
presented. The experimental results showed that the runup and rundown tended to increase
with wind velocity. In addition, the stability of the armor stone decreased with increasing
wind velocity. While not discussed in this study, wind velocity likely had a notable effect
on runup and rundown, as well as associated up-washing and down-washing velocities.
When runup occurs, the armor stone is submerged in water, and during rundown, it is
exposed to the air. The pressure difference that occurs along with the strong flow is believed
to be a major mechanism significantly affecting the stability of the armor stone. Therefore,
future research should include an analysis of pressure changes during runup and rundown.
This result suggests that it is necessary to consider the influence of wind on the armor stone
stability and that there is a risk of overestimating the TTP stability if the influence of wind
is not considered.

3.2.3. Fluid Velocity

Figure 8 presents the fluid velocity probability distribution according to the wind
velocity. By presenting the fluid velocity as a probability density, a normal distribution was
obtained. Hajivalie and Yeganeh-Bakhtiary [43] proposed that clockwise flow dominated at
the top portion of the front of a sloping breakwater, whereas anticlockwise flow dominated
at the bottom. These findings aligned with the insights provided by Sumer and Fredsoe [44]
regarding the causes of scour in sloping breakwaters. Consequently, the normal distribution
of the fluid velocity in front of the breakwater is attributed to the periodic current in the
specific direction.
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The graph shows that the outflow velocity tended to increase as the wind velocity
increased. The probability of occurrence of fluid velocity decreased in the onshore direction,
whereas that of the outflow velocity increased in the offshore direction. Because the
probability followed a normal distribution, the average value was close to zero in all three
cases, and the standard deviation increased as the wind velocity increased.

Table 6 summarizes the maximum and minimum fluid velocity and the amount of data
for various wind velocities. As the wind velocity increased, the maximum fluid velocity in
the offshore direction increased. In the case of (+) fluid velocity in the onshore direction,
the results for Vm = 0 m/s and 5.5 m/s did not show a large difference, but a difference
of approximately 6.7% was observed at 12 m/s. In the case of (-) fluid velocity in the
offshore direction, the fluid velocity tended to increase as the wind velocity increased. The
maximum offshore fluid velocities were 92.2 cm/s at Vm = 0 m/s, 95.5 cm/s at 5.5 m/s, and
99.2 cm/s at 12 m/s. The maximum offshore fluid velocity increased by 3.6% at 5.5 m/s
and by 7.6% at 12 m/s. However, the difference in fluid velocity by wind velocity was not
large compared to runup and down.

Table 6. Number and probability of data by fluid velocity ((−): offshore direction and (+): onshore
direction).

Vm (m/s)
Fluid Velocity (cm/s) Data Number Max

(cm/s)
Min

(cm/s)~−75 −75~−50 −50~−25 −25~0 0~25 25~50 50~75 ~75

0 60
(0.17%)

554
(1.57%)

3435
(9.74%)

12862
(36.49%)

13518
(38.35%)

4236
(12.02%)

570
(1.62%)

15
(0.04%) 90.9 −92.2

5.5 144
(0.41%)

731
(2.07%)

4000
(11.35%)

13384
(37.97%)

12673
(35.95%)

3845
(10.91%)

470
(1.33%)

3
(0.01%) 89.3 −95.5

12 147
(0.42%)

765
(2.17%)

3862
(10.96%)

13343
(37.85%)

12567
(35.65%)

3919
(11.12%)

612
(1.74%)

35
(0.10%) 97.0 −99.2

Each dataset contained 35,250 fluid velocity data. At Vm = 0 m/s, 614 data were
50 cm/s or more in the offshore direction, which constituted 1.74% of the total data. The
corresponding numbers at Vm = 5.5 m/s and Vm = 12 m/s were 875 (2.48%) and 912 (2.59%),
respectively. In addition, the total outflow velocity in the (−) direction increased as the
wind velocity increased. The shear force, owing to the increase in fluid velocity, is a very
important factor affecting the drag and lift forces, which directly affect the TTP loss [45,46].
As the wind velocity increased, the fluid velocity of the outflow in the (−) direction (toward
the offshore) also increased.

A high fluid velocity in the offshore direction generates a strong tractive force and is a
major factor in transporting materials offshore [47]. Additionally, wind has a significant
effect on the increase in hydrodynamic phenomena, such as runup, rundown, and fluid
velocity [3]. Armor stone loss usually occurs under strong winds and high waves; however,
the design codes in most countries do not include these factors (e.g., [48,49]). Experimental
investigations using wind and wave flumes have been reported in the 1990s [22,39,50], but
there is no consensus regarding the effects of wind on the runup, rundown, fluid velocity,
and armor stone stability. The stability coefficient of the TTP, as determined from existing
laboratory experiments, typically ranges from 7 to 8, which is consistent with the findings of
this experiment for Vm = 0 m/s [27,28]. As wind velocity increases, the stability coefficient
decreases, accompanied by heightened hydrodynamic changes. Strong runup and rundown
occur owing to wind velocity, and the resulting increase in fluid velocity was shown to
drag down the armor stone, accelerating the loss. Wind causes various hydrodynamic
changes and is believed to have a significant impact on TTP stability. However, the scale
problem of comparing experimental results with real scale remains. In future studies, it
will be important to compare real-scale results with experiments performed under wind
wave conditions to establish appropriate scaling laws.
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3.2.4. Effect of Wave Period on TTP Damage

To analyze the change in TTP damage according to the wave period, an additional
experiment with Tp = 2.33 s was performed. Table 7 shows the target and measured values
of the experimental wave condition. The TTP damage pattern and timing under both long-
and short-period conditions were recorded, and the data were analyzed. The wave height
conditions were set to be almost the same as the conditions at Tp = 1.45 s. For Tp = 2.33 s,
the analysis was performed under the wind velocities of 0 and 5.5 m/s.

Table 7. Long-period wave conditions used in the experiment (target: experiment target wave height
and period, measured data: wave height and period measured at WG4~6).

Target Measured Data

Ts (s) Tp (s) Hs (cm) Hm0 (cm) Tp (s)

2.26 2.33

7 7.1 2.41

8 8.1 2.21

9 9.1 2.64

10 10.1 2.41

11 11.3 2.21

12 11.9 2.64

13 13.0 2.41

14 13.9 2.64

15 14.9 2.48

Table 8 presents the damage patterns (rocking and loss) of the TTP based on changes
in the period. When Tp = 2.33 s, one TTP loss occurred at Hm0 = 14.9 cm for both Vm = 0 and
5.5 m/s. Additionally, rocking started at Hm0 = 13.0 cm for Vm = 0 m/s and at Hm0 = 11.9 cm
for Vm = 5.5 m/s. Consequently, for a period of 2.33 s, the stability coefficient KD was
9.58 at Vm = 0 m/s and 7.35 at Vm = 5.5 m/s. With an increase in wind velocity from 0 m/s
to 5.5 m/s, KD decreased by approximately 23%. Importantly, even for a long wave period,
the KD value decreased as the wind velocity increased. At Tp = 2.33 s, ground subsidence
damage occurred over a wide area. In contrast to the result at Tp = 1.45 s, less rocking or loss
was observed, but there was overall subsidence, and the TTP interlocking was weakened.

Table 8. Change in TTP stability coefficient KD due to long-period conditions.

Measured Data Wind Velocity

Hm0 (cm) Tp (s) Vm= 0 m/s Vm= 5.5 m/s

7.1 2.41

-
-

8.1 2.21

9.1 2.64

10.1 2.41

11.3 2.21

11.9 2.64 R: 2, L: 0

13.0 2.41 R: 2, L: 0 R: 4, L: 0

13.9 2.64 R: 4, L: 0 R: 7, L: 0

14.9 2.48 R: 5, L: 1 R: 7, L: 1

Calculate KD 9.58 7.35
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4. Summary and Conclusions

A stability test of the breakwater armor stone under various wave and wind conditions
was conducted. From the results of the stability analysis according to the wind velocity, it
was confirmed that the stability factor KD decreased as the wind velocity increased. was
7.79 for Vm = 0 m/s, 4.86 for Vm = 5.5 m/s, and 3.25 for Vm = 12 m/s. The stability coefficient
at Vm = 0 m/s coincided with the well-known values of KD = 7–8 [26–28]. However, it
decreased by 37.61% and 58.28% at Vm = 5 m/s and Vm = 12 m/s, respectively.

The probability distribution of the runup tended to follow a Rayleigh distribution [37,38].
The higher the wind velocity, the higher the runup, and the runup was found to have a
mild probability distribution. The scale parameter ( σ) of the Rayleigh distribution was
6.468 for Vm = 0 m/s, 6.947 for Vm = 5.5 m/s, and 7.035 for Vm = 12 m/s. The runup heights
of Ru,max, Ru,2%, Ru,s, and Ru,avg also increased with the wind velocity. Rmax increased by
9.5% at Vm = 5.5 m/s and by 23% at 12 m/s compared with the value at Vm = 0 m/s. Similar
to the runup, the probability of a high rundown increased as the wind velocity increased.
The scale parameter σ of the rundown was 5.709 for Vm = 0 m/s, 6.312 for Vm = 5.5 m/s,
and 6.750 for Vm = 12 m/s. The values of Rd,max, Rd,2%, Rd,s, and Rd,avg increased; Rd,max
increased by 3.2% and 9.4% at Vm = 5 m/s and Vm = 12 m/s, respectively, compared with
the value at Vm = 0 m/s.

In the fluid velocity distribution, the fluid velocities in the onshore (+) and offshore
(−) directions were analyzed. As the wind velocity increased, the fluid velocity in the
direction of the outflow to the offshore tended to increase. The maximum fluid velocity in
the offshore direction increased by 3.6% at Vm = 5.5 m/s and 7.6% for Vm = 12 m/s. The
maximum fluid velocities at Vm = 0 m/s and Vm = 5.5 m/s in the onshore direction did not
show a significant difference, but the value at Vm = 12 m/s was higher by 6.7% than that at
Vm = 0 m/s. As the wind velocity increased, the outflow velocity in the offshore direction
also increased.

Runup, rundown, and fluid velocity are important factors that affect TTP stability [45–47].
As the wind velocity increased, the runup and rundown tended to increase. It was de-
termined that the increase in runup and rundown increased the size and range of the
wave pressure on the breakwater slope, which affected the stability of the tetrapod. In
addition, the shear force of the breakwater slope increases owing to the increase in the
outflow velocity, which directly affects the TTP loss. Although not extensively addressed
in this study, it has been confirmed that as wind velocity increases, the occurrence of water
spray and overtopping phenomena becomes more pronounced. Overtopping may also
cause significant damage to the hinterland and induce hydrodynamic changes, warranting
a more detailed investigation. Additionally, it is deemed necessary to analyze the pressure
difference that occurs during upwashing and downwashing. These results suggest that it
is necessary to consider the influence of wind when analyzing the stability of breakwater
armor stones. However, given the absence of universally accepted guidelines for scaling
wind and waves, the comparison between real-scale and experimental findings becomes
challenging. Therefore, it is essential that future studies juxtapose real-scale results with
experiments performed under wind wave conditions to establish appropriate scaling laws.
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