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Abstract: Electric ships have been developed in recent years to reduce greenhouse gas emissions. In
this system, inverters are the key equipment for the permanent-magnet synchronous motor (PMSM)
drive system. The cascaded insulated-gated bipolar transistor (IGBT)-based H-bridge inverter is
one of the most attractive multilevel topologies for modern electric ship applications. Usually, the
fault-tolerant control strategy is designed to keep the ship in operation for a certain period. However,
the fault-tolerant control strategy with hardware redundancy is expensive and slow in response.
In addition, after fault-tolerant control, the ship’s PMSM may experience shock and overheating,
and IGBT life is reduced due to uneven switching frequency distribution. Therefore, a stratified
reconfiguration carrier disposition Sinusoidal Pulse Width Modulation (SPWM) fault-tolerant control
strategy is proposed. The proposed strategy can achieve fault tolerance without any extra hardware.
A reconfiguration carrier is applied to improve the fundamental amplitude of inverter output voltage
to maintain the operation of the ship’s PMSM. In addition, the available states of faulty H-bridge
are fully used to contribute to the output. These can improve the life of IGBTs by reducing and
balancing the power loss of each H-bridge. The principles of the proposed strategy are described in
detail in this study. Taking a cascaded H-bridge seven-level inverter as an example, simulation and
experimental results verify that the proposed strategy, in general, has a potential future application
on electric ships.

Keywords: electric ships; cascaded multilevel inverter; stratified reconfiguration; fault-tolerant
control; ecological sustainable development

1. Introduction

In recent years, maritime departments around the world have gradually begun to
pay attention to the issue of ecologically sustainable development and initiated a series
of measures to reduce the emissions of pollutants, carbon, and sulfide. Among them,
the development and utilization of new energy have attracted the most attention. These
mainly focus on the in-depth development of sustainable natural energy sources such as
solar, wind, and ocean energy. Accordingly, the electric propulsion system has attracted
researchers’ interest [1,2].

Today, inverters are widely used in ships, carbon-free energy generation, transporta-
tion, motor drives, and other fields [3–8]. A high-boost Z-source inverter is proposed in
an inland river cruise ship supplied by a fuel cell (FC) as the main power source and a
supercapacitor (SC) as the auxiliary power source [3]. A new model using state-averaged
models of the inverter and a hybrid model of the rectifier is developed to give an effective
solution combining accuracy with the speed of the simulation and an appropriate interface
to the electrical network model [4]. A control power module for hybrid inverter systems is
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implemented to drive electric propulsion ships [5]. Inverters can also be applied in marine
photovoltaic on/off-grid systems [7,8].

Multilevel inverters have more advantages because of the lower voltage of their
components, their lower switching frequency, and lower switching power loss, among
others. The topologies of multilevel inverters mainly include diode-clamped inverters [9],
flying-capacitor inverters [10], modular multilevel converters [11], and cascaded invert-
ers [12]. The multilevel inverters are also applied on ships [13–16]. The novel symmetric
and asymmetric multilevel inverter topologies with a minimum number of switches are
proposed for the high voltage of an electric ship’s propulsion system [13]. An innovative
single-phase and three-phase H-bridge-derived multilevel inverter topology is being pro-
posed in marine ships [14]. A cascaded H-bridge multilevel inverter is used to implement
a proportional–integral speed current controller algorithm in the driving circuit of the
Brushless Direct Current Motor (BLDC) motor for electric propulsion ships using a power
analysis program [15]. To minimize of total harmonic distortion in multilevel inverters,
teaching–learning-based optimization (TLBO) is used for marine propulsion systems [16].

Among them, cascaded H-bridge inverters are the most popular due to their character-
istics of easy modularization and convenient expansion of level numbers. However, many
semiconductor devices are required for cascaded H-bridge multilevel inverters. And it is a
fact that the power semiconductor device is one of the most fragile components in electric
ships’ propulsion systems [17,18]. Therefore, the reliability of cascaded H-bridge inverters
is relatively low, which underscores the importance of fault-tolerant control.

Most of the research on inverter fault-tolerant control focuses on open-circuit and
short-circuit faults in semiconductors [19]. Short circuits are catastrophic failures that
immediately trip or damage the system [20]. Therefore, a protection circuit is usually
designed. In this way, the short-circuit fault can be regarded as the open-circuit fault. In
cases of open-circuit faults, the inverter will skip the corresponding voltage level, which
leads to the distortion of the voltage waveform. It may affect other devices, such as the
motor and the grid. In other words, the fault may spread to other systems and cause
subsequent failures through the power system. Thus, it is attractive to quickly eliminate
the influence of the open-circuit fault of the cascaded H-bridge. The whole process can
be divided into fault diagnosis and fault-tolerant control. Fault diagnosis is an essential
step that is responsible for determining fault information and activating the corresponding
fault-tolerant control method. Some effective diagnosis methods have been proposed in the
field of ships [21–23]. This paper mainly focuses on the research on fault-tolerant control of
open-circuit faults.

There are several studies that discuss fault-tolerant control of inverters on ships [24–26].
A new PMSM without the neutral point was modified to realize fault-tolerant control [24].
A modified lookup table was designed to improve the functioning of the fault-tolerant
direct torque control (DTC) for off-shore ship propulsion [25]. Two TRIACs were added to
pass faulty devices, and two switches were added to the fault-tolerant control of inverters
on ship [26]. These methods either require a motor redesign, which may not work for
a PMSM, or add redundancy in electric ships. Because there are few studies on IGBT
conduction frequency in fault-tolerant control of inverters on ships, it is necessary to learn
from the studies on power electronics on land.

To ensure the reliable operation of the system, the fault-tolerant method in [27,28]
bypasses the faulty cell. In addition, the health cell in the other phase should be bypassed
to achieve voltage balance. This means that three redundant cells need to be reserved even
if only one IGBT fails. In contrast, the topology structure in [29] adds one backup H-bridge
cell, three fast-blowing fuses, and three electromechanical relays. The relay R1 is turned
on by the control circuitry, blowing the fuse and adding the auxiliary cell to the faulty
phase. However, the complexity and cost of the circuit have improved due to the redundant
backup bridge. To solve this problem, a fault-tolerant method without a redundant backup
bridge is proposed in [30]. The topology will be reconfigured by the pilot switch when a
fault occurs. Then, the triangle carrier needs to be reconfigured to apply to the reconfigured
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topology. It not only isolates the fault IGBT but also retains the healthy power supply,
which keeps the output voltage amplitude of the inverter. However, this method is only
designed for the cascaded five-level inverter. In [31], a new fault-tolerant control topology
is proposed. The proposed topology adds four relays in each module, which can perform
the isolation and elimination of the fault module from the whole circuit. It can be applied
to higher-level inverters. In contrast, the method in [32] uses fewer relays to bypass the
faulty cell. And this method connects the batteries to the healthy cell to achieve fault-
tolerant control, which can be applied to an asymmetric mode. In [33], a serial fault-tolerant
topology based on sustainable reconfiguration is proposed to achieve serial fault-tolerant
control. However, the switches used in those articles are electromechanical switches, which
are slow to respond compared to semiconductor devices. In addition, the method in [34,35]
proposes a novel inverter topology. They can also quickly respond when a fault occurs.
Partial voltage levels can be output through two disjoint loops. This means that when the
switch in one loop fails, the voltage can be output through the other loop. However, the
proposed topologies need to add many switching devices. The method in [36] proposes a
fault-tolerant control strategy based on the divided voltage modulation algorithms. It can
also achieve fault-tolerant control of the induction motor drive system without hardware
redundancy or algorithm redundancy. However, the fundamental amplitude of the output
voltage decreases. The method in [37] proposes a strategy to achieve a higher utilization
ratio of healthy IGBTs and sinusoidal output voltage. However, a conduction state is
not used. In addition to the points above, closed-loop control of a permanent magnet
synchronous motor leads to IGBT module control signal characteristics that are not obvious.
After the fault occurs, the system will work in an abnormal state, which brings huge security
risks to the whole system.

To solve these problems, a stratified reconfiguration carrier disposition the SPWM fault-
tolerant control strategy is proposed. The main contribution of this article is to improve
the performance of inverter output voltage in post-fault operation, reduce and balance
the power loss of the H-bridge, and improve the reliability of the system. The problem
is analyzed in Section 2. The operating principle is illustrated in Section 3. Simulation
and experimental results verify the theoretical analysis in Section 4. Finally, this paper is
concluded in Section 5.

2. Problem Description

The electric propulsion system topology of a ship’s DC network is shown in Figure 1.
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The network is divided into two subsystems: the Port DC network and the Starboard
DC network. Each DC network subsystem includes four types of converters: AC/DC
rectifiers of generators (G1 and G2), bidirectional DC/DC converters of batteries or solar
panel energy storage, DC/AC inverters of loads, and DC/AC invertors of propulsion
motors (M1 and M2).

The DC side of the above four types of converters takes the DC bus (post and starboard
DC bus are, respectively, recorded as DC bus 1 and DC bus 2) as the common connection
point. The post and starboard DC bus can be divided or closed through the DC breaker to
achieve networking or independent operation. On the load side, DC/AC inverters change
the DC bus voltage into an AC voltage with adjustable amplitude and frequency. They then
connect the transformer to the three-phase 380V AC bus to power the ship’s loads. The left
and starboard AC buses (respectively recorded as AC bus 1 and AC bus 2) are divided or
closed through the AC breaker, which can also realize network operation or independent
operation.

A three-phase cascaded multilevel inverter is adopted in the DC/AC inverter of
the propulsion motor. The propulsion motor drives the propeller to overcome the load
resistance of the ship. The load characteristics of propeller are complicated. The relationship
between the parameters is as follows:

J′ = VP√
V2

P+D2n2

K′
P(J′) = 1

2 a0PT0(J′) + a1PT1(J′) + · · · · · ·+ anPTn(J′)
K′

T(J′) = 1
2 a0TT0(J′) + a1TT1(J′) + · · · · · ·+ anTTn(J′)

Pe = K′
Pρn2(1 − tp0)(V2

P + D2n2)
T = K′

TρD3(V2
P + D2n2)

VP = VS(1 − ω)

(1)

where J′ is the bounded form of the advance ratio of the propeller; K′
P is the torque

coefficient; K′
T is the thrust coefficient; Pe is the thrust; T is the torque; Vp is the speed of

the propeller relative to the water; Vs is the ship’s speed; and n is the propeller’s speed.
The simulation results of direct startup are shown in Figure 2.
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When direct starting is adopted, the propeller’s speed and torque increase rapidly.
When the propeller’s speed reaches the maximum value, the torque reaches the peak
value. As the speed increases and the advance ratio increases, the torque of the paddle will
continue to decrease until it is stable. The torque of the propeller is proportional to the
speed. k times the product of torque and speed is equal to power. Therefore, in this paper’s
simulation, the propeller propelled by the motor is regarded as a fan in load characteristic.

The cascaded multilevel inverter consists of several H-bridges. Every H-bridge in-
cludes four IGBTs and an independent DC power supply. Due to the identical structure of
the three phases in the multilevel inverter, only one phase is analyzed.

2.1. Operation State

The single phase of a cascaded seven-level inverter is shown in Figure 3.
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As shown in Figure 4, carrier disposition modulation is used to output the Pulse Width
Modulation (PWM) signal for the inverter. The bridge arm is driven to switch, in turn, in a
determined period. Each H-bridge provides a different output voltage at different times.
The total output voltage is the sum of the output voltages of each H-bridge. Therefore, the
inverter composed of N H-bridges can generate 2N + 1 levels.
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The switching pattern and output voltage waveforms are shown in Figure 4.
As shown in Figure 5, each H-bridge independently manages distinct segments of

the sinusoidal reference. Consequently, even though the modulation technique of each
H-bridge is fundamentally similar, their respective output voltage waveforms are not
identical. When an open-circuit fault occurs in an IGBT, it will lead to failure to drive. The
conduction state of the faulty H-bridge will be affected, which means one voltage level
is skipped. The total output voltage also skips the parts that the H-bridge is responsible
for. The voltage wave will be asymmetric and distorted due to the loss of voltage level. In
addition, the phase voltage will become unbalanced in the three-phase system, such as the
motor drive system.
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2.2. Fault-Tolerant State

To maintain the normal operation of the inverter system, the faulty H-bridge must be
removed from the system. In [38], the faulty H-bridge is directly isolated by an isolation
switch in parallel. Once one IGBT faults, the whole H-bridge cell will be cut off, and other
healthy H-bridge cells will be reconfigured to work in the five-level operation. The other
method in [34] involves the PWM control forcing the corresponding IGBTs on or off. The
faulty H-bridge is in a forward or reverse bypass state. In contrast, the response time is
accelerated because there is no need to use isolation switches to short circuit the faulty
H-bridge. However, the adjustment range of the motor’s torque and speed is reduced when
the inverter uses those methods in the motor drive system because the state of the H-bridge
is lost, which causes a reduction in output voltage capability of inverter. The load capacity
is reduced due to the reduction in the fundamental amplitude. The increase in duty cycle
can increase the amplitude. However, the power loss will increase with the increase in duty
cycle, and the junction temperature will increase due to the increase in IGBT power loss.
This will cause the IGBT failure rate to increase, thus reducing the reliability of the system.

For fault diagnosis in a ship’s DC electrical system, there has been a lot of research de-
velopments, such as a convolutional-neural-network-based method [21], Res-BiLSTM [22],
and a layering linear discriminant analysis [23].

For fault-tolerant control in the ship’s system, a five-phase fifteen-slot four-pole interior
PMSM without the neutral point was modified [24]. This method requires a redesign of
the motor and is costly. A modified lookup table, flux, and torque hysteresis bands are
designed to improve the functioning of the fault-tolerant DTC of five-phase induction
motor (FPIM) drive [25]. This method may not be suitable for a PMSM in electric ships.
The method in [26] solves this problem by adding two TRIACs to pass faulty devices. And
two additional switches are added to the circuit. This can be interpreted as faulty healthy
devices being replaced by redundant devices. This method adds additional devices.

For these unresolved doubts, a stratified reconfiguration carrier disposition SPWM
fault-tolerant strategy is proposed. The faulty device is bypassed without an isolating
switch. The fundamental voltage amplitude is improved as much as possible after fault
tolerance. And the reliability of the system is also increased.

3. A Stratified Reconfiguration Carrier Disposition SPWM Fault-Tolerant Control Strategy

Figure 6 shows the schematic diagram of the stratified reconfiguration disposition
SPWM fault-tolerant control strategy. There are no additional devices to achieve fault-
tolerant control.
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In Figure 6, the output voltage information of the inverter is used for real-time fault
diagnosis. When the fault information is detected, the fault-tolerant control method based
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on reconstructed SPWM signal is activated. This fault-tolerant control method can be
divided into modulating wave reconfiguration and carrier reconfiguration. The carrier
reconfiguration includes the isolation of the fault IGBT, the reconfiguration of the faulty
H-bridge carrier, the reconfiguration of the healthy H-bridge carrier, and the permutation
of the drive signal. This method can alleviate the influence of the fault.

3.1. Reconfiguration of the Three-Phase Reference Wave

In the cascaded multilevel inverter, voltage references for phase A, B, and C can be
expressed as follows: 

uAre f = a × ma sin(100πt)
uBre f = b × ma sin(100πt + θAB)
uCre f = c × ma sin(100πt − θAC)

(2)

where a, b, c are the amplitude of the reference voltage of phases A, B and C, respectively,
and θAB, θAC, θBC are the phase angles between AB, AC, and BC, respectively. During
the normal operation of the inverter, a = b = c = n, n is number of cascaded H-bridges,
θAB = θAC = θBC = 120◦.

The vector diagram of the three-phase reference voltage is presented in Figure 7a; it
shows that the output voltage of the inverter is balanced. However, equivalent voltage
cannot be output according to the reference wave due to fault, as shown in Figure 7b–d.

In Figure 7b, when the fault occurs in phase A, it will be a < b = c. The inverter will
not be able to output a three-phase balanced voltage waveform that matches the reference
modulation waveform, as shown in Figure 7a. In Figure 7c, when the fault occurs in phases
A and B, it will be a = b < c. The inverter will not be able to output a three-phase balanced
voltage waveform either. Therefore, the phase of the three-phase reference voltage must be
reconfigured. The reconfiguration algorithm is as follows:
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When the fault of the H-bridge occurs in a single phase, to reconfigure the phase of
the H-bridge after isolating the faulty H-bridge, the algorithm is as follows:{

a2 + b2 − 2ab cos(θAB) = a2 + c2 − 2ac cos(θAC) = b2 + c2 − 2bc cos(θBC)
θAB + θAC + θBC = 360◦

(3)
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If the fault of the H-bridge occurs in two phases, to reconfigure the phase of the
H-bridge after isolating the faulty H-bridge, the algorithm is as follows:

c =
√

a2 + b2 + ab, a = b = n
2

θAB + θAC + θBC = 360◦

θAC = θBC = cos−1(a − b)
(4)

If the fault of the H-bridge occurs in three phases, to reconfigure the phase of the
H-bridge after isolating the faulty H-bridge, the algorithm is as follows:

c = a = b = n
2

θAB + θAC + θBC = 360◦

θAB = θAC = θBC

(5)

When the three-phase voltage is unbalanced, the line voltages will also be unbalanced.
The imbalance line voltage of the three-phase system may lead to an unstable operation of
the power equipment, reduced power factor, energy loss, and other problems. Therefore,
when a fault occurs, the three-phase voltage should be balanced first.

3.2. Reconfiguration of the Carrier Signal

After three-phase voltage balance reconfiguration, the equivalent output voltage of
each phase is determined. To achieve the desired output, three steps are presented: (i)
isolation of the fault IGBT; (ii) reconfiguration of the hybrid carrier; and (iii) redistribution
of the drive signal.

3.2.1. Isolation of the Fault IGBT

When a signal IGBT fails, the fault diagnosis method is used to detect the fault location.
If the fault occurs in the IGBT of the reverse conduction circuit, k = 1. If the fault occurs in
the IGBT of the forward conduction circuit, k = 0. The carrier signal of the faulty H-bridge
is modified to the following:{

C∗
+ = n

n−j C+ + (−1)k(n + 1 − i)

C∗
− = n

n−j C− − (−1)k(n + 1 − i)
(6)

where C+, C− are the carrier signals above the time axis and below the time axis of the
faulty H-bridge, respectively. C∗

+, C∗
− are the corresponding carrier signal after fault-tolerant

control. The two indexes j and i are the number and location of faulty H-bridges.
If a fault occurs in a cascaded H-bridge seven-level inverter, the reference and carrier

signals will be reconfigured to make the drive signal of the faulty IGBT set to zero and the
remaining topology can be regarded as a cascaded five-level inverter. If the second fault
occurs in the same conduction loop in different H-bridge, the remaining topology can be
seen as a cascaded three-level inverter.

If the second fault occurs in the different conduction loop in a different H-bridge, it
means that there is a healthy positive bridge arm in one faulty H-bridge and a healthy
reverse bridge arm in another faulty H-bridge. These remaining healthy bridge arms in the
faulty H-bridges will be fully utilized. In other words, for one fault, the faulty H-bridge
with a healthy positive conduction loop can output two voltage levels of +E and 0. For
another fault, another faulty H-bridge with a healthy negative conduction loop can output
two voltage levels of −E and 0. Then, when the two faulty H-bridges are combined as far
as possible, the output voltage wave can be reduced by only two voltage levels, that is, the
seven levels will be five levels. Especially when more H-bridges are cascaded, the on-state
of the H-bridges is utilized as much as possible to increase the amplitude of the output
voltage after fault tolerance.
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3.2.2. Reconfiguration of the Hybrid Carrier

The reconfiguration of the remaining carriers can be carried out using traditional
level-shifted pulse width modulation. However, the degradation of the voltage will cause
a reduction in the fundamental amplitude. Therefore, the hybrid carrier will be used to
improve the duty cycle.

In order to increase the duty cycle, the top-most and bottom-most carriers are replaced
by a triangular–trapezoidal signal, and the triangular–trapezoidal signal has the same
frequency as the replaced triangular signal. The H-bridge is a conduction state when
the modulated signal is bigger than that of the trapezoidal carrier signal. Therefore, the
conduction time is longer because carriers are triangular–trapezoidal signals. That is, the
H-bridge is a conduction state for a longer time in one cycle. The duty cycle can be increased
by this hybrid carrier.

3.2.3. Redistribution of Drive Signal

A larger duty cycle can provide a higher average power of the inverter output but
it also increases the loss and temperature of the IGBT. The loss may cause a reduction in
IGBT reliability. Therefore, in order to decrease the duty cycle of the healthy bridge, the
healthy devices in faulty bridges are used to contribute to the output voltage through the
redistribution of the drive signal.

When a single IGBT fault occurs in the H-bridge, the forward or reverse conduction
will be blocked. However, the fault cell is in the bypass state after the isolation of the
fault IGBT, and the remaining conduction state is not used. To reduce the power loss, the
remaining conduction state in the faulty cell will be used to contribute to the output.

As shown in Figure 8, the drive signal is alternated at different periods. It can make
the remaining conduction state of the faulty H-bridge output the highest and lowest levels.
The power loss will be evenly distributed. Meanwhile, the switching times of the switch
tube are equal in a half period, which also balances the power among the output modules.
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4. Simulation Results and Analysis
4.1. Simulation Results
4.1.1. Seven-Level Inverter

To verify the efficiency of the proposed method, this section will show its simulation
results. Because this paper only focuses on fault-tolerant control, the simulation model is
built based on the assumption that the fault has been detected and diagnosed correctly.

A cascaded H-bridge seven-level inverter system is built using MATLAB/Simulink
R2022b software. Every input DC voltage value is set to 65 V. A series-connected R-L
impedance of 21 (Ω) and 8 (mH) is taken into consideration, which is connected to the
terminals of the inverter as a load. As shown in Figure 9, an open fault is generated
in H3S2 in the first H-bridges at t = 0.02 s. The voltage in that phase loses a level and
becomes asymmetrical.
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At t = 0.8 s, the reference and carrier signals are reconfigured. The symmetry of the
phase voltage is restored. However, the phase voltage is degraded from seven levels to five
levels. And the switching times are increased due to the reconfiguration of the modulation
signal. Therefore, the drive signal is redistributed. As shown in Figure 10a, the faulty
H-bridge is used to output voltage. The number of switches in a period is reduced, which
causes the reduction in the power loss of the healthy H-bridge, as shown in Figure 10b,c.
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At t = 0.12 s, the second fault occurs in H2S1 (Figure 9a) and H2S4 (Figure 9b), respec-
tively. As shown in Figure 9a, because H2S1 is on the forward conduction loop, the output
voltage keeps the five-level in post-fault operation. As shown in Figure 9b, the output
is reduced to three levels due to the fact that H2S4 is in the reverse conduction state. In
conclusion, the performance of the output voltage has improved as much as possible.

4.1.2. Motor Drive System

To verify the effectiveness of the proposed strategy, a simulation model of the PMSM
drive system is built, and the proposed method is also applied. The parameters of
IGBT/Diode are shown in Table 1. The DC voltage is 35 V. The PMSM parameters are
shown in Table 2.

Table 1. Parameters of IGBT/Diode.

Components Value

Internal resistance Ron = 1 × 10−3 Ω
Snubber resistance Rs = 1 × 105 Ω

Snubber capacitance Cs = inf

Table 2. PMSM parameters of MATLAB simulation.

Parameters
Number of
Pole Pairs Stator Inductance Stator

Resistance Flux Linkage Moment of
Inertia

Damping
Coefficient

Pn Lq Ld R ψf J B

Value 4 8.5
(mH)

8.5
(mH)

2.875
(Ω)

0.175
(Wb)

0.003
(kg·m2)

0.008
(N·m·s)

(a) The parameters of Proportional Integral (PI) controller in the rotational speed loop

In order to facilitate the parameter setting of the speed loop PI controller, the motor
motion equation of PMSM is written as follows:

J
dωm

dt
= Te − TL − Bωm (7)

Te =
3
2

pniq[id(Ld − Lq) + φ f ] (8)

where ωm is the mechanical angular speed of the motor; J is the moment of inertia; B is the
damping coefficient; and TL is the load torque. Active power damping is used to adjust
the parameters of the speed loop PI controller, and the active power damping is defined
as follows:

iq = i′q − Baωm (9)

When the control strategy (id = 0) is adopted and the motor is assumed to start under
no-load (TL = 0), the following expression can be derived:

dωm

dt
=

1.5pn φ f

J
(i′q − Baωm)−

B
J

ωm (10)

By assigning the poles of (10) to the desired closed-loop bandwidth β, the transfer
function of the speed relative to the Q-axis current can be obtained as follows:

ωm(s) =
1.5pn φ f /J

s + β
i′q(s) (11)
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The coefficient of active power damping can be obtained by (10) and (11):

Ba =
βJ

1.5pn φ f
(12)

Then, the expression of the speed loop controller is as follows:

i∗q = (kpw +
kiw
s
)(ω∗

m − ωm)− Baωm (13)

Therefore, the proportional gain and integral gain of the PI controller can be adjusted
by the following formula: {

Kpw = βJ
1.5pn φ f

Kiw = βKpw
(14)

where β is the expected frequency band bandwidth of the speed loop. The bandwidth of
the speed ring is selected as 50 rad/s. The parameters of the speed loop PI controller are
calculated by (14) and the parameters of the motor.

(b) The parameters of PI controller in the current loop

The conventional PI controller is combined with the feedforward decoupling control
strategy. The voltage of the d–q-axes can be obtained as follows:{

ud = (kpd +
kid
s )(i∗d − id)− ωeLqiq

uq = (kpq +
kiq
s )(i∗q − iq) + ωe(φ f + Ldid)

(15)

where Kpd and Kpq are the proportional gains of the PI controller, and Kid and Kiq are the
integral gains of the PI controller. Internal model control has the advantages of a simple
structure and a single parameter. Therefore, the internal model control strategy is used to
design and adjust the parameters of the PI controller.

Figure 11a shows a typical internal model control block diagram, where Ĝ(s) is the
internal model; G(s) is the controlled object; and C(s) is the internal model controller.
According to the classic automatic control principle, the block diagram shown in Figure 11b
can be obtained through an appropriate equivalent transformation shown in Figure 11a,
and its equivalent controller is as follows:
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F(s) = [I − C(s)Ĝ(s)]−1C(s) (16)

where I is the identity matrix. If the internal model modeling is accurate, Ĝ(s) = G(s). Then,
there is no feedback in the system, and the transfer function of the system is as follows:

Gc(s) = G(s)C(s) (17)

To ensure the stability of the system, G(s) and C(s) need to be stable. The current
loop of a control system can be approximated as a first-order system. C(s) is defined by
Ĝ(s) = G(s):

C(s) = Ĝ−1(s)L(s) = G−1(s)L(s) (18)

where L(s) = αI/(s + α), and α is the design parameter. By substituting (18) into (16), the
designed internal model controller can be obtained, which is as follows:

F(s) = α

[
Ld +

R
s 0

0 Lq +
R
s

]
(19)

By substituting (19) into (16), Gc(s) can be calculated as follows:

Gc(s) =
α

α + s
I (20)

By comparing (20) and (15), it can be seen that the adjustment parameters of the PI
controller meet the following: 

Kpd = αLd
Kid = αR
Kpq = αLq
Kiq = αR

(21)

According to the parameters of the motor, α = 1000 rad/s. According to (21), the
parameters of the PI controller in the current loop can be calculated. The calculated
parameters of the PI controller may not be optimal. In the process of simulation, it is
necessary to further debug the parameters to achieve the best control effect. The controller
parameters obtained through debugging are shown in Table 3.

Table 3. The parameters of PI controller.

Parameter Type Value

Speed loop parameters Kpw = 0.35, Kiw = 0.85
D-axis current loop parameters Kpd = 0.0085, Kid = 2.875
Q-axis current loop parameters Kpq = 8.5, Kiq = 2.875

The PI controller parameters in Table 2 determined based on a stability analysis are
entered into the MATLAB model. When the load torque TL is replaced by the fan load
torque, the speed is as shown in Figure 12. The load characteristics of the fan are as follows:

TL = Tf + kn2 (22)

where Tf is friction torque on the bearing; and k is proportional coefficient.
As shown in Figure 12, the initial speed of the propulsion motor PMSM is 800 rpm.

The load torque of the propeller is suddenly loaded to the PMSM at t = 0.2 s. The motor
speed oscillates accordingly and then becomes stable. IGBT faults happen in the first and
third H-bridges at t = 0.6 s. The effect of the speed will become worse, and the speed will
fluctuate between 790.9 rpm and 804.5 rpm and show the characteristics of periodic changes.
After a delay for fault detection and diagnosis, the proposed method is put into use at
t = 0.8 s. It will be noted that the neutral point cannot be offset because the motor drive
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system requires phase voltage balance. Therefore, the three-phase reference signals are
reconfigured by (4). Isolating the faulty IGBT stabilizes the speed of the motor. However,
it decreases from 800 rpm to 530 rpm due to the reduction in voltage level. At t = 1.5 s,
the SPWM strategy of the hybrid carrier is used. The motor speed increases to 590 rpm.
Therefore, the proposed fault-tolerant control is realized to achieve a three-phase voltage
balance and constant frequency in the seven-level or a five-level voltage of the motor drive
system. In addition, the IGBT power loss of the H-bridge is reduced.
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Figure 12. Motor speed simulation results.

To solve the voltage drop problem, there are two ways to restore speed. One is to
increase the voltage value of the DC bus. However, the ship’s DC bus cannot be added
arbitrarily. Another one is to reduce the excitation current of the motor and thereby reduce
the excitation flux. The motor speed will be increased under the condition of ensuring
the voltage balance. The excitation flux of PMSM is provided by a permanent magnet,
and this flux is constant. If the magnetic flux strength is expected to be reduced, the air
gap magnetic flux can only be weakened by increasing the demagnetization component
of the stator current. In this way, flux-weakening control can be achieved, just like for the
separately excited DC motor. Under these circumstances, the d-axis current id must be
maintained at a negative value to shift the operating point laterally into the operable region.
The negative d-axis current is the so-called flux-weakening current, and flux-weakening
control is responsible for driving the flux-weakening current such that the motor always
operates inside the operable region even when the operating conditions vary [39].

Flux-weakening control is performed at 1.5 s. The speed and torque waveforms are
shown in Figure 13.
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As shown in Figure 13, speed and torque can be restored. Therefore, the possibility of
uninterrupted operation of the motor drive system is improved as much as possible.

4.2. Experimental Results

Figure 14 depicts the experimental platform. It consists of a cascaded H-bridge seven-
level inverter as a power stage, and the control strategy is implemented in the MicroLabBox
dSPACE system that generates the signals of the switch gates. Due to the limitations of the
experimental conditions, the DC source is used to simulate the ship’s DC bus, and PMSM
is replaced by RL. Table 4 shows the main parameters of the system. We have selected the
IGBT IKW50N65F5 as the power switch transistor, which includes a built-in reverse diode.
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Table 4. Experiment’s parameters.

Components Value

DC source voltage Vdc = 56 V
Resistive load R = 21 Ω
Inductive load L = 12 mH

Reference frequency 50 Hz
Switching frequency 3 kHz

As shown in Figure 15, the three-phase cascaded seven-level inverter is supplied by
power sources. And the control signal given by the controller dSPACE needs to go through
the signal conditioning circuit to the three-phase cascaded five-level inverter. Meanwhile,
the signal conditioning circuit has the function of setting faults. The output voltage signal
of the three-phase cascaded seven-level inverter is directly sent to the load. The voltage and
the current sensor are used to monitor the output signal of the inverter in real time. The
collected voltage and current signals are sent to the controller dSPACE as feedback signals.
The collected phase voltage signal is used as the monitoring signal of fault diagnosis, and it
is used to realize fault-tolerant control.
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Figure 16 shows the changes in the output voltage and output current under fault-
tolerant control of the proposed strategy. This process can be divided into five states:
normal operation, IGBT failure, fault-tolerant control, second IGBT failure, and second
fault-tolerant control.

As shown in Figure 16a:

(1) In the first stage, the inverter is in a normal working state. The output voltage of the
inverter is a symmetrical seven-level voltage waveform, with the output current being
a sine wave.

(2) In the second stage, due to the IGBT (H3S4) on the H3 reverse conduction circuit
having an open-circuit fault, there is a level reduction in the output voltage on the
negative half axis. As a result, the total harmonic distortion of the output voltage
increases and the output current is distorted.

(3) In the third stage, a fault-tolerant control method is adopted based on the recon-
structed SPWM signal. Although the amplitude of the output voltage is reduced and
the voltage level is reduced compared to the normal state, the inverter can output a
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symmetrical five-level voltage waveform. This means the total harmonic distortion of
the output voltage is reduced during faults, and the output current is restored to a
sinusoidal waveform.

(4) In the fourth stage, the IGBT (H2S4) on the H2 reverse conduction circuit has an open-
circuit fault. As a consequence, the output voltage of the five levels loses one voltage
level on the negative half axis, and the total harmonic distortion increases further.

(5) In the fifth stage, the inverter can output a symmetrical three-level voltage by the pro-
posed fault-tolerant control strategy, and the output current is restored to a sine wave.
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Figure 16. Experimental results of output voltage: (a) fault in H3S2 and H2S4; (b) fault in H3S2

and H2S1.

It can be seen that both single IGBT faults and double IGBT faults can be achieved
using the proposed method for fault-tolerant control.

As shown in Figure 16b, identical to the first three stages of the above analysis, the
proposed fault-tolerant control method was used to achieve merely one-level reduction.
Nevertheless, the fourth stage is unlike the above situation. The IGBT (H2S1) on the H2
forward conduction circuit leads to an open-circuit fault, causing a level reduction in the
first half cycle of the output voltage. In the fifth stage, by using the proposed fault-tolerant
control method again, it can be found that fault-tolerant control can be achieved without
reducing the level, and the total harmonic distortion of the output voltage can be improved.

As a consequence, the proposed fault-tolerant control method not only effectively
achieves fault-tolerant control, but also improves the performance of the output voltage
in terms of the fault types that cause different conduction circuit blockages for different
H-bridges.

As shown in Figure 17, the faulty H-bridge is used to output the forward voltage in T1.
Meanwhile, the second and third H-bridges are in the conduction state, which can reduce
power loss. In addition, for the whole period, the number of switches on each H-bridge is
the same as in the half period. This can balance the power loss of each H-bridge as much
as possible.
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In the experimental results, the performance of the output voltage is improved as
much as possible in post-fault operation, and the power loss of the healthy H-bridge is
reduced, which can improve the reliability of the ship’s power system.

4.3. Comparison with Other Methods

The fault-tolerant control effect of [31] in the three-phase grid-connected experimental
platform is shown in Figure 18. The whole process is divided into three states: healthy
operation state, H-bridge fault state, and fault-tolerant control state.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 21 of 24 
 

 

 
Figure 17. Experimental results of output voltage of each H-bridge: (a) the first H-bridge; (b) the 
second H-bridge (c) the third H-bridge. 

In the experimental results, the performance of the output voltage is improved as 
much as possible in post-fault operation, and the power loss of the healthy H-bridge is 
reduced, which can improve the reliability of the ship’s power system. 

4.3. Comparison with Other Methods 
The fault-tolerant control effect of [31] in the three-phase grid-connected 

experimental platform is shown in Figure 18. The whole process is divided into three 
states: healthy operation state, H-bridge fault state, and fault-tolerant control state. 

CH1=100V     CH2=996mA          5.0ms

Output voltage of inverter
Current

Healthy operation state Fault in H1S1 Fault tolerant control state

 
Figure 18. Experimental results of fault-tolerant control method proposed in [24]. 

During H-bridges’ healthy operation, the inverter can output a symmetrical five-level 
voltage waveform. Nevertheless, when an open-circuit fault occurs in H1, the output level 
cannot be maintained at five. Then, the waveform of the inverter voltage is distorted, and 
the current of the grid also shows asymmetric distortion. After fault-tolerant control in 
[31], the inverter only outputs three-level voltage although the peak value of the output 
voltage is essentially unchanged, and the waveform of the output voltage is symmetrical. 
This fault-tolerant method reduces the output voltage by three levels after only one fault 
in the H-bridge. Although limited to the experimental conditions, the motor experiment 
not being able to be carried out. The results of the grid-connected experiment with RL 
show the current’s harmonic increase. This is a disaster for motor operation. Compared 
with [31], the proposed fault-tolerant control method can both be applied to higher level 
inverters and maintain the level number of output voltage as much as possible. Thus, the 
total harmonic distortion of the current may be reduced. 

The fault-tolerant control effect in [40] is similar to that of the proposed method in 
this paper. However, when a single IGBT fault occurs in the third state, the healthy bridge 

Figure 18. Experimental results of fault-tolerant control method proposed in [24].

During H-bridges’ healthy operation, the inverter can output a symmetrical five-level
voltage waveform. Nevertheless, when an open-circuit fault occurs in H1, the output level
cannot be maintained at five. Then, the waveform of the inverter voltage is distorted, and
the current of the grid also shows asymmetric distortion. After fault-tolerant control in [31],
the inverter only outputs three-level voltage although the peak value of the output voltage
is essentially unchanged, and the waveform of the output voltage is symmetrical. This
fault-tolerant method reduces the output voltage by three levels after only one fault in
the H-bridge. Although limited to the experimental conditions, the motor experiment not
being able to be carried out. The results of the grid-connected experiment with RL show the
current’s harmonic increase. This is a disaster for motor operation. Compared with [31], the
proposed fault-tolerant control method can both be applied to higher level inverters and
maintain the level number of output voltage as much as possible. Thus, the total harmonic
distortion of the current may be reduced.

The fault-tolerant control effect in [40] is similar to that of the proposed method in this
paper. However, when a single IGBT fault occurs in the third state, the healthy bridge arm
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of the faulty H-bridge is not utilized. The switching frequency of some IGBT devices in the
third state is reduced by the proposed method based on reconfiguration SPWM, and thus
the IGBT power loss is reduced.

The torque ripple is estimated to be 1.6 Nm in [25]. The torque ripple of the proposed
method is around 0.42 Nm as shown in Figure 13b, which is about 73% lower than in the
scheme proposed by Chikondra et al. [25].

More investigations that can adapt to the existing systems in ships are needed, in-
cluding research on factors which have not been considered by the proposed method. The
following are some examples:

(a) The DC power supply is replaced by the actual ship’s DC bus;
(b) Wind disturbance factors should be considered, such as mean wind pressure, variable

wind pressure, the ship’s absolute heading angle, absolute wind angle, drift angle, etc.;
(c) Wave interference factors should be considered, such as irregular wave drift force

and moment, wave and ship encounter angle, drift force coefficient, wave force
interference coefficient, etc.;

(d) The electromagnetic interference generated by the inverters needs to be dealt with.

5. Conclusions

A stratified reconfiguration carrier disposition SPWM fault-tolerant control strategy
for a ship’s PMSM drive system is proposed. Compared to the inverter topology with addi-
tional devices [26–29,31,34,35], the proposed method is only based on software. This makes
it useful for ships where space is limited. Thus, the proposed hybrid carrier could improve
the duty cycle of SPWM. The experimental results show that the decrease problem [37] of
the fundamental amplitude of the output voltage is solved in faulty conditions. Because
the conduction state of the healthy bridge arm in the faulty H-bridge is fully utilized,
the performance of the output voltage is improved. Furthermore, the switching times of
the IGBT are identical over a period. That is to say, the power losses of IGBTs are even.
Therefore, the proposed method is suitable for motor drive applications that do not require
maintaining voltage amplitude.
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