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Abstract: Predicting wind speed over the ocean is difficult due to the unequal distribution of buoy
stations and the occasional fluctuations in the wind field. This study proposes a dynamic graph
embedding-based graph neural network—long short-term memory joint framework (DGE-GAT-
LSTM) to estimate wind speed at numerous stations by considering their spatio-temporal information
properties. To begin, the buoys that are pertinent to the target station are chosen based on their
geographic position. Then, the local graph structures connecting the stations are represented using
cosine similarity at each time interval. Subsequently, the graph neural network captures intricate
spatial characteristics, while the LSTM module acquires knowledge of temporal interdependence. The
graph neural network and LSTM module are sequentially interconnected to collectively capture spatio-
temporal correlations. Ultimately, the multi-step prediction outcomes are produced in a sequential
way, where each step relies on the previous predictions. The empirical data are derived from direct
measurements made by NDBC buoys. The results indicate that the suggested method achieves a mean
absolute error reduction ranging from 1% to 36% when compared to other benchmark methods. This
improvement in accuracy is statistically significant. This approach effectively addresses the challenges
of inadequate information integration and the complexity of modeling temporal correlations in the
forecast of ocean wind speed. It offers valuable insights for optimizing the selection of offshore wind
farm locations and enhancing operational and management capabilities.

Keywords: graph embedding; graph neural network; spatio-temporal information; wind data

1. Introduction

In recent years, as the economy and society have continued to evolve, pollution
problems caused by the increased consumption of fossil fuels have grown more severe;
consequently, many nations have begun to pay more attention to sustainable energy [1,2].
Regarding environmental protection, wind energy has inherent advantages over natural
gas, coal, and other energy sources. To attain the objective of decarbonization by 2050,
substantial expansion is anticipated in the offshore wind power sector in the coming
decades [3,4]. Offshore wind possesses a greater capacity for generating wind power than
terrestrial wind [5,6]. Technology for offshore wind speed forecasting that is both accurate
and efficient is essential for increasing the utilization rate and economic benefits of wind
energy [7,8].

The variability and stochastic nature of offshore wind speed are unavoidable conse-
quences of numerous environmental factors. The prediction of offshore wind time series is
a challenging aspect of marine forecasting and constitutes an abstract high-level regression
problem [9]. The current state of wind power forecasting methods can be broadly classi-
fied into two categories: physical methods and NWP methods. Physical methods utilize
NWP information to compute wind speed; however, their reliance on thermodynamics
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and fluid dynamics results in low efficiency and high computing expenses [10]. Physical
models have a restricted capacity for short-term wind power forecasting [11] due to the
high computational complexity resolved by NWP models.

Statistical and ML techniques optimize model parameters through the utilization of
historical data. In addition to requiring substantial computing resources for the train-
ing procedure, forecasting models necessitate a considerable volume of sample data [12].
However, these models exhibit a rapid inference process, enabling the generation of pre-
dictions in close proximity to real time. As a result, artificial intelligence has become more
significant, and neural network-based deep learning models have garnered considerable
interest [13]. In the early stages of neural network research, relatively rudimentary models
such as ANN [14] and BP [15] were utilized. The current domain of deep learning fre-
quently employs more intricate deep network architectures, including CNN [16], RNN [17],
and GRU [18], as a result of its development. Through the utilization of their distinctive
model structures, they are capable of circumventing the gradient vanishing problem and
enhancing the resistance of conventional neural networks to local optima that arise during
the prediction of highly correlated wind power time series data. This renders them more
appropriate for the prediction of short-term wind power output, which is distinguished by
substantial data volumes and multidimensional attributes [19].

Ding et al. [20], based on the LSTM model, combined with EMD to predict the cross-
wind speed and downwind speed, then calculate the predicted wind direction value to
achieve wind direction prediction. One month of wind monitoring data collected by the
structural SHM is used to verify the effectiveness of direct prediction and indirect prediction
in the prediction of wind speed and direction. Karim et al. [21] proposed a RNN prediction
model combined with the dynamic adaptive Al-Biruni earth radius algorithm to predict
wind power data patterns. Huang et al. [22] used an LSTM neural network to predict
wind speed for each wind turbine to obtain residual values and extract time correlations
of wind speed sequences. Zhu et al. [23] proposed a wind speed prediction model with
spatio-temporal correlations, namely the PDCNN. This model is a unified framework
that integrates CNN and MLP. Xiong et al. [24] proposed a multi-dimensional extended
feature fusion model AMC-LSTM to predict wind power. The attention mechanism is used
to dynamically allocate weights to physical attribute data, which effectively solves the
problem that the model cannot distinguish differences in the importance of input data.

Currently, however, the majority of deep learning techniques only utilize time series
data from wind sites. Nevertheless, the potential spatial dependence among wind sites
must also be taken into account in practical applications [25]. As a result of their local
connectivity and permutation invariance, GNNs have experienced tremendous success in
modeling data relational dependencies in recent years [26].

Geng et al. [7] proposed a universal graph optimized neural network for multi-node
offshore wind speed prediction—the spatio-temporal correlated graph neural network.
Khodayar et al. [27] proposed a scalable graph convolutional deep learning architecture
(GCDLA). This model introduces a rough set theory by approximating upper and lower
bound parameters in the model. Yu et al. [28] proposed an SGNN (superposition graph
neural network) for feature extraction, which can maximize the utilization of spatial and
temporal features for prediction. In the four offshore wind farms used in the experiments,
the mean square error of this method is reduced by 9.80% to 22.53%. Xu et al. [29] proposed
a new spatio-temporal prediction model based on optimal weighted GCN and GRU, using
DTW distance for constructing optimal weighted graphs between different wind power
plant sites. The graph neural network in the above method effectively aggregates the
spatio-temporal information, but only considers the overall correlation of the sequence
when constructing the adjacency matrix and does not consider that the correlation may be
different in local time.

To address the aforementioned obstacles and optimize the utilization of spatio-temporal
data, this article centers on the implementation of spatio-temporal data within a graph
neural network-based multi-step wind forecasting method. In order to address the issue of
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inadequate local information capture, this study introduced a dynamic graph-embedding
technology and developed a GAT-LSTM network structure to capture spatio-temporal
information on wind speed from multiple stations. This research endeavors to produce
wind speed forecasts with a greater degree of precision by generating information-enriched
time series via multi-step forecasting. The overarching objective is to enable more accurate
decision-making within a designated time frame. Within this framework, the objective of
this research is to examine multi-step prediction. Each step will have a duration of 10 min,
1 h, and 4 h, and the pre-prediction time resolution will be 10 min.

The contributions of this paper can be summarized as:

• To address the insufficient capability in modeling complex spatio-temporal features in
existing offshore wind speed prediction research, this study proposes a DGE technique.
By constructing subgraphs at each time step, the model’s ability to capture local
feature dependencies is effectively enhanced, achieving dynamic modeling of offshore
wind fields.

• The effective integration of GAT and LSTM networks enables the model to have
both the advantages of mining complex nonlinear spatial dependencies and temporal
dynamic evolutions. By fully incorporating nodal modal features and topological
structures, the capability of modeling temporal correlations of offshore wind fields is
significantly improved, achieving accurate multi-step wind speed prediction.

• Experimental results show that on the public offshore wind speed dataset from the
NDBC (National Data Buoy Center), the proposed model achieves effective multi-step
wind speed prediction, verifying the applicability of the method.

2. Materials and Methods
2.1. Materials

The actual data set utilized in this article is the NDBC (https://www.ndbc.noaa.
gov/historical_data.shtml (accessed on 23 December 2023)) [30] buoy data set, which
comprises observations from nearly 100 moored buoys monitored by the NDBC, including
55 tropical atmosphere ocean buoys operated and maintained in the equatorial Pacific. The
geographical coordinates of the beacons span from 9◦ N to 8◦ S north latitude and 95◦ W to
165◦ E longitude [31].

Wind speed data collected by buoys were used. To ensure the experiment proceeds
without hiccups, this paper selects 12 buoys, including the predicted buoy No. 46042, They
are distributed along the Pacific coast of North America, as shown in Figure 1. The starting
time is from 1 January 2022 00:00:00 to 31 October 2022 23:50:00 every 10 min, and other
basic information is shown in Table 1. Although the original data contains some missing
values, their number is minimal. To mitigate the risk of human error and preserve the
distribution of the data, we employ the mean of the entire set of data for filling purposes,
subsequent to removing any anomalies.

Table 1. Table of basic information for each buoy.

Number of Buoy Size Max (m/s) Min (m/s) Mean (m/s) Std (m/s) Skewness Kurtosis

46002 43,751 16.7 0.0 6.38 2.87 0.31 −0.13
46011 43,751 16.3 0.0 6.22 3.07 0.11 −0.84
46014 43,751 17.8 0.0 5.88 3.56 0.53 −0.52
46025 43,751 16.2 0.0 3.44 2.15 1.39 3.03
46028 43,751 17.6 0.0 7.18 3.86 0.03 −1.11
46042 43,751 15.7 0.0 6.19 3.16 0.16 −0.8
46059 43,751 14.2 0.0 6.09 2.58 0.19 −0.53
46072 43,751 20.9 0.0 5.92 3.66 0.41 −0.62
46084 43,751 21.0 0.0 6.68 3.66 0.58 −0.19
46089 43,751 19.6 0.0 6.05 2.94 0.3 −0.25
51000 43,751 12.6 0.0 6.13 2.10 −0.31 −0.44
51004 43,751 15.7 0.0 7.23 1.80 −0.41 0.79

https://www.ndbc.noaa.gov/historical_data.shtml
https://www.ndbc.noaa.gov/historical_data.shtml
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Figure 1. Geographic map of the locations of the 12 buoys.

Based on the data presented in Table 1, it is evident that the distribution of wind
speed data obtained from buoys is predominantly positively biased. This indicates that
instances of high wind speed are infrequent. Simultaneously, the data exhibit a kurtosis
that is comparatively small, suggesting that the wind speed value predominantly mirrors
the mean value and that instances of extreme wind speed are infrequent.

Due to the fact that the majority of wind power projects are situated offshore, it
is critical to choose buoys that capture weather and ocean conditions in these regions.
Implementing this approach is critical for ensuring the viability and effectiveness of offshore
wind energy initiatives. Through the careful selection of these offshore locations, we are
capable of furnishing up-to-the-minute meteorological and oceanic data that are highly
pertinent to offshore wind power endeavors. As a result, we are able to assist in the efficient
organization, functioning, and upkeep of wind farms.

2.2. Methods
2.2.1. Overview

This scholarly article introduces a novel DGE-GAT-LSTM methodology for wind speed
forecasting, which is founded on dynamic graph embedding. By constructing a subgraph
for each time step, the method enables the model to dynamically comprehend and process
the spatiotemporal properties of wind speed data. The study employs cosine similarity
technology to ascertain the connection relationship among buoy points. This method aids
in the precise identification and description of the dynamic relationship among various
buoy points. Special emphasis is placed on the ability to handle multi-step predictions.
Multi-step prediction is used to predict the wind speed at multiple time points in the future,
which has important practical application value in the fields of meteorological prediction
and wind energy utilization.

To enhance the efficiency of capturing and processing temporal and spatial information
present in wind speed data, a string deep learning model was developed by combining a
graph neural network and a long short-term memory network. By extracting both spatial
and temporal features from the data, the structure of this model enhances the precision and
effectiveness of wind speed forecasting.

The model entails a graph neural network component that processes and interprets the
spatial information contained within the wind speed data. Meanwhile, the LSTM network
is tasked with capturing the temporal dependencies and dynamic alterations present in the
time series data. By utilizing this dual mechanism, the model attains a more comprehensive
comprehension of the intricate patterns present in the wind speed data, thereby enabling it to
generate predictions that are more precise in nature. The overall flowchart is shown in Figure 2.
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The proposed DGE-GAT-LSTM model consists of two GAT network layers. The
normalized data and adjacency matrix information are passed into the model, and the
original dimension is changed to 64 and then 128 through the double-layer GAT network.
Then, a residual connection is established to fuse the normalized result with the GAT
network structure, which keeps the dimension unchanged and realizes the operation of
average sum. This goal is achieved by augmenting the information into finer-grained
results. To ensure the LSTM input format, the dimensions need to be grouped and split
into corresponding inputs. They are then fed to the LSTM network for prediction. Then,
the last time step is used as the input of the linear layer to obtain the final prediction result.

DGE technology is utilized to acquire the adjacency graph information during this
procedure. To improve the model’s ability to predict local information, the side information
is not set for the entire time series in this paper, but rather at each time step. In order for the
model to gain a more comprehensive understanding of the properties of the local sequence,
the cosine similarity is employed to ascertain the connectivity relationship among the edges
in the local subsequences of the window size. The relevant calculation results are given in
Algorithms 1 and 2.

Algorithm 1 Graph Data Processing

Input: num_nodes: Number of nodes, data: Data, columns: Column names
Output: Graph model
1: function GraphDataProcessing(num_nodes, data, columns )
2: Initialize edge index to [[ ],[ ]]
3: for i from 0 to num_nodes do
4: for j from i + 1 to num_nodes do
5: Compute correlation between data in column i and column j
6: Calculate correlation
7: if Correlation ≥ threshold then
8: Add edge (i, j) to edge index
9: end if
10: end for
11: end for
12: Convert edge index to LongTensor
13: Create graph model
14: Ensure bidirectional relationships in the graph model
15: return Graph model
16: end function
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Algorithm 2 Network Model Algorithm

Input:
data, num_nodes, seq_len, B, pred_step_size, columns : Data and parameters
Output: Prediction results and ground truth

1:
function
NetworkModel(data, num_nodes, seq_len, B, pred_step_size, columns)

2: Define GAT model and parameters: in_ f eats, h_ f eats, out_ f eats
3: Define LSTM model parameters: args
4: Create GAT-LSTM model: model
5: function FORWARD(data)
6: Extract x, edge_index, batch from item
7: Pass x, edge_index to GAT model: x_gat
8: Add x_gat to x : x _sum
9: Pass x _sum to LSTM model: x_lstm
10: Pass x _lstm to fully connected layer: y_pred
11: end function
12: return y_pred
13: end function

2.2.2. Cosine Similarity Creates Adjacency Matrix

Cosine similarity is a frequently employed technique in data comparison, particularly
when examining text and time series, for determining the degree of similarity between two
vectors. The similarity between two vectors is quantified through the calculation of their
angle of separation; a lesser angle signifies a greater degree of similarity.

Suppose we have two time series: A and B, which are represented as vectors
A = {A1, A2, A3 . . . An} and B = {B1, B2, B3 . . . Bn}, respectively. These vectors can be
represented as arrays containing data points.

1. Calculate the length ||A|| of the vector A and the length ||B|| of the vector B This
can be calculated using the following formula:

∥ A ∥=
√

n

∑
i=1

A2
i (1)

∥ B ∥=
√

n

∑
i=1

B2
i (2)

where n is the number of data points in the time series, Ai and Bi are the ith data point
in series A and B, respectively.

2. Compute the inner product of vectors A and B.

A · B =
n

∑
i=1

Ai · Bi (3)

3. Calculate the cosine similarity (cos_sim) using the following formula:

cos _sim =
A · B

∥ A ∥ · ∥ B ∥ (4)

Therefore, for nodes i and j, their wind speed sequence in the time window is repre-
sented by A and B. At this time, a threshold is set according to the value of cosine similarity,
and the formula is as follows:

If cos _sim (i, j) > threshold, then
{

1, |||| Node i and Node j are adjacent
0, |||| Node i and Node j are not adjacent

(5)
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2.2.3. Graph Attention Network

GAT adopts an attention mechanism, which can assign different weights to different
nodes, and relies on pairs of neighboring nodes when training without depending on the
specific network structure, which can be used for inductive tasks [32]. The multi-head
attention mechanism it adopts is shown in Figure 3.
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Calculate attention scores for each node i with respect to its neighbors j:

e(l)ij = LeakyReLU

( →
a(l)

T[
W(l)hi ∥ W(l)hj

])
(6)

Here, hi and hj are the representations of nodes i and j after applying the weight
matrix W(l). a(l) is the learnable parameter vector used to compute attention. Nonlinearity
is introduced using the LeakyReLU activation function. Softmax is used to calculate the
normalized value of the attention coefficient of each node i to its neighbor j:

α
(l)
ij =

exp
(

e(l)ij

)
∑k∈Ni

exp
(

e(l)ik

) (7)

Here, Ni denotes the set of neighbors of node i. These coefficients indicate the impor-
tance of node i to its neighbors.

Aggregate the neighbors using the attention coefficient:

h(l+1)
i = σ

(
∑

j∈Ni

α
(l)
ij W(l)hj

)
(8)

Here, σ is the activation function.

2.2.4. Long Short-Term Memory Network

LSTM networks are a subtype of deep learning neural networks that are particularly
advantageous in time series analysis and natural language processing due to their ability
to process sequential data. LSTM networks are a subtype of RNN specifically engineered
to tackle the issue of long-term dependency that plagues RNN. The structure is shown in
Figure 4
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The main features of LSTM networks include:
Forget gate: The LSTM determines whether or not to retain previously remembered

information using the forget gate. This gate determines which data should be retained and
which should be discarded from the previous memory state.

Input gate: From the current input, the input gate determines which information is
to be remembered. It updates the new memory using the current input and the previous
memory state.

The output gate generates the network’s output in accordance with the current input
and the updated memory state. This output may be utilized as input for subsequent time
steps or for additional purposes.

Cell memory: A solitary memory cell is incorporated into LSTM networks to store and
transmit data. In conjunction, the forget, input, and output gates regulate the data stored in
the memory cells.

Each gate’s computation is performed as follows:

fi = σ
(
∑ Wx f xi + ∑ Wh f xt−1 + ∑ Wc f xt−1 + b f

)
ft (9)

it = σ
(
∑ Wxixt + ∑ Whixt−1 + ∑ Wcixt−1 + bi

)
(10)

ot = σ
(
∑ Wxoxt + ∑ Whoxt−1 + ∑ Wcoxt−1 + c0

)
(11)

ct = ftct−1 + ittanh
(
∑ Wxcxt + ∑ Whcxt−1 + bc

)
(12)

ht = ottanh(ct) (13)

In (9)–(13), W represents the weight value of each layer of the neural network, and b
represents the bias term. it is the forget gate, ft is the input gate, ot is the output gate, ct is
the vector value of the memory cell, tanh refers to the hyperbolic tangent function, and σ is
the sigmoid function.

2.2.5. Direct Multi-Output Strategy

This research employed the direct method. This entailed prediction of multi-step
forward data, with the preceding time step serving as the input variables and the subse-
quent time step being assumed to contain the target variables. For example, when making
one-step predictions, the input variable X = {x2, x3, x4, . . . , xt−1} is a sequence of a size one
sliding window. The Y = {yt} sequence for the predicted target contains only one target
value. When making multi-step predictions, the sequence length of Y is increased, and
Y = {yt, yt+1, . . . , yt+5} and Y = {yt, yt+1, . . . , yt+23} for t + 5 and t + 23 step predictions
as shown in the figure. As illustrated in Figure 5, the forecast data may consist of one to
multiple predictions.
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3. Experimental Results and Analysis
3.1. Experiment Design

All the experiments in this paper were conducted on a personal computer running on a
Windows 11 operating system. The computer is equipped with a 12th Gen Intel(R) Core(TM)
i7-12700 processor (Manufacturer: Intel, Santa Clara, CA, USA) and 1660 Supergraphics
card (Manufacturer: Nvidia, Santa Clara, CA, USA), and uses a 256 GB SN740 NVMe
WD solid state drive for storage (Manufacturer: Western Digital, San Jose, CA, USA). In
addition, the PyTorch version used in this paper is 2.1, and the CUDA version is 12.1.
numpy is version 1.24.4, pandas is version 2.1.4, and matplotlib is version 3.5.1.

The following experimental results are the average values obtained by repeating
experiments 10 times.

3.2. Evaluation Metrics

For the purpose of assessing the performance of the model, this paper employs two
evaluation indicators: MAE and RMSE. MAE exhibits enhanced robustness towards outliers
or anomalies due to its construction as the mean of absolute errors, rendering it relatively
unaffected by substantial error magnitudes. Since RMSE is calculated as the square root
of the mean of the squared errors, it becomes more susceptible to large error values. This
increases the likelihood that it will penalize significant errors, so it may more accurately
reflect the model’s sensitivity to such errors in certain circumstances.

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (14)

RMSE =

√
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (15)

where n is the number of data points, Yi is the actual value, and Ŷi is the pre-
dicted value.

3.3. Experimental Results

This section will encompass the execution of the model’s experiments. To evaluate the
model’s performance as advertised, two distinct groups of experiments were devised. The
initial experiment is the benchmark model experiment, in which the predictive ability of
the model is evaluated by comparing it to several benchmark models. Experiment 2 is the
ablation experiment, in which each component of the model is progressively substituted in
order to determine the effect of each component on performance.
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The data used in this study span the time period from 00:00:00 1 January 2022 to
23:50:00 31 October 2022. In order to verify the generalization and robustness of the model,
2-test set cross-validation is used. This strategy can make full use of all the data, and all the
data including the test set are involved in the training and evaluation process of the model.
Compared with the standard time series cross-validation, the computational overhead is
relatively small. Therefore, the initial 60% is designated as the training set, followed by the
final 20% as the validation set, and the final 20% is divided equally into a K1-test set and
a K2-test set in chronological order. The training set is used to train the model, while the
validation set is used to validate the model hyperparameters to prevent overfitting and
underfitting, and the test set is used to evaluate the performance of the model.

3.3.1. Experiment I

In Experiment I, the DGE-GAT-LSTM proposed in this paper will be compared with
LSTM, BILSTM, GRU, RNN, BIRNN, Seq2Seq and other models, The relevant introduction
of each model is as follows:

• LSTM is a recurrent neural network designed to process sequential data and capture
long-term dependencies through gating units.

• BILSTM considers context information simultaneously through forward and backward
LSTM layers and is suitable for a variety of sequence tasks.

• GRU is a recurrent neural network similar to LSTM with fewer parameters and a lower
computational cost.

• RNN is one of the earliest sequence models, but it faces the vanishing gradient problem
and is not suitable for long-term dependence tasks.

• BIRNN combines a forward and backward RNN or LSTM layers to fully understand
sequence data and is suitable for a variety of tasks.

• Seq2Seq models are used for sequence-to-sequence tasks, including machine transla-
tion and speech recognition, and consist of an encoder and a decoder.

In order to achieve more convincing results in the benchmark experiment, this paper
uses a grid search to search the hyperparameters of the benchmark model, aiming to find
the optimal parameters to compare with the proposed model. The goal of a grid search
is the number of hidden layers and the number of network layers. The search ranges are
[32, 64, 128] and [1, 2, 3]. The determined optimal parameters of each benchmark model
are shown in Table 2.

Table 2. Detailed description of all models in Experiment I.

Model Specific Description

LSTM The internal parameters were randomized, 1 LSTM layer, 128 hidden dimensions, and a linear layer.

BILSTM The internal parameters were randomized, 1 bidirectional LSTM layer, 128 hidden dimensions, and
a linear layer.

GRU The internal parameters were randomized, 3 GRU layers, 128 hidden dimensions, and one
linear layer.

BIGRU The internal parameters were randomized, 3 bidirectional GRU layers, 128 hidden dimensions, and
one linear layer.

RNN The internal parameters were randomized, 1 RNN layer, 128 hidden dimensions, and a linear layer.

BIRNN The internal parameters were randomized, 1 bidirectional RNN layer, 128 hidden dimensions, and
a linear layer.

Seq2Seq The internal parameters were randomized, LSTM is used as encoder, 2 LSTM layers with 64 hidden
dimensions and MLP is used as decoder.

DGE-GAT-LSTM 2 layers of GAT network with 4 attention heads, one layer of LSTM, GAT network and LSTM are
serially connected. 2 linear layers with nonlinear activation.
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To ensure the fairness of the experiment, the remaining hyperparameters are consistent:
the epoch is 30, the sliding window size is 24, and the batch size is 24. In order to avoid
over-connection, dense edges are also ensured for the subsequent extraction of spatial
features. The cosine similarity threshold is 0.4. This means that there are more than 0.4
connections between nodes. This means that there is a connection between nodes greater
than 0.4. The SGD optimizer was used with a learning rate of 0.005, momentum = 0.9, and
weight_decay = 1 × 10−6. The prediction results are shown in Table 3.

Table 3. Table of error of prediction results in Experiment I.

Model
MAE (m/s) RMSE (m/s)

1-Step (10 min) 6-Step (1 h) 24-Step (4 h) 1-Step (10 min) 6-Step(1 h) 24-Step (4 h)

LSTM 0.3425 0.5946 0.9801 0.4620 0.7750 1.2968
BILSTM 0.3447 0.5903 0.9493 0.4648 0.7740 1.2651

GRU 0.3561 0.7306 0.9448 0.4734 0.9412 1.2694
BIGRU 0.3570 0.5780 0.9602 0.4769 0.7633 1.2916
RNN 0.3604 0.7635 0.9789 0.4903 1.0036 1.3009

BIRNN 0.3650 0.7304 0.9527 0.4967 0.9598 1.2851
Seq2Seq 0.3450 0.5995 1.0059 0.4623 0.7837 1.3250

DGE-GAT-LSTM 0.3396 0.5571 0.9333 0.4546 0.7363 1.2501

The single-step prediction results are shown in Figures 6 and 7, the 6-step prediction
results are shown in Figures 8 and 9, and the 24-step prediction results are shown in
Figures 10 and 11.
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By examining Figures 6–10 and Table 3, it is evident that the DGE-GAT-LSTM model,
which was proposed, obtained the smallest MAE and RMSE values for single-step, 6-step, and
24-step predictions, respectively. This finding underscores the model’s superior performance
in terms of predictions.

For a 1-step (10 min) prediction, the MAE index of DGE-GAT-LSTM model decreases
by 1–7%, and the RMSE index decreases by 2–9%, respectively. For a 6-step (10 min)
prediction, the MAE index of the DGE-GAT-LSTM model decreases by 6–37%, and the
RMSE index decreases by 4–36%, respectively. For a 24-step (10 min) prediction, the MAE
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index of DGE-GAT-LSTM model decreases by 1–8%, and the RMSE index decreases by
1–6%, respectively.
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Experimental results show that compared with traditional sequence prediction models
(such as LSTM, BILSTM, GRU, BIGRU, etc.), the DGE-GAT-LSTM model shows superior
accuracy and efficiency in each time increment in the prediction task. The results prove
that the DGE-GAT-LSTM model can effectively capture the dynamic characteristics and
complex dependencies in time series data through its combination of a dynamic graph
embedding strategy and a graph attention network, as well as the application of a long
short-term memory network when dealing with time series prediction problems, thus
providing a more accurate prediction.

3.3.2. Experiment II

Principally, a comparison of ablation experiments is conducted in this experiment. To
ascertain the extent to which each model component can influence the overall model, the
following five model groups are established:

• Model1 purpose: The original model serves as a baseline for comparison
• Model without residuals: model2 Objective: To analyze the effect of the residual

structure
• Model without graph attention: model3 Objective: To verify the effectiveness of the

graph attention mechanism
• Model without LSTM: model4 Objective: To test the effect of LSTM on the model

performance
• Model5 without DGE objective: To test the performance of dynamic graph embedding

Epochs are all 30, the batch size is 24, the sliding window size is 24, an Adam optimizer
is used, and the learning rate is 0.001. The experimental results are shown in Figures 12 and 13
and Table 4.

The MAE of Model2 is 0.4298, which is 25.69% higher than the baseline model, and
the RMSE is 0.5548, which is 21.96% higher than the baseline model. This indicates that
the residual structure has a positive impact on the model performance, and its absence
leads to an increase in error. The MAE of Model3 is 0.3729, 9.06% higher than that of
the baseline model, and RMSE is 0.5027, 10.50% higher than that of the baseline model.
This shows that the graph attention mechanism plays an important role in improving the
accuracy of the model. The MAE of Model4 is 1.9339, which is 465.57% higher than the
baseline model, and the RMSE is 2.3262, which is 411.37% higher than the baseline model.
This significant performance degradation strongly indicates that LSTM is critical to the
performance of the model, which can significantly improve the accuracy and stability of
prediction. The MAE and RMSE of Model5 are 0.4112, 20.26% higher than the baseline
model, and 0.5361, 17.84% higher than the baseline model. This indicates that DGE also
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contributes positively to the model, and missing it leads to performance degradation.
Therefore, residual structure, graph attention mechanism, LSTM and dynamic graph
embedding are crucial for improving the prediction accuracy of the model.
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Table 4. Table of error of prediction results in Experiment II.

Model
MAE (m/s)

Percentage
RMSE (m/s)

Percentage
1-Step (10 min) 1-Step (10 min)

Model1 0.3419 0% 0.4549 0%
Model2 0.4298 +25.69% 0.5548 +21.96%
Model3 0.3729 +9.06% 0.5027 +10.50%
Model4 1.9339 +465.57% 2.3262 +411.37%
Model5 0.4112 +20.26% 0.5361 +17.84%

4. Conclusions and Future Work

In this paper, the proposed model DGE-GAT-LSTM is evaluated through the above
experiments to predict the multi-step forward wind speed at a given location of NDBC
buoys through experimental simulations using real wind speed data. The direct method
does not suffer from error propagation like the recursive method, so it can be used for
multi-step ahead prediction. Three different long-term time horizons (1-step, 6-step, 24-
step) are considered to compare the ability of the algorithm to predict wind speed. The
experimental results show the superiority of the proposed model, which is better than
the baseline model in most time step predictions. The effect of each component on the
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model can be seen through the ablation experiment of Experiment 2. Among them, the
extraction of spatial information and temporal information is particularly important and
the proposed dynamic graph embedding technique also improves the accuracy of the wind
speed prediction.

In future work, the influence of different temporal similarities on the model perfor-
mance will be considered, and some more complex parallel computing structures will
be used to reduce the model computing time. A more complex and interpretable cross-
validation will be used to split the dataset to ensure that the model’s ability to predict
future points is fully evaluated, which better reflects the generalization ability of the model.
The optimal parameter configuration for each model in future work will be investigated
and the applicability in different datasets or application scenarios will be explored. The
study of the model’s generalization to different seasons will be considered.
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Nomenclature

NWP Numerical weather prediction
ML Machine learning
BP Back propagation
MLP Multilayer perceptrons
CNN Convolutional neural network
PDCNN Predictive depth convolutional neural network
GRU Gated recurrent units
GCN Graph convolutional network
LSTM Long short term memory
RNN Recurrent neural network
EMD Empirical mode decomposition
GAT Graph attention network
GNN Graph neural network
SHM Health monitoring system
RMSE Root mean squared error
MAE Mean absolute error
MSE Mean squared error
DTW Dynamic time warping
DGE Dynamic graph embedding
NDBC National buoy data center
ANN Artificial neural network
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