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Abstract: Understanding the conversion characteristics of pore water is crucial for investigating the
mechanism of hydrate accumulation; however, research in this area remains limited. This study
conducted methane hydrate formation experiments in unconsolidated sands using an in-house low-
field nuclear magnetic resonance (NMR) system. It focused on pore water conversion characteristics
and influencing factors such as initial water saturation and sand particle sizes. Results show that
methane hydrate formation enhances the homogeneity of the effective pore structure within sand
samples. The conversion rate of pore water is significantly influenced by differences in heat and mass
transfer capacity, decreasing as initial water saturation and sand size increase. Pore water cannot
be fully converted into hydrates in unconsolidated sands. The final conversion ratio of pore water
in water-poor sand samples nears 97%, while in water-rich sand samples, it is only 65.80%. Sand
particle size variation has a negligible impact on the final conversion ratio of pore water, with ratios
exceeding 94% across different particle sizes, differing by less than 3%.

Keywords: methane hydrate; unconsolidated sand; low-field NMR; mass transfer; conversion rate of
pore water; final conversion ratio of pore water

1. Introduction

It is estimated that the global demand for natural gas will increase by more than
15% in the next decade, which is due to the population explosion and rapid economic
growth [1]. To meet the huge demand gap for natural gas and promote energy structure
optimization, natural gas hydrates (NGHs) have become a good medicine to solve this
problem [2,3]. Composed of natural gas and water, NGHs have an ice-like appearance but
are flammable [4,5]. NGHs possess various benefits, which include extensive distribution,
high energy density, high inventory, and clean combustion [6,7], so they are viewed as a
fresh energy option that can reshape the current energy framework [8,9]. At present, more
than one-third of the countries around the world have participated in hydrate research, and
a number of them have also formulated industrial development schedules for NGHs [10].
To realize the industrial development of NGHs, it is crucial to accurately assess the hydrate
reservoir resources and obtain reliable data on resource accumulation.

Hydrate saturation is an essential indicator for evaluating hydrate resources through
hydrate volume percentage in hydrate-bearing sediments (HBS). Different levels of hy-
drate saturation cause significant differences in the response of physical parameters such
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as acoustic velocity [11,12], resistivity [13,14], mechanical properties [15–17], and perme-
ability [18,19] of HBS. Therefore, accurately obtaining hydrate saturation is essential for
the accuracy of hydrate resource evaluation and the rationality of exploitation program
formulation. The excess-gas method is the most widely used method for forming NGHs in
the laboratory [20], which determines hydrate saturation by strictly controlling the pore
water content in sediments. However, lots of studies have shown that the conversion ratio
of pore water, defined as the ratio of the pore water converted into hydrates to the total
pore water content, is consistently below 100%. That is, the pore water in sediments cannot
be completely converted into hydrates [21]. The hydrate saturation calculated by assuming
that the pore water is wholly converted into hydrates may be overestimated. This will lead
to an inaccurate description of the quantitative relationship between hydrate saturation
and physical parameters. Therefore, understanding the conversion characteristics of pore
water during the hydrate formation in sediments and clarifying the control mechanism of
pore water conversion are crucial for accurate hydrate saturation estimation. It is essential
for comprehending the NGH accumulation mechanism and evaluating NGH resources.

Low-field nuclear magnetic resonance (NMR) technology includes time-domain NMR
analysis (TD-NMR) technology and nuclear magnetic resonance imaging (MRI) technology.
As a non-invasive technology, it can quantitatively analyze the evolution characteristics of
pore structure, material content, and material spatial distribution during the hydrate forma-
tion in sediments. TD-NMR technology has been widely applied in hydrate research [22,23].
Ge et al. [24] observed changes in transverse relaxation time (T2) distribution during the
methane hydrate formation in four sandstones with different pore size distributions. The
findings revealed that methane hydrate preferentially formed in large pores, while the
formation of hydrates in small pores was challenging. Zhan et al. [25] applied TD-NMR
technology to explore the methane hydrate formation kinetics in unconsolidated sands.
They discovered that methane hydrate first formed in large pores and then gradually tran-
sitioned to smaller pores. The hydrate film formed in large pores hindered the contact of
water and methane gas in small pores, weakening the consolidation efficiency of methane
hydrate. In addition, Zhang et al. [26] divided the methane hydrate formation process in
partially saturated unconsolidated sands into two stages: the rapid and slow decrease in
water content. In the rapid decrease stage, the methane hydrate formation mainly occurred
in large pores, and the variation of water content in small pores was not noticeable. The
above TD-NMR studies have verified that large pores are more conducive to hydrate
formation under the premise of ignoring the NMR signal intensity of methane gas in T2 dis-
tribution. However, Ji et al. [27] thought that ignoring the NMR signal intensity of methane
gas in T2 distribution would cause a significant error in determining material content in the
later stage of the experiment. Therefore, to precisely analyze the characteristics of hydrate
formation in sediments at the pore scale, the NMR signal intensity of methane gas in T2
distribution must be eliminated.

MRI technology is generally used to monitor the evolution law of the spatial distribu-
tion of water, gas, and hydrate during the hydrate formation in sediments [28,29]. MRI and
X-CT are the main visualization techniques for in situ non-destructive detection of material
distribution in sediments. It cannot be realized by optical microscopy technique which can
only observe material distribution on the surface of sediments. Although the resolution of
X-CT is much higher than that of MRI, X-CT is difficult to accurately distinguish between
pure water and methane hydrate due to the little density difference. MRI has a stronger ad-
vantage in accurately obtaining water distribution in methane hydrate-bearing sediments.
Zhao et al. [30] directly witnessed the formation of methane hydrate in glass beads using
MRI technology. The results indicated that the growth rate of the methane hydrate and the
final hydrate saturation are influenced by the size of the glass beads. In addition, some
scholars also pointed out that the formation of hydrates exhibits significant non-uniformity
at different spatial positions in porous media. The initial water saturation and pressure both
play a significant role in determining the distribution of hydrates [31–33]. Ren et al. [34]
experimented with methane hydrate formation in clayey–silty sediments based on MRI
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technology. The continuous increase in methane hydrate caused the continuous decrease
in water signal intensity, but the decrease was different at different positions. Therefore,
hydrates also exhibited heterogeneous spatial distribution in clayey–silty sediments [35,36].
In summary, current researchers using MRI technology mainly focus on the hydrate dis-
tribution characteristics and the evolution laws of hydrate saturation during the hydrate
formation. However, there is relatively little research on the spatiotemporal evolution
characteristics of pore water during the hydrate formation in porous media.

This study uses low-field NMR technology to analyze the evolution of pore water
during hydrate formation in unconsolidated sands. By tracking the transitions from pore
water to hydrate, the spatial distribution of pore water is elucidated, providing insights
into transformation mechanisms across different sand samples. This study sheds light on
how initial water saturation and sand size impact the conversion rate of pore water and the
final conversion ratio of pore water, which are crucial for accurately determining hydrate
saturation and assessing hydrate resources.

2. Experiment
2.1. Experimental Equipment

The hydrate formation experiments were carried out by using the low-field NMR
test system (Figure 1). The system mainly consists of a low-field NMR analyzer, a low-
temperature and high-pressure probe module, a gas injection module, a temperature and
pressure control module, and a data acquisition module. The low-field NMR analyzer
(MesoMR23-060H, Suzhou Niumag Analytical Instrument Corp., Suzhou, China) can
perform the TD-NMR analysis and the MRI measurement on test samples. The type of
magnet is a permanent magnet. The magnetic field strength is 0.52 ± 0.05 T. The working
temperature of the magnet is 32 ± 0.1 ◦C. The imaging gradients in X, Y, and Z directions
can be independently amplified, with a gradient peak of 5 Gauss/cm [37].
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Figure 1. Schematic diagram of the experimental equipment.

Figure 2 shows the low-temperature and high-pressure probe module. It includes the
high-pressure reactor and the probe coil. The high-pressure reactor created from PEEK
comprises a confining-liquid circulation chamber, an isolating-liquid circulation chamber,
and a sample chamber. The PEEK does not contain hydrogen protons (1H) and ferromag-
netic materials. The high-pressure reactor has a maximum operating pressure of 15 MPa.
The sample chamber size is Φ30 mm × H60 mm. Its filling volume is 42.41 ± 0.12 cm3.
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Figure 2. Schematic diagram of low-temperature and high-pressure probe module.

The methane gas is supplied to the sample chamber by the gas injection module. It
includes a methane gas bottle, a gas booster pump, an air compressor, a hold-up vessel,
and a pressure-reducing valve. The gas injection module is used to provide constant pore
pressure during methane hydrate formation in the sample chamber.

The temperature and pressure control module includes a low-temperature thermostat,
a circulator, a confining pressure tracking pump, and a circulating thermostat. The fluorina-
tion liquid (FC-40, 3M Company, St. Paul, MN, USA) is used to control the temperature and
pressure of confining-liquid circulation chamber. The low-temperature thermostat reduces
the fluorination liquid temperature to the experimental temperature. The low-temperature
fluorination liquid flows in from the right end of the high-pressure reactor by the circulator.
The confining pressure tracking pump controls the constant pressure difference between
the confining pressure and the pore pressure. The pressure difference is set to 0.4 MPa to
prevent the sample chamber from breaking. In addition, fluorinated liquid is also used
as an isolation liquid. It flows in from the left end of the high-pressure reactor by the
circulating thermostat. It can eliminate the interference of low-temperature confining liquid
on the temperature of permanent magnet. The isolation liquid temperature is set to 30 ◦C.

The data acquisition is used to monitor the pore pressure in the sample chamber and
the temperature of the circulating cooling liquid close to the sample chamber in real time.
It includes a computer, a pressure transducer, and a thermocouple. The accuracy of the
pressure transducer (Senex, Guangzhou, China) is 0.25%. The accuracy of thermocouple
(PT100) is ±0.1 ◦C. In addition, the nuclear magnetic signal data are recorded during the
methane hydrate formation.

2.2. Experimental Materials

Methane gas (99.99%, Dehai Weiye Technology Co., Ltd., Qingdao, China) and deion-
ized water are utilized to form the methane hydrate. The sand (Perfemiker Chemical
Technology Co., Ltd., Shanghai, China) with three particle sizes of 58–75 µm, 100–200 µm,
and 420–590 µm is selected. Table 1 displays the key parameters of sand samples in each
experimental group.

Table 1. The key parameters of sand samples.

Experiment No. ds (µm) Vs (cm3) mw0 (g) mwa (g) Sw0 (%) φNMR (%)

Exp 1 100–200 42.41 ± 0.12 5.50 ± 0.06 5.52 ± 0.02 28.96 ± 0.29 44.79 ± 0.06
Exp 2 100–200 42.41 ± 0.12 9.53 ± 0.10 9.54 ± 0.06 49.95 ± 0.43 44.99 ± 0.10
Exp 3 100–200 42.41 ± 0.12 12.68 ± 0.11 12.71 ± 0.06 67.32 ± 0.45 44.42 ± 0.10
Exp 4 100–200 42.41 ± 0.12 15.06 ± 0.16 15.09 ± 0.11 79.24 ± 0.59 44.81 ± 0.14
Exp 5 58–75 42.41 ± 0.12 9.19 ± 0.03 9.26 ± 0.04 48.49 ± 0.14 44.69 ± 0.02
Exp 6 420–590 42.41 ± 0.12 9.48 ± 0.09 9.53 ± 0.03 49.77 ± 0.39 44.91 ± 0.08

ds is the particle size of sand samples, Vs is the apparent volume of sand samples, mw0 is the initial water content
by NMR, mwa is the initial water content by the weight method, Sw0 is the initial water saturation, φNMR is the
porosity of sand samples.

2.3. Experimental Procedures

This study used the excess-gas method to complete the experiment. The pore pres-
sure was always maintained at 6.0 MPa and the temperature of sample chamber was
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always kept at 275.65 K during the methane hydrate formation. The following are the
experimental procedures:

(1) The sand weight was calculated based on the filling volume of the sample chamber,
the sand density, and the sand sample porosity. The deionized water weight was
calculated according to the water saturation. Sand and water were mixed thoroughly,
sealed, and placed in a cool place for 24 h.

(2) The sand sample was loaded into the low-temperature and high-pressure probe
module (Figure 2). The measurement parameters of T2 distribution were determined.

(3) The sand sample was removed from the low-temperature and high-pressure probe
module and sealed for storage. The standard samples with different water contents
(Suzhou Niumag Analytical Instrument Corp., Suzhou, China) were cooled to 275.65 K
in the thermostat. Next, these standard samples were loaded into the low-temperature
and high-pressure probe module one by one. The measurement parameters in the
procedure (2) were used to obtain T2 distributions corresponding to standard samples
with different water contents at the experimental temperature. Based on these data,
the calibration curve was obtained. Based on the calibration curve and the NMR signal
intensity of T2 distribution, the water content in the sand sample could be determined.

(4) The sand sample was reloaded into the low-temperature and high-pressure probe
module. After connecting all experimental components, the confining pressure was
adjusted to exceed the pore pressure by 0.4 MPa. The temperature of the sample
chamber was controlled at 275.65 K. After the temperature was stabilized, the mea-
surement parameters in the procedure (2) were used to measure T2 distribution of the
sand sample at the experimental temperature. Next, the initial water content (mw0
in Table 1) in the sand sample was determined by the calibration curve obtained in
the procedure (3). Based on the above data, the initial water saturation Sw0, porosity
φNMR, and other parameters of each experimental group were obtained (shown in
Table 1). In addition, the initial pore water distribution characteristics of the sand
sample at this temperature were obtained using the MRI.

(5) On the premise of safety, the pore pressure was raised to 6.0 MPa in approximately 45
s using the gas injection module. During the methane hydrate formation, the pore
pressure remained constant. After the methane gas injection, the initial T2 distribution
was immediately measured. Afterward, T2 distribution measurement and MRI were
conducted alternately. The test interval was adjusted according to the experimental
progress. The methane hydrate formation was completed when the T2 distribution
remained unchanged.

(6) After the experiment, the sand sample was removed from the sample chamber and
completely dried (120 ◦C, 12 h). The initial water content in the sand sample was once
again determined by the weight method (mwa in Table 1).

3. Methodology
3.1. T2 Distribution Measurement

In low-field NMR measurements, the decay amplitude of the spin-echo train is accu-
rately fitted using the sum of exponential decay curves. The inverse Laplace transform
algorithm (BRD) is utilized to derive the T2 spectrum by fitting the relaxation echo sig-
nal [38]. Car–Purcell–Meiboom–Gill (CPMG) pulse sequence can eliminate the interference
of magnetic field inhomogeneity on signal attenuation. Therefore, it is widely used in T2
distribution measurement. In this study, the echo spacing (TE) is 0.17 ms. The CPMG pulse
sequence can only detect the first echo signal after one TE time after applying a 90◦ radio
frequency pulse. The 1H in the solid (for instance, methane hydrate) completely relaxes
before the first echo detection, and the signal cannot be detected [39]. Therefore, the hydrate
formation will cause the NMR signal intensity of 1H in the sand sample to decrease.
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Under the effect of sediment particle interface, the T2 of pore fluid in the sand sample
will include three independent relaxation mechanisms [40]. The T2 can be shown by
Equation (1):

1
T2

=
1

T2B
+

1
T2S

+
1

T2D
(1)

where T2B, T2S, and T2D represent the bulk, surface, and diffusion transverse relaxation
time, respectively. Previous studies have proved that the T2B of water is over 3000 ms [41],
and 1/T2B can be effectively neglected. The pore fluid in a uniform magnetic field has no
obvious diffusion relaxation characteristics [42,43], and 1/T2D is also neglected. Therefore,
under the influence of pore structure characteristics, the T2 of pore fluid in the sand sample
can be represented by Equation (2):

1
T2

≈ 1
T2S

= ρ2

(
S
V

)
pore

(2)

where ρ2 is the transverse surface relaxation. S/V is the ratio of pore surface to volume,
which can also be shown by Equation (3):(

S
V

)
pore

=
Fs

r
(3)

where Fs and r represent the pore shape factor and pore radius, respectively. For spher-
ical pores, Fs = 3. Following Equations (2) and (3), the expression of T2 is provided by
Equation (4).

1
T2

≈ ρ2
Fs

r
(4)

Based on Equation (4), the T2 is directly proportional to the r under the premise of
constant transverse surface relaxation ρ2 and pore shape factor Fs [42]. The larger the T2,
the larger the corresponding pores. Therefore, the T2 distribution can effectively evaluate
the distribution law of pore water in various pore structures. In addition, the total signal
intensity of T2 distribution reflects the total pore water content of the sand sample [44].

3.2. MRI Measurement

In this study, the Multi-slice Spin Echo (MSE) pulse sequence was utilized to acquire
MRI images [45]. It can simultaneously perform the imaging of multiple planes. The signal
intensity is directly proportional to the amount of 1H in different locations of MRI images.
However, the 1H in methane gas and solid hydrate crystals have a short relaxation time,
and the MRI signal is almost undetectable. MRI technology can accurately distinguish
liquid water from other substances [46]. Therefore, the reduced signal intensity in the
MRI image can directly characterize the consumed pore water content during the methane
hydrate formation. Key parameters of the MSE pulse sequence in this study include a TR
set to 1000 ms, TE of 5.885 ms, 10 accumulations, and imaging along the sagittal plane (YZ
plane) of the sample chamber containing sediment (as shown in Figure 3). The maximum
MRI slice thickness is 25.0 mm in the low-field NMR analyzer, smaller than the sand sample
diameter (d = 30.0 mm). Consequently, a single slice cannot cover the entire sand sample.
This study sets the slice count along the X direction to 3, with a slice thickness of 9.5 mm
and a slice gap of 0.5 mm.
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T2 distribution. ρs is the sand density, 2.65 g/cm3. Vs is provided by Equation (7): 

Figure 3. Photograph of sample chamber containing sediment and schematic diagram of
MRI direction.

3.3. Data Processing Methods

Data processing methods are introduced by taking Experiment 2 as an example. As
outlined above, the pore water content can be determined by the total signal intensity
in the T2 distribution of the sand sample [22]. Based on the calibration curve, the water
content is directly proportional to the total signal intensity of T2 distribution (Figure 4). In
Experiment 2, the water content calibration equation is provided by Equation (5):

mw = kIw (5)

where mw represents the water weight in the sand sample, Iw is the total signal intensity of
T2 distribution, and k is the undetermined coefficient. In Experiment 2, k is 2.7587 × 10−4,
and the correlation coefficient (R2) is 0.9996.
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Before methane gas is injected into the sand sample, the water weight in the sand
sample of Experiment 2 is calculated to be 9.53 g by Equation (5). In addition, the actual
water weight obtained by the weight method is 9.54 g (shown in Table 1). Therefore, the
error in calculating the water weight based on the T2 distribution is minimal. The pore
volume Vp of the sand sample can be obtained by Equation (6):

Vp = Vs −
m0 − mw0

ρs
(6)



J. Mar. Sci. Eng. 2024, 12, 619 8 of 19

where Vs represents the apparent volume of the sand sample. m0 is the initial sand sample
weight obtained by the weight method. mw0 is the initial water weight calculated based on
T2 distribution. ρs is the sand density, 2.65 g/cm3. Vs is provided by Equation (7):

Vs =
πD2

4
L (7)

where D represents the inner diameter of the sample chamber, 30 mm. The L represents the
length of the sand-filled sample, 60 mm.

Combining with Equations (6) and (7), the porosity φNMR of the sand sample is
obtained as shown in Equation (8).

φNMR =
Vp

Vs
(8)

Furthermore, the initial water saturation Sw0 can be calculated by Equation (9):

Sw0 =
mw0/ρw

Vp
× 100% (9)

where ρw is the deionized water density, 1.0 g/cm3.
As shown in Figure 5a, there are slight differences in the T2 distribution range, peak

area, and peak value between before and after gas injection in Experiment 2. The total
signal intensity of T2 distribution increases by 7.89% after filling 6.0 MPa methane gas
injection (Figure 5b). If the NMR signal intensity of 1H in methane gas is directly ignored,
it will cause a significant error.
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Following the gas state equation, the total moles in methane gas are directly propor-
tional to the methane gas volume under constant temperature and pressure conditions. So,
the total signal intensity of methane gas is also directly proportional to the methane gas
volume, which can be expressed by Equation (10):

Vg = aIg (10)

where Vg and Ig represent the methane gas volume and the total signal intensity of methane
gas, respectively. a denotes the undetermined coefficient. Following Equation (5) and Equa-
tion (6), the pore volume Vp is 19.08 cm3 in Experiment 2. The initial pore water volume Vw0
= mw0/ρw = 9.53 cm3. Therefore, the initial methane gas volume Vg0 = Vp − Vw0 = 9.55 cm3.
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The total signal intensity in Experiment 2 increases from 37,894.24 to 40,882.75 after the
methane gas injection, which can be displayed in Figure 5b. By substituting Vw0 and Ig0
into Equation (10), the undetermined coefficient a is 3.2 × 10−3 in Experiment 2.

The signal intensity proportion of methane gas (Φg) during the methane hydrate
formation is expressed by Equation (11):

Φg =
Ig

Ii
× 100% (11)

where Ii is the total signal intensity of T2 distribution.
Combining with Equations (5) and (10), the pore water weight (mw) during the

methane hydrate formation is provided by Equation (12).

mw = k
(

Ii −
Vg

a

)
(12)

According to the molecular formula of methane hydrate (CH4·6H2O [3]), the weight
of methane hydrate formed can be obtained by reducing the amount of water, as shown in
Equation (13):

mh =
mwo − mw

MH2O × 6
(

MCH4 + MH2O × 6
)
= 1.148(mwo − mw) (13)

where mh is the hydrate weight. MH2O and MCH4 are the relative molecular mass of H2O
and CH4, respectively.

Moreover, the methane gas volume during the methane hydrate formation is calculated
by Equation (14):

Vg = Vp −
mw

ρw
− mh

ρh
(14)

where ρh is the methane hydrate density, 0.914 g/cm3 [47].
To sum up, the conversion ratio of pore water (Cw) during the methane hydrate

formation can be obtained by Equation (15).

Cw =
mw0 − mw

mw0
× 100% (15)

Table 2 displays the comparison of results in each group of experiments.

Table 2. Comparison of experimental results.

Experiment No. Φgf (%) t50 (h) Cwf (%)

Exp 1 83.60 0.58 96.19
Exp 2 65.13 6.04 96.82
Exp 3 31.37 14.35 95.68
Exp 4 3.19 37.73 65.80
Exp 5 60.48 0.72 96.99
Exp 6 48.38 105.65 94.02

Φgf is the final signal intensity proportion of methane gas, t50 is the time when the conversion ratio of pore water
reaches 50%, Cwf is the final conversion ratio of pore water.

4. Result and Discussion
4.1. Variation Characteristics of T2 Distribution

According to the above analysis, the NMR signal intensity of methane gas significantly
influences the total signal intensity of T2 distribution under the pore pressure of 6.0 MPa.
The signal intensity proportion of methane gas (Φg in Equation (11)) will gradually increase
with the methane hydrate formation in each group of experiments, as shown in Figure 6.
The final signal intensity proportion of methane gas exceeds 30% in Experiments 1, 2, 3,
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5, and 6, as shown in Table 2. In Experiment 1, the final signal intensity proportion of
methane gas even exceeds 80%. The high signal intensity proportion of methane gas makes
the T2 distribution unable to accurately characterize the evolution law of the pore structure
during hydrate formation. The signal intensity proportion of methane gas is only 3.06%
before hydrate formation in Experiment 4, in which the initial water saturation is 79.24%.
The signal intensity proportion of methane gas only increases by 0.13% after the hydrate
formation. Therefore, the signal intensity proportion of methane gas can be ignored during
methane hydrate formation in Experiment 4.
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Figure 6. Variation of the signal intensity proportion of methane gas during methane
hydrate formation.

Figure 7 presents the variation of T2 distributions during methane hydrate formation
in Experiment 4. Based on the principle that the T2 of pore water is directly proportional to
the pore radius r (shown in Equation (4)), the pores with T2 ≤ 75 ms are defined as small
pores, and those with T2 > 75 ms are defined as large pores in this study. Results show
that the large pore peak of T2 distribution shifts to the left along the horizontal axis with
the hydrate formation, and the signal intensity at the peak point decreases continuously
(A-B-C-D, shown in Figure 7a). This phenomenon indicates that the pore water in large
pores gradually converts into hydrates. The decrease in pore water content results in a
decrease in the signal intensity at the peak point. The hydrates formed in large pores
occupy a part of the pore space to reduce the pore size. The reduction of pore size causes
the large pore peak to shift to the left.

Meanwhile, the small pore peak of T2 distribution exhibits more complex variation
characteristics. During the period of 0~1.82 h, the formed hydrate occupies a portion of
the large pore space. The large pores are divided into some small pores in a larger size.
As a result, the number of small pores in a larger size increases. It causes the small pore
peak of the T2 distribution to shift to the right. Moreover, the signal intensity at the peak
point of small pores also increases slightly (a-b-c, shown in Figure 7b). During the period
of 1.82~16.78 h, as with the hydrate formation in large pores, the hydrate formation in
small pores causes the leftward shift of the small pore peak and the decrease in the signal
intensity at the peak point (c-d-e-f, shown in Figure 7c). The small pore peak at t = 16.78 h
(the orange line in Figure 7c) is located at the bottom left of the small pore peak at t = 0 h
(the red line in Figure 7c). This illustrates that the initial water in the small pore is also
converted into hydrate.
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During the period of 16.78~37.76 h, the methane hydrate formation continues to
decrease the size of small pores. It causes the minimum value of T2 to decrease from
10.7 ms to 9.3 ms (f ′-g′, shown in Figure 7c). The boundary between the large and small
pore peaks disappears in T2 distribution at t = 37.76 h (shown in Figure 7a). In addition, the
hydrate formed on the surface of sand particles decreases the transverse surface relaxation
of the solid in contact with pore water [48]. According to Equation (3), it causes an increase
in the minimum value of T2 (g′-h′-i′, shown in Figure 7c). This conclusion also explains
the phenomenon that the maximum value of T2 exceeds its initial value after the hydrate
formation (A′-D′, shown in Figure 7a).

After hydrate formation, the T2 distribution of the hydrate-bearing sand sample ex-
hibits a unimodal distribution (the gray line shown in Figure 7a). Following the assumption
of the normal distribution model, the T2 distribution of the homogeneous porous media ex-
hibits a unimodal distribution, and the T2 distribution of the heterogeneous porous media
exhibits a bimodal or trimodal distribution [22]. Based on the bimodal T2 distribution of
the hydrate-free sand sample (the red line shown in Figure 7a), it can be concluded that the
hydrate formation in both large and small pores enhances the homogeneity of the effective
pore structure of sand samples.

4.2. Variation Characteristics of Pore Water Spatial Distribution

Figure 8a displays the MRI images of the sand sample during methane hydrate
formation in Experiment 4. Each image is produced by overlaying the MRI images of
three slices in the YZ direction. The MRI process takes 30 min, and the consumption of
pore water is fast in the early stage of the experiment. Therefore, an MRI image cannot be
obtained at 0 h after gas injection.

Based on MRI images, the variation curves of the MRI signal intensity along the Y-axis
direction can be obtained at different stages of methane hydrate formation in Experiment
4, as shown in Figure 8b. Results show that the distribution of the MRI signal intensity
curve is relatively flat along the Y-axis direction before gas injection. However, the MRI
signal intensity in the 35~60 mm area is significantly higher than before the gas injection
after 1.73 h. In contrast, the MRI signal intensity in the 0~35 mm area shows a significant
decrease. This phenomenon indicates that a rightward shift of pore water is caused by
methane gas injection. It results in the heterogeneous distribution of pore water before
hydrate formation. Subsequently, pore water continuously converts into hydrates. It leads
to a decrease in MRI signal intensity during the hydrate formation.
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The methane gas is sufficient near the gas injection site (0 mm in Figure 8b). The high
content of methane gas provides favorable conditions for hydrate formation [26,49]. During
the period of 1.73~16.68 h, the MRI signal intensity in the 0~10 mm area shows the most
significant decrease, in that a large amount of pore water is converted into methane hydrate.
It has been confirmed that particle-coated hydrate will be formed in unconsolidated porous
media using the excess-gas method [50]. A thin and water-permeable hydrate film is
initially formed at the gas-liquid interface [51]. Subsequently, the hydrate film gradually
thickens, and its densification is enhanced [52]. The hydrate film hinders the direct contact
between methane gas and the water layer on the particle surface. It enhances the mass
transfer resistance between gas and water. Therefore, the further growth of methane
hydrate film is inhibited, and the conversion rate of pore water is greatly reduced [53,54].
In addition, the heat release leads to an increase in local temperature. It causes a decrease
in the driving force of hydrate formation. This is another reason for inhibiting the further
growth of hydrate film [55]. Therefore, during the period of 16.68~37.67 h, the reduction
rate of the MRI signal intensity slows down in the 0~10 mm area. In contrast, the methane
gas injection leads to an increase in pore water content in the 10~60 mm area. It worsens
the connectivity of methane gas in the pores and slows down the diffusion rate of methane
gas. It is not conducive to rapid nucleation [56]. The hydrate formation requires a longer
induction time in a high-water content area. Therefore, the methane hydrate formation
rate is slower in the 10~60 mm area, and there is even a hydrate-free area (55~60 mm in
Figure 8b) during the period of 1.73~16.68 h. However, sufficient water content provides a
rich material basis for the hydrate formation. Once rapid nucleation begins, the amount of
pore water is converted into methane hydrates rapidly. As a result, the MRI signal intensity
decreases significantly in the 10-60 mm area during the period of 16.68~37.67 h.

The distribution of MRI signal intensity curves along the Y-axis direction tends to
be flat in the whole area (0~60 mm in Figure 8b) after 37.67 h. During the period of
37.67~61.33 h, the hydrate film formed on the gas–water interface continues to thicken.
The thickening of the hydrate film increases the diffusion resistance to limit the contact
between methane gas and water. The conversion rate of pore water is greatly reduced. The
reduction rate of MRI signal intensity slows down. However, the reduction amplitude of
MRI signal intensity is similar in the different areas of sand samples during the period of
37.67~61.33 h. Afterward, there is no significant change in the MRI signal intensity curve.
The total MRI signal intensity in the whole area (0~60 mm in Figure 8b) only continues to
decrease by less than 4.8% during the period of 61.33~231.48 h.
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After hydrate formation, the residual MRI signal intensity is decreased to 34% of the
initial MRI signal intensity. This illustrates that around 34% of the initial pore water is not
converted into hydrate. In addition, the distribution of the MRI signal intensity curve is
flat along the Y-axis direction after hydrate formation (orange line shown in Figure 8b).
This means that the spatial distribution of the unconverted pore water is homogeneous.
Based on the heterogeneous distribution of pore water before hydrate formation (green
line shown in Figure 8b), the spatial distribution of methane hydrate is heterogeneous in
the sand sample after hydrate formation. This indicates that the initial water distribution
will affect the final hydrate distribution in the hydrate formation experiment by the excess-
gas method. This conclusion has also been confirmed in the methane hydrate formation
experiment in a partially saturated sandstone [22].

4.3. Analysis of Influence Factors on Pore Water Conversion
4.3.1. Effect of Initial Water Saturation

Figure 9 represents the variation of the pore water conversion ratio during the methane
hydrate formation under different initial water saturation levels (Experiments 1–4 in
Table 1). Results show that the time required for the conversion ratio of pore water to
reach 50% gradually increases with increases in the initial water saturation (t1 < t2 < t3 < t4,
shown in Figure 9 and Table 2). This illustrates that the conversion rate of pore water slows
down with increases in the initial water saturation. It has been analyzed that the contact
area between water and methane gas in pores decreases with increases in the initial water
saturation under the same pore pressure and sand size. This leads to a weakening of mass
transfer. It is not conducive to rapid hydrate nucleation [57]. Consequently, the conversion
rate of pore water decreases.
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Figure 9. Comparison of pore water conversion ratio during methane hydrate formation under
different initial water saturation.

For another, the water molecules near the surface of a solid have higher potential
energy and are strongly bound to the surface of sand particles [58]. There is a water
molecule layer with a thickness of 0.8 Å on the surface of sand particles, which will not
form ice or hydrate [20]. Aladko et al. [59]. also pointed out that the hydrate can only
form when the water content is sufficient for the occurrence of capillary condensation.
The strongly bound water closely attached to the mineral surface cannot participate in the
hydrate formation. Therefore, the pore water in Experiments 1–4 has not been completely
converted into hydrates after the experiment. In addition, although the pore water in
Experiments 1–3 has not been completely converted, the final conversion ratio of pore
water exceeds 95% in these experiments. However, the final conversion ratio of pore
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water is only 65.80% in Experiment 4. The sand sample initially exhibits a water-rich state
(Sw0 = 79.24%) after methane gas injection in Experiment 4. Compared to Experiments 1–3,
high water content and small gas–water contact area make it difficult for pore water to
come into full contact with methane gas. As mentioned in Section 4.2, the methane hydrate
is more likely to grow laterally on the gas–water interface. The hydrate film formed on the
gas–water interface continues to thicken during the hydrate formation. The thickening of
the hydrate film increases the diffusion resistance to limit the contact between methane and
water. Consequently, the conversion rate of pore water significantly decreases [52]. In the
later stage of Experiment 4, the hydrate film barrier effect almost completely interrupts the
direct contact between gas and water. There is still 34.20% of pore water that has not been
converted into hydrates after hydrate formation in the sand sample. However, the initial
water saturations in Experiments 1–3 are significantly lower than those in Experiment 4.
Low water content and a large gas–water contact area benefit from methane gas and pore
water to form a hydrate in the whole sand sample. The hydrate film has a relatively weak
barrier effect. The pore water will react more fully with methane gas to form a hydrate in
the sand sample. As a result, the proportion of unconverted pore water to hydrates is only
3.81%, 3.18%, and 4.32% in Experiments 1–3, respectively.

The above results indicate that the final conversion ratio of pore water is mainly
affected by the mineral surface in the sand sample with low initial water saturation. The
final conversion ratio of pore water is primarily determined by the barrier effect of the
hydrate film in the sand sample with high initial water saturation.

4.3.2. Effect of Sand Particle Size

Figure 10 presents the variation of the pore water conversion ratio during methane
hydrate formation under different sand particle sizes in Experiments 2, 5, and 6. Results
indicate that the time required for the conversion ratio of pore water to reach 50% gradually
increases as the sand size increases (t5 < t2 < t6, shown in Figure 10 and Table 2). This
illustrates that the conversion rate of pore water slows down with the increase in sand
size. Furthermore, the conversion rate of pore water in Experiment 6 (ds = 420–590 µm)
is significantly lower than that in Experiment 2 (ds = 100–200 µm) and Experiment 5
(ds = 58–75 µm). It takes 105.65 h to achieve a 50% conversion ratio of pore water in this
experiment. The specific surface area of sand particles is inversely proportional to the
particle size. Therefore, the contact area between methane gas and water is less in the
coarser particle sample at a similar initial water saturation. It results in a slower conversion
rate of pore water in the coarser particle sample. In addition, the hydrate film formed on
the gas–water interface can block the contact between methane gas and the water layer on
the particle surface [60]. Due to the smaller contact area between methane gas and water,
the hydrate film is thicker at the same hydrate saturation in the coarser particle sample.
The barrier effect of hydrate film is stronger. It takes a longer time to achieve the same
conversion ratio of pore water. Besides those, the decrease in a specific surface area will also
reduce nucleation sites on the surface of sand particles. The potential of hydrate formation
will decrease [58].

The final conversion ratio of pore water in Experiment 2 (ds = 100–200 µm) is almost
the same as that in Experiment 5 (ds = 58–75 µm). Due to the larger gas–water contact
area, the hydrate film is thinner in the finer particle sample at the same hydrate saturation.
However, due to the larger specific surface area of sand particles, the content of the
unconverted strongly bound water is higher in the finer particle sample. In addition,
the reduction in sand size will also lead to the enhancement of capillary force inside
the pores. The supersaturation will decrease accordingly. It enhances the difficulty of
hydrate formation [61]. Therefore, although the reduction of sand size weakens the barrier
effect of the hydrate film, the content of the unconverted, strongly bound water and the
supersaturation of hydrate formation is improved (shown in Figure 11a). It results in
almost no difference in the final conversion ratio of pore water between Experiment 2 and
Experiment 5. When the sand size increases to 420–590 µm, the hydrate film is thicker at
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the same hydrate saturation. The barrier effect of the hydrate film is significantly enhanced.
Hydrate growth time is greatly extended. Until 280 h, the conversion ratio of pore water in
Experiment 6 remains slightly lower than in Experiment 2 and Experiment 5 (∆Cwf < 3%,
shown in Figure 10). However, the conversion ratio of pore water in Experiment 6 will
continue to exhibit a growth trend for some time. Therefore, although the increase in the
sand size leads to a decrease in unconverted, strongly bound water on the sand particle
surface and a decrease in the supersaturation of hydrate formation, the barrier effect of
the hydrate film limits the contact between methane gas and weakly bound water (shown
in Figure 11b) [62,63]. Accordingly, the final conversion ratio of pore water also does not
change much.
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According to the above research, the main controlling factors affecting the final con-
version ratio of pore water in sand samples with different particle sizes at low initial water
saturation are different. The final conversion ratio of pore water in the finer particle sample
is mainly affected by the unconverted, strongly bound water content on the sand particle
surface and the supersaturation of hydrate formation. However, the final conversion ratio
of pore water in the coarser particle sample is determined by the thickness of the hydrate
film on the particle surface. Within the scope of the study, there is little difference in
the final conversion ratio of pore water among sand samples with different particle sizes.
Zhang et al. [60] also obtained consistent conclusions in porous silica gels with similar
particle size ranges.
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5. Conclusions

The paper investigates the formation process of methane hydrate in unconsolidated
sands using low-field NMR technology and discusses the conversion characteristics of pore
water, along with the effects of initial water saturation and sand particle size. The main
conclusions are drawn as follows:

(1) Methane hydrate formation occurs in both large and small pores within unconsoli-
dated sands. The hydrate formation process leads to the transformation of large pores
into small pores, and contributes to enhancing the homogeneity of the effective pore
structure within the samples.

(2) Variations in heat and mass transfer capacity significantly influence the conversion rate
of pore water across different regions within unconsolidated sands. The thickening of
the hydrate film increases mass transfer resistance between methane gas and water,
thereby causing an early termination of the pore water conversion process. The
distribution of hydrate within unconsolidated sands is primarily controlled by the
initial distribution of pore water, especially when utilizing the excess-gas method for
methane hydrate formation.

(3) Increased initial water saturation reduces the contact area between methane gas and
water, leading to a decline in the conversion rate of pore water. Moreover, large-
sized sand particles with a small specific surface area and fewer nucleation sites also
contribute to decreased pore water conversion rates. For instance, it takes over 100 h
to achieve a 50% conversion ratio of pore water in unconsolidated sands with particle
sizes of 420–590 µm.

(4) Pore water cannot be completely converted into hydrates within unconsolidated sands.
The final conversion ratio of pore water in water-poor sands across different particle
sizes exceeds 94% but remains below 97%. However, in water-rich sand samples, the
final conversion ratio is only 65.80% due to the barrier effect of the hydrate film on
gas–water contact.
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