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Abstract: Pipelines constitute a vital component in offshore oil and gas operations, subjected to
prolonged exposure to a range of alternating loads. Safeguarding their integrity, particularly through
meticulous leak detection, is essential for ensuring safe and reliable operation. Acoustic emission
detection emerges as an effective approach for monitoring pipeline leaks, demanding subsequent
rigorous data analysis. Traditional analysis techniques like wavelet analysis, empirical mode decom-
position (EMD), variational mode decomposition (VMD), and complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) often yield results with considerable randomness,
adversely affecting leak detection accuracy. This study introduces an enhanced damage recognition
methodology, integrating improved complete ensemble empirical mode decomposition with adap-
tive noise (ICEEMDAN) and probabilistic neural networks (PNN) for more accurate pipeline leak
identification. This novel approach combines laboratory-acquired acoustic emission signals from
leaks with ambient noise signals. Application of ICEEMDAN to these composite signals isolates
eight intrinsic mode functions (IMFs), with subsequent time–frequency analysis providing insight
into their frequency structures and feature vectors. These vectors are then employed to train a PNN,
culminating in a robust neural network model tailored for leak detection. Conduct experimental
research on pipeline leakage identification, focusing on the local structure of offshore platforms, ex-
perimental research validates the superiority of the ICEEMDAN–PNN model over existing methods
like EMD, VMD, and CEEMDAN paired with PNN, particularly in terms of stability, anti-interference
capabilities, and detection precision. Notably, even amidst integrated noise, the ICEEMDAN–PNN
model maintains a remarkable 98% accuracy rate in identifying pipeline leaks.

Keywords: acoustic emission; offshore platform monitoring; signal fusion; modal decomposition;
feature extraction; pipeline leak detection

1. Introduction

Natural gas plays a crucial role in people’s production and daily lives, accounting for
24% of the global total energy consumption [1]. As a critical infrastructure for the extraction
and transportation of oil and gas, pipeline systems offer significant advantages such as high
capacity and low cost, playing an essential role in various processes of offshore oil and gas
exploration, production, and transportation. However, due to the harsh working conditions
in offshore environments, pipeline systems are subjected to long-term effects of various
cyclic loads. Under the combined action of corrosion, wear, sudden natural disasters, and
internal pressure differentials, they are more prone to fatigue damage, leading to leaks in
the pipeline. This can have destructive impacts on the human environment, production,
life, and property safety [2,3]. Therefore, leakage detection for pipeline systems holds
significant practical significance in promoting national economic development.

J. Mar. Sci. Eng. 2024, 12, 625. https://doi.org/10.3390/jmse12040625 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12040625
https://doi.org/10.3390/jmse12040625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0009-0007-7585-7542
https://doi.org/10.3390/jmse12040625
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12040625?type=check_update&version=2


J. Mar. Sci. Eng. 2024, 12, 625 2 of 27

Various scholars in the relevant field have proposed multiple methods for leakage
detection in pipeline systems, including visual inspection, negative pressure wave method,
eddy current detection, fiber optic grating method, and acoustic methods, among oth-
ers [4–10]. Among these, acoustic emission technology, as a novel non-destructive testing
technique, has the unparalleled advantages of dynamically, sensitively, and comprehen-
sively recording the irreversible changes in composite materials through elastic waves.
It reflects the damage situation of materials and structures with high sensitivity, real-
time prediction, and long-distance detection, which are incomparable to other detection
methods [11,12]. Numerous acoustic emission characteristic parameters, including energy,
duration, impact count, amplitude, signal strength, peak frequency, rise time, etc., can be
extracted from acoustic emission signals [13–17]. To investigate the damage situation of
structures, these characteristic parameters can be used individually or in combination [18].
When certain acoustic emission characteristic parameters are combined, damage pattern
recognition can be achieved, thereby identifying the acoustic emission features of specific
damage patterns [19–22]. Therefore, the application of acoustic emission technology in the
field of structural health monitoring (SHM) is gaining increasing attention [23].

The precise characterization of structural damage states through the application of acous-
tic emission non-destructive monitoring technology has become a focal point for researchers,
and a substantial amount of experimental research has been conducted by relevant scholars.
In the 1950s, the German researcher Kaiser [24] first discovered the phenomenon of acoustic
emission in metal deformation and proposed the concepts of burst-type and continuous-type
acoustic emission signals. Over more than half a century of development, both the technology
and theory of acoustic emission have significantly improved and found extensive applica-
tions in various industries, such as civil engineering, petrochemicals, aerospace, and marine
engineering [25–31], indicating a promising future. Meniconi, S et al. [32,33] innovatively
proposed a transient analysis method for fault diagnosis of underwater pipelines, which holds
significant implications for the advancement of SHM techniques. Grabec I [34] simulated
burst-type and continuous-type acoustic emission signals through experiments on aluminum
strips and suggested that time delay estimation using the correlation method is feasible, laying
the groundwork for subsequent applications of acoustic emission in pipeline leak detection.
Pollock A A et al. [35], through pipeline leak experiments, collected abundant waveform infor-
mation about continuous leak acoustic emission signals. Clark M A et al. [36,37] investigated
the issue of acoustic signal attenuation in fully liquid-filled pipelines and found that the type
of backfill material used for pipelines filled with fluid significantly affects signal attenuation.
In the same year, the team proposed utilizing the frequency dispersion characteristics of
waves in pipelines for leak source localization, establishing a dispersion model for liquid-filled
pipelines. Miller R K et al. [38] established equipment-related settings and evaluation reference
standards for acoustic emission devices used in pipeline leak detection. They pointed out that
minor leakage phenomena in actual pipelines are often related to flange gaskets and threads.
Jiao J et al. [39], through experiments, verified the multimodal propagation and dispersion
characteristics of sound waves in pipelines, proposing a single-sensor modal acoustic emission
(MAE) pipeline leak localization technology. Ozevin D et al. [40], by arranging an array of
acoustic emission sensors on the surface of a PVC pipeline network, used a one-dimensional
acoustic emission source localization algorithm to determine the two-dimensional location of
pipeline leaks. By combining the relationship between attenuation and wave velocity with the
localization algorithm, they significantly enhanced the reliability of leak localization.

In recent years, there has been significant progress in acoustic emission-based pipeline
leakage detection technology. To promote the extension and application of acoustic emission
technology in the field of structural health monitoring, scholars have conducted acoustic
emission experiments to collect acoustic emission signals. Subsequently, they further ana-
lyzed and processed the collected acoustic emission signals. In the analysis process, wavelet
theory [41,42] is often used as a time–frequency processing method to handle acoustic emis-
sion signals. The signals obtained after decomposition using this method contain relevant
information about the working condition and faults of specific mechanical components. There-
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fore, based on this decomposed information, it becomes more convenient and efficient to
monitor and diagnose the damage state of structures. In structural health monitoring, when
the collected raw signals consist of short-term high-frequency components combined with
long-term low-frequency components, the wavelet transform (WT) method exhibits excel-
lent performance. However, the Mallat algorithm in wavelet transform cannot decompose
high-frequency sequences, leading to the development of wavelet packet decomposition
(WPT) [43], addressing the shortcomings of wavelet transform. Nevertheless, both WT and
WPT require the pre-determination of wavelet basis functions and decomposition levels, lack-
ing reliable performance metrics to evaluate the effectiveness of decomposition. In contrast,
time–frequency processing methods based on empirical mode decomposition (EMD) and
Hilbert–Huang transform (HHT) can adaptively decompose signals into independent compo-
nents, overcoming the limitations of wavelet transform. Huang [44] first proposed the EMD
method, which automatically decomposes signals into a set of intrinsic mode functions (IMF).
This method has been widely applied in mechanical fault diagnosis. However, in practical
applications, the EMD algorithm exhibits mode mixing and endpoint effects, restricting its use.
To address this issue, Wu [45] introduced ensemble empirical mode decomposition (EEMD),
which adds Gaussian white noise to EMD and then averages it several times to offset the
noise. Although this method somewhat reduces the problem of mode mixing, it has lower
decomposition efficiency and still exhibits mode mixing and energy leakage issues in the
low-frequency region. Building on this, Torres [46] proposed complete EEMD with adaptive
noise (CEEMDAN), which effectively handles nonlinear and non-stationary signals. Due to its
adaptive addition of Gaussian white noise at each stage of the decomposition process, CEEM-
DAN achieves very low reconstruction errors and produces better modal frequency spectrum
separation results. Its decomposition performance surpasses EMD and EEMD. However, the
CEEMDAN algorithm lacks effective theoretical guidance for choosing the intensity of added
white noise and the number of ensembles. Derived from the EMD algorithm, Smith [47]
introduced local mean decomposition (LMD), which replaces cubic spline interpolation in
EMD with a moving average. Similar to the EMD algorithm, the LMD algorithm adaptively
decomposes complex multi-component amplitude and frequency-modulated signals into
multiple product functions and a residue using extremum information. LMD outperforms
EMD in suppressing endpoint effects and preserving signal information but still suffers from
mode mixing problems. Dragomiretskiy [48–50] and others proposed variational mode de-
composition (VMD). In the VMD algorithm, it is assumed that the Fourier spectrum of the
signal has compact support. It constructs a set of Wiener filters to simultaneously extract all
modes, and each mode is also mostly compact near its center frequency. VMD has found wide
application in mechanical fault diagnosis. However, compared to EMD, which is independent
of prior knowledge, the performance of the VMD algorithm is influenced by pre-defined
mode numbers and penalty parameters. As each time–frequency processing algorithm has its
own strengths and limitations, the appropriate time–frequency processing method should be
chosen for different signals and applications.

In recent years, significant progress has been made in acoustic emission-based pipeline
leakage detection technology. For offshore platform oil and gas pipeline systems, the
extreme and harsh working environment poses challenges to the effectiveness of pipeline
leakage detection using acoustic emission sensors, due to their high sensitivity. External
interferences can easily affect the accuracy of leak detection. Traditional methods perform
poorly when dealing with signals containing substantial noise interference, making it
challenging to effectively identify acoustic emission signals associated with pipeline leaks.
This results in time-consuming, costly, and less accurate processes. Therefore, effectively
addressing these challenges has become a crucial technical issue for the practical application
of acoustic emission technology in production.

This study proposes a damage identification method that combines acoustic emission
technology with an improved modal decomposition algorithm. Using algorithms such
as EMD, VMD, CEEMDAN, and ICEEMDAN, along with the PNN probability neural
network, the features of leakage signals and noise signals are thoroughly analyzed and
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studied. Through this approach, the research achieves the goal of accurately identifying
pipeline leak information, even in high-noise interference environments.

2. Pipeline Leak Experiments and Signal Feature Analysis

To simulate the realistic operating conditions of offshore oil and gas pipeline systems,
this study conducted comprehensive pipeline leak experiments. The experiments were
divided into two main parts: first, laboratory-based simulated pipeline leak experiments
aimed to replicate pipeline leaks under different conditions, collecting corresponding acous-
tic emission signals; second, on-site noise experiments conducted on pressure pipelines on
offshore platforms focused on collecting real-time noise data. Subsequently, we performed
integrated processing on these collected signals to more accurately simulate acoustic emis-
sion signals from pipeline leaks in actual operational environments. Through a comparative
analysis of integrated acoustic emission signals in both the time and frequency domains,
the target is to reveal the unique characteristics of the acoustic emission signals associated
with pipeline leaks.

2.1. Laboratory Pipeline Leak Experiment

This experiment utilized a PCI-2 type acoustic emission device with a sampling
frequency ranging from 1 kHz to 3 MHz. The equipment includes an R15 type acoustic
emission sensor with a central frequency of 150 kHz and a pre-amplifier with amplification
factors of 20/40/60 dB.

The pipeline leak experiment system consists of a pressure pipeline, pump, pres-
sure gauge, control valves, and other components, enabling experimental analysis under
different pressures, leak apertures, and leak positions. The schematic diagram of the
experimental setup is shown in Figure 1.
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Figure 1. Schematic Diagram of the Experimental Setup. Figure 1. Schematic Diagram of the Experimental Setup.

The pipeline model used conforms to the specifications outlined in GB/T 8163-2018
for seamless steel pipes used in conveying high-pressure fluids. This material is commonly
employed for constructing pipelines on offshore platforms [51]. The pipeline has a diameter
of 105 mm, a wall thickness of 5 mm, and a total length of 6.2 m. The structure of the
pipeline system primarily consists of two parts: a 5 m experimental section with 11 high-
pressure welded needle valves distributed within it, simulating various leakage scenarios.
The other part is a 1.2 m buffer zone, connected to the pressurization device via rubber
pipelines. Different pipeline internal pressure conditions are achieved through the Z4DSY-
type pressure application device.

Utilizing the aforementioned experimental system, pipeline leak experiments were
conducted to investigate the propagation characteristics of leakage acoustic emission signals.
Simulated pipeline leak experiments were carried out under different pressures and sensor
spacings, studying the varying characteristics of pipeline leak acoustic emission signals
under different conditions.

Two R15-type acoustic emission sensors were positioned at a distance of 10 cm from
the ends of the pipeline, adjacent to the boundaries of the experimental section. Industrial-
grade petroleum jelly was employed as a coupling agent between the pipeline surface and
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the acoustic emission sensors. The sensors were secured using tape. The downstream
sensor was designated as Sensor 1, and the distances of each valve relative to Sensor 1 are
presented in Table 1.

Table 1. Positions of Each Valve (mm).

Identification Code 1 2 3 4 5 6 7 8 9 10 11

Location 207 567 807 1253 1923 2406 2895 3500 4105 4397 4640

The coupling condition between the acoustic emission sensors and the pipeline surface
was assessed through a lead break test. Subsequently, laboratory noise was collected by
closing the valves to maintain a balanced flow in the inlet and outlet pipelines, capturing
noise information in the absence of any leaks. Pipeline leak experiments were then con-
ducted at pressures of 1.0 MPa, 2.0 MPa, and 3.0 MPa. Multiple sets of leakage acoustic
emission signal data were collected under different positions and pressure distributions.

2.2. Offshore Platform Field Noise Experiment

Acoustic emission technology can detect the initiation and evolution of early-stage
cracks in pipelines. Due to the relatively complex nature of on-site working environments
and considering that the collected acoustic emission data is often subject to various envi-
ronmental noises, it significantly impacts the extraction of acoustic emission characteristic
signals. Therefore, it is necessary to collect on-site environmental noise signals for the
analysis and processing of experimental results.

The on-site noise experiment was conducted at an offshore testing platform located in
the Pearl River Mouth Basin, China (19◦54′42.93′′ N, 115◦24′07.17′′ E, with a block area of
approximately 3965 km2). The platform, adopting an 8-legged template structure connected
to the seabed by 16 skirt piles, is situated at a water depth of 191 m, as depicted in Figure 2.
On this platform, field noise signals were experimentally collected from the pipeline to
investigate the impact of on-site noise on the detection of acoustic emission signals related
to pipeline leaks.
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Based on on-site research analysis and considering the actual operating conditions
of the platform, it was identified that the 19-m platform location experiences significant
pipeline vibrations, exhibiting typical mechanical vibration noise and a proneness to fatigue
damage. At the 29-m platform location, there is a typical elbow pipeline that undergoes
cooling treatment after compression by a compressor, experiencing high pressure and stress
concentration at the elbow, leading to structural fatigue damage. Therefore, the 19-m and
29-m platform positions were selected as typical test points for measurement, as shown in
Figure 3. At the aforementioned typical locations, acoustic emission sensors were strategi-
cally placed, and the collection equipment, along with basic parameter settings, remained
consistent with laboratory conditions. Subsequently, long-term scheduled sampling was
conducted to collect on-site environmental noise signals.
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Through the collection and analysis of on-site noise signals, the temporal waveform
was obtained, as illustrated in Figure 4.
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at 19 m Platform. (b) Measurement Point at 29 m Platform.

It can be observed that the platform noise signals in the time domain also exhibit
continuous acoustic emission characteristics. Although there are some abnormal peak
signals in the waveform, the overall amplitude is in the same order of magnitude as the
leakage signal amplitude.

Similarly, frequency domain analysis was conducted on the noise signals from the
testing platform, and the results are presented in Figure 5.

Comparative analysis of the results reveals that, in contrast to laboratory noise signals,
the frequency distribution range of the platform noise signals is broader, the amplitudes
are higher, and the signals are more complex. At the 19-m platform location, the noise is
mainly distributed in the range of 0 to 260 kHz, with distinct peaks at 20 kHz and 227 kHz.
In contrast, at the 29-m platform location, the noise is also predominantly distributed in the
range of 0 to 260 kHz, but with only one peak. Combining the spectral graphs of leakage
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acoustic emission signals from the pipeline system under different pressures, it can be
observed that the characteristic frequency range of the leakage acoustic emission signals
overlaps with the actual noise signal frequencies. This overlap poses challenges to pipeline
leak detection efforts.
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To further analyze the frequency distribution characteristics between leakage signals
and environmental noise signals, a time–frequency analysis was conducted to more intu-
itively illustrate the relationship between the frequency amplitude of the signals and time.
The analysis results are presented in Figure 6.
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From the above analysis results, it is clear that the on-site noise has a broader frequency
distribution range compared to laboratory noise, and the situation is more complex. The noise
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signals from the 19-meter and 29-meter platform pipelines consist mainly of two parts: one
part is random noise concentrated in the range of 0 to 80 kHz, and the other part is periodic
burst noise signals within the ranges of 180 to 250 kHz and 70 to 130 kHz, respectively. The
frequency distribution of the noise signals obtained in the laboratory is in the range of 0 to
60 kHz, without burst signals and with lower amplitudes. The leakage acoustic emission
signals obtained in the laboratory are mainly distributed in two frequency bands: 30 to 50 kHz
and 135 to 165 kHz. There is frequency overlap with the measured noise signals, and if both
occur simultaneously in a real leakage scenario, distinguishing between leakage and noise
signals solely based on frequency domain information will become challenging.

Comparison reveals that the frequency range of leakage acoustic emission signals is
more concentrated and significantly higher than that of noise signals in the same frequency
band. Therefore, when a leakage occurs, the energy distribution of the acoustic emission
signals will inevitably change. This provides a new research perspective and approach for
extracting characteristic parameters of leakage signals.

2.3. Fusion of Leakage Signals and Measured Noise Signals

Due to the low noise level in the laboratory, it is unable to accurately reflect the actual
noise conditions on offshore platforms. To simulate realistic environmental conditions, the
measured noise signals from the platform were fused with the leakage acoustic emission
signals collected in the laboratory. This fusion aimed to validate the pipeline leakage
detection method based on acoustic emission technology. As both signals are continuous,
the noise percentage was determined using signal power [41], i.e.,

ε =

√
PN
PS

=

√
RMS2

N
RMS2

S
=

RMSN
RMSS

(1)

In the above formula, PN represents the noise power, PS represents the signal power,
and RMSN and RMSS are the root mean square values of the noise signal and leakage
signal, respectively. Therefore, the combined leakage signal Y can be obtained by the
following equation:

Y = X +
RMSS

ε · RMSN
Noise (2)

In this equation, X represents the collected leakage signal, and Noise represents the
measured noise signal.

Due to the inconsistent noise characteristics at the 19-m and 29-m pipeline locations
on the testing platform, they were separately injected into the leakage acoustic emission
signals, resulting in 99 sets of leakage signals containing measured noise. The waveforms
are shown in Figure 7.

The above analysis results indicate that, after incorporating measured noise, the leak-
age acoustic emission signals with noise differ significantly from those without noise, in
terms of waveform. The results are more similar to the measured noise signal. Therefore,
identifying measured leakage acoustic emission signals solely from a time–domain per-
spective is not advisable. Further frequency domain analysis was conducted on the noisy
acoustic emission signals, and the results are shown in Figure 8.

To obtain more clear results, time–frequency analysis was performed on the noisy
acoustic emission signals, and the outcomes are presented in Figure 9.

The spectrogram and time–frequency diagram of the signal with noise, the original
leak acoustic emission signal, and the measured noise signal have undergone changes
compared to each other. They now exhibit characteristics of both the laboratory leak
acoustic emission signal and the measured noise signal. The peaks of the original leak
acoustic emission signal at 15 kHz and 146 kHz are no longer prominent due to their
smaller amplitudes. However, the peak at 36 kHz remains clearly observable and exhibits
a continuous pattern in the time–frequency diagram. These changes lay the foundation for
subsequent feature extraction and pattern recognition of leak acoustic emission signals.
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integration of noise into the time-frequency plot of the 29-m platform pipeline.

3. Modal Decomposition Method for Leak Identification Analysis
3.1. Empirical Mode Decomposition Algorithm and Its Analysis Results

Empirical mode decomposition (EMD) is a method used for analyzing nonlinear and
non-stationary signals. It decomposes signals based on the inherent timescale characteris-
tics of the data without the need for predefined basis functions. The key to this method is
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empirical mode decomposition, which breaks down complex signals into a finite number
of intrinsic mode functions (IMFs). Each IMF component extracted contains local char-
acteristic signals of different time scales from the original signal. This approach allows
for the stabilization of non-stationary data and subsequent Hilbert transform to obtain
time–frequency spectrograms, revealing physically meaningful frequencies. Compared
to methods like short-time Fourier transform and wavelet decomposition, EMD is adap-
tive as it decomposes signals based on the local properties of the signal sequence in the
time domain.

Consider a signal s(t), for which upper and lower envelope lines, denoted as U1(t)
and D1(t) respectively, are derived by fitting its local maxima and minima. Subsequently,
the mean value M1(t) of the signal is calculated:

M1(t) =
U1(t) + D1(t)

2
(3)

A new sequence H1(t) is obtained by subtracting the upper envelope line M1(t) from
signal s(t):

H1(t) = s(t)− M1(t) (4)

Subsequently, it is necessary to assess if H1(t) satisfies the following two conditions:

(1) The number of zero crossings should be equal to the number of extrema or differ by
no more than one.

(2) The upper and lower envelope lines should be locally symmetrical about the time
axis, meaning the average values of the upper and lower envelope lines are zero.

If H1(t) meets the above conditions, it is considered a first order component. If not,
the process is repeated until both criteria are met. If the standards are met after repeating
the process k times, the first order component C1(t) can be expressed as:

H1k(t) = H1(k−1)(t)− M1k(t) (5)

C1(t) = H1k(t) (6)

The separation of signal C1(t) from s(t) results in the residual signal R1(t), as follows:

R1(t) = s(t)− C1(t) (7)

In the equation, R1(t) represents the new signal to be decomposed. By repeating the
aforementioned steps with signal R1(t), new IMF components can be obtained.

R1(t)− C2(t) = R2(t)
· · ·

Rn−1(t)− Cn(t) = Rn(t)
(8)

The above process is repeated for n iterations, and the decomposition stops when
Rn(t) becomes a monotonic function or its amplitude falls below a certain threshold. At
this point, the original signal can be represented as the sum of n IMF components, denoted
as Ci(t), and a residual component Rn(t):

s(t) =
n

∑
i=1

Ci + Rn(t) (9)

Collected acoustic emission signals were subjected to normalization, followed by the
fusion of noise and leakage emission signals. The fused signal, along with the platform-
measured noise signal, underwent EMD. Both signals were decomposed into 10th order
components and 11th order components, with the final component representing the residual
term. As the characteristic features of the decomposed signals primarily reside in the initial
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orders, a comparative analysis was performed on the decomposed signals up to the fifth
order. The results are depicted In Figure 10.
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Figure 10. EMD decomposition results. (a) Leakage signal with noise. (b) Experimentally measured
noise signal.

The decomposition results reveal that, under the influence of noise interference, the
leakage signal with noise and the measured noise signal exhibit minimal differences in
the first order component, both showing sudden peaks at corresponding time points. In
the second order component, the amplitude decay of the noise-added leakage signal is
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not significant, while the measured noise signal experiences considerable attenuation,
compared to the first order component, with noticeable waveform differences. The third
to fifth order components have similar amplitudes, but their amplitude arrival times
vary. Subsequent components provide little useful information and are therefore not
individually discussed.

Subsequently, Fourier transforms were applied to the first five IMF components, and
the frequency spectra are presented in Figure 11. It is observed that the frequencies of
the components obtained from EMD decomposition overlap, and they are arranged in
descending order. The spectra of the first components are remarkably similar, with peak
frequencies appearing in the high frequency region, characteristic of noise signals. While
the frequency distribution range of the second to fifth order components is consistent, the
noise-added leakage signal exhibits higher peaks in these components, generally surpassing
the amplitude of the measured noise signal.
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In summary, the utilization of EMD provides some characteristic information. How-
ever, due to the high degree of overlap between the two signals, the distinction between
leakage signals and noise signals is not sufficiently pronounced. This poses a certain
challenge for subsequent feature extraction and pattern recognition.

3.2. Variational Mode Decomposition Algorithm and Its Analysis Results

Variational mode decomposition (VMD) is an adaptive and entirely non-recursive
method for modal variation and signal processing. This technique offers the advantage of
determining the number of modal decompositions. Its adaptability is manifested in deter-
mining the modal decomposition count of the given sequence based on actual conditions.
During subsequent search and solving processes, it adaptively matches the optimal center
frequency and limited bandwidth for each mode, and effectively separates the intrinsic
mode functions (IMFs), divides the signal in the frequency domain, and ultimately obtains
the effective decomposition components of the given signal. It achieves the optimal solution
to the variational problem. VMD addresses issues present in EMD, such as endpoint effects
and mode component overlap. Additionally, it boasts a more robust mathematical foun-
dation, which aids in reducing the high complexity and strong nonlinearity of time series
non-stationarity. The decomposition results in obtaining multiple sub-sequences with dif-
ferent frequency scales that are relatively stationary, making it suitable for non-stationary
sequences. The core idea of the VMD algorithm is to construct and solve variational
problems. The decomposition layer count k can be manually set, and the bandwidth of
component uk is limited, with each center frequency being unique.

For each component uk, a Hilbert transform is applied, yielding its one-sided spectrum
and analytical signal A:

A =

[
δ(t) +

j
πt

]
uk(t) (10)

In the equation: δ(t) represents the impulse function.
Multiplying the above equation by the exponential function e−jωkt yields the baseband

signal, as follows:

B =

[(
δ(t) +

j
πt

)
uk(t)

]
e−jωkt (11)

Compute the L2 norm of its gradient, square the result, and sum them up to obtain
the bandwidths of each component. Simultaneously, it is essential to meet two criteria for
VMD decomposition:

(1) Minimize the bandwidth of the center frequency for each IMF component.
(2) Ensure that the sum of all components equals the original signal.

s(t) = ∑
k

uk(t) (12)

In the equation: s(t) denotes the initial signal, and uk(t) represents the k intrinsic
mode functions obtained after decomposition.

min
{uk},{ωk}

{
∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t.∑

k
uk = s(t)

(13)

In the equation: {ωk} = {ω1, · · · , ωk} represents the central frequency of each com-
ponent after decomposition.
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To obtain the optimal solution for Equations (3)–(11), it is necessary to introduce the
extended Lagrange function:

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
uk(t)e−jωkt

]∥∥∥2

2

+

∥∥∥∥s(t)− ∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), s(t)− ∑

k
uk(t)

〉 (14)

In the equation: λ is the Lagrange multiplier operator, and α is the quadratic penalty factor.
At this point, the constrained variational problem has been transformed into an

unconstrained variational problem. The components and their central frequencies are
updated using the alternating direction multiplier method:

{
ûn+1

k

}
=

ŝ(t)−
K
∑

i<k
ûn+1

i (ω)−
K
∑

i>k
ûn

i (ω) +
λ̂n(ω)

2

1 + 2α
(
ω − ωn

k
)2 (15)

In the equation: ûn+1
k , ŝ(t), and λ̂n denote the Fourier transforms of un+1

k , s(t), and λn

respectively.
The operational process of the VMD algorithm is as follows:

(1) Initialize
{

û1
k
}

,
{

ω̂1
k
}

, λ̂1;
(2) Set the iteration count, n = n + 1, the loop begins;
(3) Satisfy ω ≥ 0, update each ûk according to Equations (3)–(13);
(4) Update the center frequency ωk;

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(16)

(5) Update the Lagrange multipliers λ;

λ̂n+1(ω) = λ̂n + β

[
ŝ(ω)−

K

∑
k=1

ûn+1
k (ω)

]
(17)

Equation where: β is the noise tolerance parameter.
(6) Repeat steps (2) to (5) until the termination condition is met:

K

∑
k=1


∥∥∥ûn+1

k − ûn
k

∥∥∥2

2∥∥ûn
k

∥∥2
2

 < ε (18)

In the equation, where: ε is the discrimination accuracy, and ε > 0.

Before performing VMD decomposition, modal parameters K and penalty factor α
need to be pre-set. The modal parameter K is primarily used to control the number of
decomposition layers; if it is too small, it may result in insufficient decomposition and
modal aliasing, leading to under-decomposition. If it is too large, it may cause excessive
decomposition, generating some useless components. The penalty factor α is used to control
the bandwidth of the IMF components; if it is too large, it may cause some components to
include others, while if it is too small, it may result in the loss of certain signals.

In this study, the Sparrow algorithm was employed to find the optimal modal parame-
ters K and penalty coefficient a before VMD decomposition. The population size was set to
10, and the maximum number of iterations was set to 100. Modal parameter K was taken
as [3, 20], and penalty coefficient a was taken as [500, 2500], with envelope entropy as the
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fitness function for the Sparrow optimization algorithm. The trend of envelope entropy
changes during iterations is illustrated in Figure 12. After 39 iterations, the minimum
envelope entropy value of 8.5535 was achieved and remained stable thereafter, resulting in
the optimized values of [k, α] = [9, 853].
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Figure 12. Adaptive function iteration curve of noisy leak signals.

Based on the aforementioned preprocessing results, VMD decomposition was ap-
plied to the noisy leakage signal and platform noise signal, resulting in nine-order IMF
components, as shown in Figure 13. It can be observed that, in the first four components,
there is no significant difference between the noisy leakage signal and the measured noise
signal. The waveforms and peak occurrence times are highly similar. The fifth component
reveals differences between the two signals, with variations in the density of sudden peaks.
The sixth and seventh components exhibit similarity once again. Moving to the eighth
component, the amplitude of the noisy leakage signal is significantly higher than that of the
noise signal, and their waveforms differ, indicating that the leakage signal contains more
information. The ninth component represents the residual of the signal decomposition, and
while the waveforms of the two signals are similar, the amplitude of the leakage signal is
slightly higher.

After the VMD decomposition, each order signal possesses a unique central frequency.
Extracting the central frequencies from the noisy leakage signals and the measured noisy
signals, the results are presented in Table 2. It can be observed that the central frequencies
corresponding to the significantly different fifth and eighth order components precisely
fall within the characteristic frequency bands of the leakage signals. Moreover, there is
no occurrence of closely spaced central frequencies in the leakage signals, indicating a
thorough decomposition without excessive splitting.

Subsequently, each component underwent Fourier transformation to obtain the corre-
sponding spectrum, and the analysis results are depicted in Figure 14.
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Figure 13. VMD Decomposition Results. (a) Leakage signal with noise. (b) Experimentally measured
noise signal.
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Table 2. Center frequencies of IMF components (kHz).

IMF
Components

Leakage
Signals

Noise
Signals

IMF
Components

Leakage
Signals

Noise
Signals

IMF1 365.36 367.88 IMF6 98.94 91.60
IMF2 268.47 261.69 IMF7 65.24 58.86
IMF3 226.82 223.59 IMF8 37.10 28.57
IMF4 195.75 186.93 IMF9 0.79 0.32
IMF5 147.10 133.35

It is evident that after VMD decomposition, the first order component shows minimal
variation. Among the second to sixth orders, the peak values of the measured noise signal
exceed those of the noisy leakage signal; however, in the seventh order, the peak of the
leakage signal surpasses that of the measured noise signal yet, overall, the shapes of
the main bodies in the first seven orders are relatively similar. In the eighth order, the
peak of the leakage signal is much higher than that of the measured noise signal, and the
two exhibit significant differences in shape. The ninth order component fails to provide
meaningful information.

Overall, the VMD decomposition demonstrates superior performance, compared to
EMD decomposition, revealing more distinct differences among the components. However,
it should be noted that VMD decomposition requires preprocessing of the signal, making
the analysis process more intricate than that of EMD decomposition.
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Figure 14. Spectrum diagrams of VMD decomposed components. (a) Leakage signal with noise.
(b) Experimentally measured noise signal.

3.3. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Algorithm and Its
Analysis Results

The complete ensemble empirical mode decomposition with adaptive noise (CEEM-
DAN) algorithm is an improvement upon the ensemble empirical mode decomposi-
tion (EEMD), which is based on the EMD algorithm. This algorithm introduces com-
plementary noise, significantly eliminating redundant noise during signal reconstruc-
tion without the need for hundreds of EMD decompositions, thereby greatly enhancing
computational efficiency.

Since CEEMDAN is an enhancement of the EMD decomposition, it inherits the adap-
tive nature of the EMD algorithm, eliminating the need to set decomposition levels. With a
white noise intensity set at 0.2, 50 iterations, and a maximum envelope iteration of 1000 for
CEEMDAN decomposition, both the noisy leakage component and the noise component
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were obtained at the 14th order. As the signal characteristics primarily lie within the first
four orders, these components were extracted, as shown in Figure 15. The decomposition
results reveal a strong resemblance between the two signals in the first order component,
with consistent peak values and occurrence moments of sudden peaks. In the second order
component, the noise signal contains more sudden peaks with higher amplitudes. The third
and fourth order components exhibit similar behavior, but the amplitude of the leakage
signal is slightly higher than that of the noise signal.
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Figure 15. CEEMDAN decomposition results. (a) Leakage signal with noise. (b) Experimentally
measured noise signal.

After performing Fourier transformation on its components, the overall spectrum
of each component appears to be arranged from high to low frequencies. The results
are illustrated in Figure 16. The frequency distribution shapes of the first four order
components are similar, with the amplitude of the noise signal component slightly higher
than that of the leakage signal component overall.

Therefore, compared to EMD decomposition, CEEMDAN decomposition extracts
more useful information. In comparison with VMD decomposition, CEEMDAN decompo-
sition is more convenient, as it does not require pre-processing of the data.
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Figure 16. Spectrum diagrams of components from CEEMDAN decomposition. (a) Leakage signal
with noise. (b) Experimentally measured noise signal.

4. Leakage Identification Analysis of the Improved Modal Decomposition Method
4.1. ICEEMDAN Algorithm and Its Analysis Results

Improved complete ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN) is an advanced signal processing algorithm that provides a more accurate
and robust way to analyze complex signals. Developed as an enhancement of the EMD
technique, ICEEMDAN builds upon the foundation of the CEEMDAN.

Distinguished from the CEEMDAN algorithm, ICEEMDAN exhibits essential differ-
ences in its computation. ICEEMDAN utilizes an advanced adaptive noise processing
mechanism, effectively suppressing noise interference in signal decomposition. This mech-
anism dynamically adjusts filter parameters based on the real-time characteristics of the
signal, adapting to both the signal’s spectrum and the temporal variability of noise. Conse-
quently, ICEEMDAN not only accurately extracts the essential components of the signal
but is also immune to external noise interference. ICEEMDAN avoids the direct addition
of Gaussian white noise during the decomposition process. Instead, it selects the kth
IMF component obtained after decomposing white noise, using EMD for analysis. This
approach does not only alleviate the mode-mixing phenomenon present in traditional
EMD methods but also addresses issues such as residual noise and pseudo-modes in the
CEEMDAN method. Additionally, the method enables the ensemble averaging of multiple
noise perturbations, resulting in more accurate decomposition outcomes and improved
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noise suppression capabilities. The ICEEMDAN decomposition results and spectrogram of
ICEEMDAN decomposition components are shown in Figures 17 and 18, respectively.
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Figure 17. ICEEMDAN decomposition results. (a) Leakage signal with noise. (b) Measured
noise signal.

In the first order component, the amplitude of the leakage signal is significantly
higher than that of the noise signal, with distinct differences in waveform shape and
peak occurrence time. In the second to fourth order components, the magnitudes of the
two signals are comparable, but there are noticeable differences in the arrival times of
the waveforms.
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Figure 18. Cont.
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Figure 18. Spectrogram of ICEEMDAN Decomposition Components. (a) Leakage signal with noise.
(b) Measured noise signal.

In the first order component, the amplitude of the leakage signal is significantly higher
than that of the noise signal. In the second order component, the two are generally similar,
but the leakage signal has an additional peak frequency, compared to the noise signal. In
the third and fourth order components, the frequency distribution and shape are similar for
both, but in the third order component, the peak frequency of the leakage signal is slightly
higher than that of the noise signal.

4.2. Comparative Analysis of Identification Results

The recognition results of the feature vectors extracted by EMD are shown in Figure 19.
Figure 19a displays the identification results for the non-fused noisy signal, while Figure 19b
presents the identification results for the fused noisy signal.

The above analysis indicates that without incorporating noise, the EMD decomposition
algorithm misidentifies five leakage signals as noise signals, achieving an accuracy of 90%.
However, when the leakage signals are blended with noise signals, the EMD decomposition
algorithm misidentifies 15 leakage signals as noise signals, resulting in an accuracy of
only 70%. Therefore, it can be observed that the method based on EMD decomposition
can to some extent distinguish between leakage and noise signals. However, it is highly
sensitive to noise signals and is ineffective in extracting characteristic signals under low
signal-to-noise ratio conditions.

The recognition results of the feature vectors extracted using VMD are illustrated in
Figure 20. Figure 20a represents the recognition results without integrated noise signals,
while Figure 20b depicts the recognition results with integrated noise signals.

The analysis results above reveal that, without the inclusion of noise signals, the VMD
decomposition algorithm correctly identified four leakage signals as noise signals, with an
accuracy of 92%. When the leakage signals were integrated with noise signals, the VMD
decomposition algorithm identified seven leakage signals as noise signals, achieving an
accuracy of 86%. Thus, it can be observed that the method combining VMD decomposition
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with PNN performs slightly better in distinguishing leakage from noise signals, compared
to the EMD combined with PNN method. Additionally, it exhibits superior resistance to
noise interference than the EMD combined with PNN method.
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The recognition results of the feature vectors extracted based on CEEMDAN are
depicted in Figure 21. Figure 21a represents the recognition results without integrated noise
signals, while Figure 21b illustrates the recognition results with integrated noise signals.

The analysis results above indicate that, without the inclusion of noise, the CEEMDAN
decomposition algorithm correctly identified two leakage signals as noise signals, achieving
an accuracy of 96%. When the leakage signals were integrated with noise, the CEEMDAN
decomposition algorithm identified three leakage signals as noise signals, with an accuracy
of 94%. Hence, it can be observed that the method combining CEEMDAN decomposition
with PNN performs slightly better in distinguishing leakage from noise signals, compared
to the methods combining EMD and VMD with PNN. Additionally, it exhibits superior
resistance to noise interference than the methods combining EMD and VMD with PNN.
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The recognition results of the feature vectors extracted based on ICEEMDAN are
depicted in Figure 22. Figure 22a represents the recognition results without integrated noise
signals, while Figure 22b illustrates the recognition results with integrated noise signals.
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The analysis results above reveal that, without the inclusion of noise signals, the
recognition results of the ICEEMDAN decomposition algorithm were all correct, achieving
an accuracy of 100%. When the leakage signals were integrated with noise signals, the
ICEEMDAN decomposition algorithm identified one leakage signal as a noise signal, with
an accuracy of 98%. Therefore, it can be observed that the method combining ICEEM-
DAN decomposition with PNN not only exhibits strong resistance to interference but also
demonstrates significantly better performance in distinguishing leakage from noise signals,
compared to the previous three methods.
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5. Conclusions

By employing a combination of laboratory pipeline model experiments and on-site
tests on offshore platforms, this study explores a method for characterizing and identifying
pipeline leakage signals based on acoustic emission. The research ingeniously blends
collected leakage acoustic emission signals with on-site noise signals. Signal feature analysis
and research are conducted on identified leakage and noise signals, with optimization of
the results achieved using four algorithms: EMD, VMD, CEEMDAN, and ICEEMDAN. The
findings indicate that the damage identification algorithm based on ICEEMDAN exhibits
high precision and excellent identification performance in the extraction and recognition
of pipeline leakage signal features. Comparative analysis of the results obtained from the
mentioned algorithms leads to the following conclusions:

(1) EMD fails to effectively identify leakage signals under low signal-to-noise ratios.
Without the inclusion of noise, VMD algorithm misidentifies five leakage signals as
noise signals, achieving an accuracy of 90%. When leakage signals are integrated
with noise, VMD algorithm incorrectly identifies 15 leakage signals as noise signals,
resulting in an accuracy of only 70%.

(2) While VMD can effectively recognize both leakage and noise signals, its resistance to
noise interference is relatively poor. Without the inclusion of noise signals, the VMD
algorithm misidentifies four leakage signals as noise signals, with an accuracy of 92%.
When leakage signals are integrated with noise, VMD algorithm incorrectly identifies
seven leakage signals as noise signals, resulting in an accuracy of 86%.

(3) Although CEEMDAN demonstrates higher recognition accuracy than EMD and VMD
methods, it suffers from residual noise and pseudo modes. Without the inclusion of
noise signals, the algorithm misidentifies two leakage signals as noise signals, with
an accuracy of 96%. When leakage signals are integrated with noise, the algorithm
incorrectly identifies three leakage signals as noise signals, achieving an accuracy of
94%.

(4) In the case of ICEEMDAN, without the inclusion of noise signals, all recognition
results are correct, with an accuracy of 100%. When leakage signals are integrated
with noise, the algorithm incorrectly identifies one leakage signal as a noise signal,
achieving an accuracy of 98%. This algorithm not only demonstrates high recognition
accuracy but also addresses the issues of residual noise and pseudo modes. It is
evident that the improved adaptive noise complete ensemble empirical mode decom-
position method is effective in identifying both leakage and noise signals, exhibiting
strong resistance to noise interference.
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