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Abstract: The integration of machine learning (ML) techniques in coastal engineering marks a
paradigm shift in how coastal processes are modeled and understood. While traditional empirical and
numerical models have been stalwarts in simulating coastal phenomena, the burgeoning complexity
and computational demands have paved the way for data-driven approaches to take center stage.
This review underscores the increasing preference for ML methods in coastal engineering, particularly
in predictive tasks like wave pattern prediction, water level fluctuation, and morphology change.
Although the scope of this review is not exhaustive, it aims to spotlight recent advancements and the
capacity of ML techniques to harness vast datasets for more efficient and cost-effective simulations
of coastal dynamics. However, challenges persist, including issues related to data availability and
quality, algorithm selection, and model generalization. This entails addressing fundamental questions
about data quantity and quality, determining optimal methodologies for specific problems, and
refining techniques for model training and validation. The reviewed literature paints a promising
picture of a future where ML not only complements but significantly enhances our ability to predict
and manage the intricate dynamics of coastal environments.

Keywords: coastal processes; machine learning; artificial neural networks; data-driven modeling;
artificial intelligence

1. Introduction

The application of artificial intelligence (AI) in coastal engineering has a great potential
for simulating different coastal processes using the vast amounts of collected data. Today,
several beaches are well monitored and have a long record of high-quality observations
with decadal periods [1]. Although this limited number of well-monitored beaches is not
representative, the vast collected data have helped scientists and engineers to understand
the underlying processes and develop either empirical or physics-based numerical models.

Empirical and numerical models have been widely used in simulating various pro-
cesses in coastal engineering such as dune erosion, sediment transport, sea level rise,
hydrodynamics, and wave propagation, e.g., [2–8]. Empirical models usually follow a
base function, such as a line or curve, with several generalizing assumptions so that they
can fit the data. Hence, they generally offer a reasonable precision and an efficient com-
putational effort when compared to numerical models. However, most empirical models
describe single features [9]. Numerical models, on the other hand, typically include more
complex relations and time-varying physical interactions between different features such
as wave-current interactions, current-induced sediment transport, and tides [10]. As such,
physics-based numerical models are valuable tools for complex processes because they can
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generally capture high dimensionality with significant accuracy. Even still, due to the high
complexity present in developing these models, numerical models are often simplified by
adding tuning constants or simplifying the boundary conditions [11,12]. Additionally, due
to the complexity of numerical models and the intense computational effort they require,
they are generally suitable for applications of small spatial and temporal frames [13].

Data-driven machine learning techniques utilize past measurements to draw insights
into the future. Unlike traditional techniques which rely on explicit rules to resolve prob-
lems, they attempt to learn implicit relations between features and datasets using statistical
techniques and sophisticated algorithms with a high level of abstraction [14]. Despite
often being regarded as “black-box” models, these methods excel in identifying weights
and correlations between variables without imposing assumptions about the structure of
the data or prior knowledge of the processes involved. The provenance of a particular
behavior is solely due to inference from the provided data [13]. As such, they provide
versatility and adaptability to accommodate complex relationships that can be challenging
for process-based models to capture. Another leading reason for the rise of data-driven
techniques in coastal engineering is their significant reduction in computational time and
effort. They possess the capability to analyze nonlinear relationships and high-dimensional
variables much more rapidly than physics-based models, exhibiting computational effi-
ciency ranging from 22.5 times faster [15] to 4000 times faster [16]. This acceleration is
pivotal for coastal practitioners who want to facilitate real-time decision-making.

Machine learning typically categorizes two primary types, supervised and unsuper-
vised. In the predictive or supervised learning paradigm, the objective is to understand the
relationship between inputs x and outputs y based on a labeled dataset known as a training
set. Each input x comprises a vector of numerical values, often referred to as features or
attributes. The output or response variable y can vary in form, either a categorical variable
from a finite set or a continuous scalar. Classification or pattern recognition refers to tasks
where y is categorical, while regression is used when y is real-valued. The second primary
type of machine learning is unsupervised learning. Here, only outputs are provided, and
the objective is to identify insightful patterns within the data, often referred to as knowledge
discovery. This presents a less defined challenge since the types of patterns to seek are
unspecified, and there is not a clear error metric to utilize (unlike in supervised learning,
where predictions can be compared directly to observed values). There exists a third type
of machine learning called reinforcement learning, though it is less commonly utilized.
This approach is valuable for learning how to act or behave based on intermittent reward
or penalty signals [17]. Figure 1 presents the most common algorithms used in machine
learning. In our current context, our focus will be solely on supervised learning algorithms.
All the applications discussed herein aim to establish a relationship between a set of input
features and one or more outputs.

This review is an effort to highlight the different applications and machine learning
(ML) techniques in coastal engineering. Several ML algorithms are employed as data-driven
techniques in coastal applications. Commonly used algorithms are artificial neural net-
works (ANNs), Bayesian networks (BNs), decision trees (DTs), and support vector machines
(SVMs). Detailed explanations of the different ML algorithms are available in numerous
references e.g., [18,19], eliminating the need to give a comprehensive discussion here.

The inclusion of ML models in coastal engineering was mainly applied in three areas:
wave field prediction, sea level rise, and morphology change. However, ML applica-
tions were also seen in other maritime engineering domains such as tsunamis [20–22],
scouring [23–25], and breakwater design [26–28]. Despite the significance of these areas,
extending this review to include all maritime applications would make this review work
overly lengthy.

Section 2 provides a brief introduction to ML algorithms applied in coastal engineering.
Previous studies for each application in the three areas are reviewed in Section 3. Section 4
presents and discusses the obtained results of this comprehensive review. Section 5 ad-
dresses the challenges facing scientists in applying AI methods in coastal engineering. Final
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thoughts are presented in Section 6. This endeavor aims to comprehensively assess the
current landscape of ML applications in coastal engineering. While the initial goal was
to examine research from 2015 onwards, it was often found that setting the context by
incorporating earlier studies would be beneficial to the reader. This approach ensures a
more holistic understanding of the evolution of these topics.
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2. Machine Learning Tools Used in Coastal Engineering
2.1. Artificial Neural Networks

ANNs are the most commonly used ML algorithm in coastal engineering applications,
being adaptable to different states and problems. The effectiveness of ANNs arises from
their ability to model complex nonlinear problems, and therefore they have already been
successfully used in tasks for classification and regression. Several ANN variations ex-
ist. In coastal engineering research, the frequently used neural networks are multi-layer
perceptron (MLP), convolutional neural networks, and long short-term neural networks.
Lecun et al. [14] and Juan and Valdecantos [29] present a detailed review of these variations.
The MLP is the most commonly used and contains an input layer, one or more hidden
layers, and an output layer (Figure 2). Each layer consists of nodes that are connected to
the nodes of the previous and subsequent layers via a transfer function. Input layer nodes
represent the independent variables, and usually each node represents one variable. Like-
wise, the output layer nodes represent the sought output variables. The number of hidden
layers and their nodes are determined subjectively or through some sort of systematic
analysis where multiple configurations are tried and the best combination is chosen. As
data are passed from the input nodes to the subsequent layers, they are altered by transfer
functions. Table 1 presents the commonly used transfer functions in coastal and ocean
engineering [29]. Nodes are connected with the response function h as follows:
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hj = f

(
aj +

n

∑
i=1

wixi

)
(1)

where xi is the input of the ith nodes, hj is the response of the jth neuron, aj is a bias constant,
wi is the weight factor between xi and hj, and f is the transfer function. The weights and
biases constants are found through optimization routines applied to the training dataset
by backpropagating the errors from the output layer through the network and adjusting
these constants.
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Table 1. Transfer functions commonly used in ocean engineering [29].

Function Expression Application

Linear F(x) = x Output layer

Logistic sigmoid F(x) = 1
1+e−x Output and hidden layers

Hyperbolic tangent sigmoid F(x) = ex−e−x

ex+e−x Hidden layers

Radial basis F(x) = g(x − c) Output and hidden layers

2.2. Regression Tree

Regression trees use a binary split technique of the dataset to map a given feature
to its targeted outcome. The split is recursively applied until a stopping criterion is met.
Hastie et al. [30] advise growing a large tree with many splits and then pruning the tree
(collapsing some splits) based on cross-validation and cost complexity. Trees are usually
used for classification problems and have been used in coastal engineering problems in
context with other ML techniques (e.g., [31–33]). The tree structure is visually appealing
and aids in interpreting the paths to which the prediction is made, therefore making
it easier to identify errors in the model. Input features of the regression tree can be of
any type and have different scales. Nonetheless, small variations in the training dataset
can result in different split schemes, thus decreasing the accuracy of the prediction and
introducing uncertainty [34]. Different algorithms can be used to improve the accuracy of
the regression trees. Bagging, boosting, and stacking are among the techniques used to
build several models and then merge the results to decrease the uncertainty and improve
the accuracy [34].
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2.3. Bayesian Networks

Bayesian networks (BNs) are graphical representations of the probabilistic distribu-
tions between variables. BNs link the conditional probabilities of causal variables to their
predicted outcomes explicitly. The structure of a BN is composed of nodes representing
the variables and arrows between them representing the statistical connection forming
an acyclic graph. For example, Figure 3 is an illustration of a BN for three factors that
contribute to beach erosion volume [35]. In BNs, interactions between variables are clear,
unlike in other ML techniques. This eases visualization and interpretation of the processes
involved [36]. An advantage of using BN is that uncertainties can be estimated more
accurately since probabilities are propagated through the network over all states. This is
particularly important in the environmental modeling of nonlinear systems that contain
uncertainties or risks [37]. However, the BNs have limited ability to model continuous data.
This is a major limitation because nearly all data in environmental sciences are character-
ized as continuous. This instigates the need to discretize the variables. Beuzen et al. [35]
compare three approaches for data discretization: manual, supervised, and unsupervised.
Results indicate that the supervised approach produces the highest predictive skill.
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2.4. Support Vector Machine

A support vector machine (SVM) is a supervised ML algorithm used for classification
and regression tasks. The algorithm’s ability to handle high-dimensional data and its
versatility make it a powerful tool in ML applications. In the context of classification, the
SVM aims to find a hyperplane in a high-dimensional space that distinctly separates data
points of different classes. In regression tasks, the goal is to predict a continuous outcome
instead of assigning data points to classes. The data points that are crucial in defining the
hyperplane are called support vectors. The hyperplane is chosen to have the maximum
margin or separation, which is the distance between the hyperplane and the nearest data
point of either class. Figure 4 displays the support vectors as the boundary lines separating
the points. After the hyperplane has been found, the model function, displayed below, is
used to give the classification decision.

f (x) = sign

(
n

∑
i=1

αiyiK
(
xixj

)
+ b

)
(2)

where α is the support vector weights, determined during the training process; x and y are
the input and output vectors; K is the kernel function; and b is a bias term. The SVM can
employ several kernel functions to handle the nonlinearities of the data by transforming the
input data into a higher dimensional feature space. Examples of kernel functions are linear,
polynomial, sigmoid, and radial basis functions. For a detailed overview, refer to [38].
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3. Application of ML in Coastal Engineering

Numerical models have long been the sought method for the simulation of coastal pro-
cesses. Their accurate predictions and satisfying effectiveness led to their wide utilization in
coastal engineering problems. Nonetheless, as models get larger and more complex, more
computational resources and time are needed to handle the required computations. As
such, scientists are often limited to applications of small spatiotemporal extent or are com-
pelled to use certain assumptions to decrease the complexity of the model, thus abdicating
the required precision.

The development of statistical techniques and the vast amount of collected data have
given rise to ML tools as an alternative to traditional simulation methods. In many cases,
ML techniques outperform traditional numerical methods [40–42]. Goldstein et al. [41]
mentioned that this outperformance remains ambiguous. However, published results
indicate a significant potential to widen the use of ML methods over numerical models.

A review of previous studies indicates that different ML techniques were successfully
employed in a wide range of problems in coastal engineering. Nearly all studies displayed
a slight to significant improvement in prediction skills over traditional methods. For
example, Gracia et al. [43] studied the ability of MLP and decision trees to improve the
accuracy of wave height modeling and achieved error reductions varying from 19% to 74%.
Ellenson et al. [31] used the bagged regression tree method to predict and improve the error
of the numerical wave model WAVEWATCH. The ML model was trained using field data
and then was used to improve the numerical model wave prediction by 19% on average.
Other enhancements attained a considerable decrease in required computational power and
simulation time. One study [15] used a convolutional neural network to study nearshore
processes and achieved a 22.5 times faster performance compared to the SWASH numerical
model. Conversely, James et al. [16] applied a MLP neural network to study steady wave
conditions and attained a performance 4000 times faster than the SWAN model.

Machine learning algorithms exploit past labeled data to infer relations between
variables and thereby provide predictions. Inference from the data is solely dependent on
the statistical distribution of the data and does not necessarily adhere to conservation laws.
Therefore, training ML models requires a substantial amount of past data. Owing to the fact
that the measured field data from beaches are scarce globally [1], scientists usually resort to
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generating training data using either numerical models or experiments. After the model is
trained, it is validated using the existing field data. Figure 5 illustrates the process required
in developing a ML model. Procedures such as selecting a suitable ML technique and the
required number of input variables are of paramount importance and can significantly
affect the performance of the model. The inclusion of more variables generally helps the
ML model to capture the nonlinear relations and better represent a given process. However,
one should take into consideration that too many variables can increase the potential of
overfitting and consequently decrease the accuracy of the model [44]. Special care should
be invested in deciding the input variables. Techniques such as principal component
analysis, correlation, and clustering can help determine vital features. In the following
sections, a synopsis of the use of ML in problems regarding wave modeling, water levels,
and morphodynamics is provided.
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3.1. Wave Field Prediction

Wave field predictions are very common in coastal and ocean engineering. The accu-
rate prediction of wave characteristics is essential in many practical coastal engineering
problems, such as understanding nearshore processes, monitoring beach profiles and
shoreline changes, designing coastal protection structures, estimating potential wave over-
topping risks, and evaluating environmental variables. Due to the complexity and the
stochastic nature of waves, exact predictions are difficult [45]. Recently, data-driven models
were used to overcome the sometimes imprecise and time-consuming numerical models
and the costly deployment of in situ wave measurement equipment. A summary of research
works on the application of ML techniques in wave modeling is presented in Table 2.

The development of ML models has followed different approaches. One possible
classification can be based on the source of the dataset used for training. A widespread
technique is to use data extracted from field measurements. This method is advantageous
because it guarantees that the model will be trained on real case data, thus yielding a
more accurate and better representative model. However, field data are often sparse and
usually do not encompass a wide data distribution, which can result in a restricted model.
Deo et al. [45] used an NN to predict significant wave heights and average wave periods
based on inputs of wind speeds. The correlation between the observed and measured wave
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heights was found to be 0.77. Makarynskyy [40] instead investigated a three-layer NN to
improve wave forecasting depending on previous values of wave heights and periods with
a separate network for each. The author found smoother and more accurate representations
for semi-enclosed sea rather than ocean water, which had more spatial and temporal
variations. Decision trees were also used for wave height predictions. Mahjoobi and
Etemad-Shahidi [46] applied a decision tree for significant wave height forecasting using
wind speed and wind direction as inputs. The dataset used comprised 5-year measurements
of wave heights and wind parameters. The study compared the performance of regression
trees and ANNs on the same dataset. While error metrics slightly favored ANNs, the
authors argued that the regression tree was effectively faster and required less time to
build the model. In the same year, Günaydın [47] investigated the inclusion of more input
parameters and compared the performance of seven ANNs to predict significant wave
height. The author tested input combinations of meteorological data for wind speed, sea
level pressure, and air temperature and found that the best performing ANN was the one
including all data, with wind speed being the most influential.

Mahjoobi et al. [48] presented a comparison between ANNs, fuzzy inference systems
(FISs), and adaptive neuro-fuzzy inference systems (ANFISs) in their ability to predict wave
characteristics using inputs of wind speed, direction, fetch length, and duration. While
the three models showed high prediction skills, it was found that the ANFIS was slightly
more accurate than the other two. In 2011, Malekmohamadi et al. [39] carried out a similar
endeavor where they compared the performance of four ML techniques to predict wave
heights in Lake Superior, USA, based on records of wind speeds alone. They compared
support vector machines (SVMs), Bayesian networks (BNs), ANNs, and ANFISs. Results
indicate that ANNs, SVMs, and ANFISs provided similar accuracy with the ANN being
slightly better, while the performance of the BN was unreliable. Analogous efforts were
made by Berbić et al. [49], where they compared the performance of ANNs and SVMs
to forecast significant wave heights for the next 5 h using inputs of past wave heights
and wind. Both models generally showed equal accuracy; however, the SVM was slightly
more accurate for shorter lead times, whereas the ANN was better for longer lead times.
Kumar et al. [50] conducted a study to investigate the performance of two sequential neural
network learning algorithms, namely the Minimal Resource Allocation Network (MRAN)
and the Growing and Pruning Radial Basis Function (GAP-RBF), to forecast wave heights
using measured inputs pertaining to location, month, wind, temperature, water depth,
and previous wave heights. The performance of the MRAN and GAP-RBF were then
compared with the support vector regression algorithm and the Extreme Learning Machine
(ELM) and were found to be better in terms of accuracy. On the other hand, in 2022, a
study was conducted to predict the occurrence of extreme wave heights using several ELM
algorithms with meteorological inputs such as wind speed, direction sea level pressure,
and air temperature [51]. The proposed technique first classifies extreme waves as outliers
and other heights as normal. At that point, the ELM is trained on the detected outliers for
classification. Results were then compared with other classification algorithms, such as
logistic regression, decision trees, K-nearest neighbors, and MLP neural networks. It was
found that the radial ELM method produced the most accurate predictions of all classifiers;
nonetheless, it took a much longer run time compared to the other classification techniques.

Recently, Wei [52] undertook an intensive study to find the best amount of past input
data needed to accurately forecast wave parameters. Wei developed a convolutional long-
short-term memory (LSTM) model to predict three wave parameters: height, period, and
direction with lead times of 1 h, 3 h, 6 h, 12 h, 24 h, and 48 h. Each lead time was further
investigated with input to past data ratios of 1:1, 3:1, 5:1, and 7:1. The study included
nine input parameters for waves, wind, temperature, and atmospheric pressure. It was
concluded that the best predictions were obtained for shorter lead times with models
having an input to past ratio of 1:1. Figure 6 shows that points representing bigger lead
times are more dispersed around the line. The author clarifies that this behavior is probably
caused by using a simple logistic function as the activation function, since it may not be
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sufficient to resolve the high nonlinearity in wave processes when the lead time increases.
In the same year, Jörges et al. [53] designed an LSTM model for the time series prediction
of wave heights considering bathymetric data. The inputs of the model were water levels,
wind measurements, and a bathymetric transect of the research area of East Frisian Island
in the German North Sea. It was found that the inclusion of bathymetry increased the
performance of the LSTM by 16.7%.
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Nowcasting waves based on collected data from fixed devices such as accelerometers
also showed potential in wave characteristic estimates. Liu et al. [54] presented a one-
dimensional convolutional NN to estimate wave height and period from acceleration data
from accelerometers fixed on buoys. The approach statistically correlates acceleration data
to sea surface movements and outperforms the traditional numerical method of converting
acceleration into wave characteristics. Despite their novel methodology, the model was
not applied to real conditions. Continuing on the previous approach, Demetriou et al. [32]
proposed a method for the estimation of significant wave heights by monitoring meteoro-
logical data and the structural acceleration response of coastal structures. They developed
an ANN and decision tree ensembles to use the inputs of accelerometers fixed on the
bottom of a coastal jetty, together with wind speeds and direction, to nowcast incident
significant waves on the jetty (Figure 7). The study presents a novel method to exploit
the large number of existing structures by deploying monitoring devices onto them for
real-time estimation of impacting waves.

Ma et al. [55] investigated the performance of an ANN wave prediction model under
unknown seas. The ANN model was trained using a wave time series generated from
experimental wave tank tests. The experiment considered four sea states with different
significant wave heights and periods generated considering the JONSWAP spectrum.
The ANN model used consists of an input layer, three hidden layers, and an output layer
following the structure used by Duan et al. [56]. The input layer receives the wave heights of
a measured position and the output layer outputs the heights of a predicted position. First,
the ANN model was trained and tested on each sea state to measure its prediction accuracy.
The results displayed high accuracy with errors < 6%. The second step was training the
ANN model on one sea state and then using it to predict the wave heights of the other three
sea states. Training and testing the model on different sea states significantly increased the
error, which reached 24%. Ma et al. [55] mention that this poor performance was caused
by the varying data distribution of the different sea states owing to the misprediction of
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the model. To rectify this behavior, the authors resorted to using a mixed sea state dataset
to decrease the effect of varying data distribution, and the prediction ability improved
(errors of 15% under different sea states). It is suspected that the model could be further
improved if it were trained on additional features such as wave periods, wave direction,
and wind characteristics.
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Several other research studies have been conducted on the same flow path; however,
the availability of field data was the major barrier. Therefore, many researchers shifted
to using existing numerical models to generate data for model training and validation.
Combining ML and numerical models was used extensively. Malekmohamadi et al. [57]
generated artificial wind data to generate wave data using the WAVEWATCH3 model. The
authors argued that the ANN can capture the relations between wind and wave and can
thus be used for long-term wave estimation using real wind.

James et al. [16] developed a multi-layer perceptron model to simulate significant wave
height in Monterey Bay California, USA. The goal was to train the model by generating data
from simulations of the physics-based model SWAN based on historic wave, current, and
wind data. The developed model accurately replicated the wave conditions in the domain
and ran 4000 times faster than the SWAN model. In 2019, O’Donncha et al. [58] argued that
aggregating an ensemble of simulations using perturbed inputs into the SWAN model can
improve accuracy by transitioning from deterministic into probabilistic forecasting by con-
sidering the uncertainties in the forcing data. It was found that using the ridge regression
aggregation decreased the error by 47% compared to the single forecasting model.

Wang et al. [59] proposed a composite physics-informed neural network model (PINN)
to simulate wave fields using limited wave data generated from Xbeach and wave tank
experiments for training. The PINN model infuses the governing equations for wave
energy balance and dispersion relation into the NN as a loss function. The model was
also constrained against the wave heights and directions computed with Xbeach (focus
on steady wave fields without forcing of wind or currents). The model was assessed on a
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uniform barred beach and a 3D circular shoal experiment and showed sufficient accuracy
in reconstructing the entire wave field.

Wei and Davison [15] developed a convolutional neural network (CNN) model com-
posed of 16 hidden layers that can study the unsteady nearshore processes varying both
spatially and temporally. The model was trained on data generated from numerical simula-
tions of the SWASH model in a laboratory setup. The experiment included several coastal
processes, such as wave propagation, wave interaction with sand bars, wave–current in-
teraction, and unsteady rip currents. The CNN model was applied for estimating three
hydrodynamic parameters, namely the water surface elevation, cross-shore velocity, and
longshore velocity, and trained with pairs; i.e., it was fed by present values of the hydrody-
namic parameters and used to predict the next time frame. The model achieved significant
accuracy with a 22.5-times-faster computation than the SWASH model.

Another widespread approach is to use ML models as a complement to the numerical
models; i.e., the results of the numerical model are processed by the ML algorithm to
improve their accuracy. This is achieved by using the numerical model output as input to
the algorithm and the real observations as the targeted output (Figure 8). The downside
of this approach is the slightly higher computational cost required for post processing.
Chang et al. [60] improved the accuracy of predicting typhoon-induced waves using the
MIKE-SW model and ANN. Two wind parameters were included in the study: the wind
velocity field in the area, VNCEP, and the wind velocity of the typhoon, VRVM. Both winds
were used in the simulation of wave fields using the MIKE-SW model. The resulting wave
heights, HNCEP and HRVM, together with VNCEP and VRVM, were inputs to the NN.
The network was trained against measured wave heights resulting from 25 typhoons. The
proposed network had four input units, one hidden layer with nine neurons, and one output
neuron predicting wave heights. O’Donncha et al. [61] investigated a wave forecasting
ML ensemble model using simulations from the SWAN model. The proposed approach
depends on generating an ensemble of wave predictions for the next 48 h by inputting a
set of perturbed boundary conditions into the SWAN model. The resulting outputs were
integrated with observations with a set of weights minimizing the difference between
SWAN predictions and the observations. Likewise, Gracia et al. [43] achieved an average
error reduction of 36% by applying an ensemble average between a multi-layer perceptron
and gradient boosting decision tree. Their study is based on input variables found from
numerical modeling, such as wave height, wave period, direction, current velocities, and
time. These datasets are then to be trained against actual wave measurements from buoys
to provide corrections to the numerical model.
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Other studies used ML to train on the error of numerical models and observations and
then used this error to modify the numerical model output [31,62,63]. Makarynskyy [62]
attempted to improve WAM model output using an NN. Differences between the WAM
model and buoy observation time series were introduced as inputs to the NN, which
in turn predicted in advance the error of the leading 3 h and subsequently subtracted
from the WAM model for rectification. Results showed a considerable enhancement of
WAM prediction accuracy without the need to change the model settings. Continuing on
Makarynskyy’s work, Londhe et al. [63] developed an ANN to predict the error of wave
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heights estimated by numerical models 24 h ahead. The study proposed a methodology
to decrease the error of the numerical model MIKE-SW by forecasting the error and then
adding or subtracting it from the numerical model results. Inputs to the ANN were the
previous nine-step error to predict the next error in 24 h. Results show that forecasts
performed by the numerical model and then corrected by the ANN output error have a
significant improvement compared to the numerical model alone. Also, Ellenson et al. [31]
used the bagged regression tree method to predict the output error of the WAVEWATCH3
model. The inputs included significant wave height, mean wave direction, mean wave
period, wind magnitude, and wind direction. The model was trained and tested on
measurements from the U.S. West Coast in the period from 2012 to 2013. Results show
an overall improved prediction of 19%. However, when applied to measurements from
2015, the model showed poor performance. This resulted because the correlation features
of inputs used in 2012–2013 were different than in 2015, particularly in wind magnitude,
which further emphasizes that ML algorithms generally do not perform well when asked
to extrapolate beyond the scope of training data.

Table 2. Studies using ML techniques in wave modeling.

Author ML
Method Source of Data No of

Data
Training/
Testing%

Performance
Indicator * Inputs Outputs

Deo et al. [45] MLP NN Field
measurements 900 80/20 R Wind speed,

duration, fetch
Wave height,

period
Makarynskyy

[40] MLP NN Field
measurements 30,072 67/33 R, RMSE, SI Wave height, period Wave height,

period

Makarynskyy
[62] MLP NN WAM N/A 67/33 RMSE, R, SI

Past wave height
error, past

period error

Wave height
error, period

error
Mahjoobi

and Etemad-
Shahidi [46]

Decision
Tree

Field
measurements 13,243 76/24 Bias,

RMSE, SI
Wind speed,

direction Wave height

Mahjoobi
et al. [48]

MLP NN,
FIS,

ANFIS

Field
measurements 937 65/35 Bias, R, SI,

MSE, MSRE

Wind speed,
duration, fetch,

direction

Wave height,
period,

direction

Günaydın [47] MLP NN Field
measurements N/A 80/20 R, MSE,

MARE

Wind speed, sea
level pressure,

air temp
Wave height

Malekmohamadi
et al. [57] MLP NN WAVEWATCH3 N/A N/A R Wind speed Wave height,

period

Malekmohamadi
et al. [39]

SVM, BN,
MLP NN,

ANFIS

Field
measurements 399 86/14

Bias, SI,
RMSE,

MRE, R
Wind speed Wave height

Chang et al. [60] MLP NN MIKE_SW 5479 76/24 RMSE, R Wind speeds,
wave heights Wave height

Londhe
et al. [63] MLP NN MIKE_SW N/A 70/30 R, RMSE,

MAE, CE

Past wave height
error, past

period error

Wave height
error, period

error

Berbić et al. [49] MLP NN,
SVM

Field
measurements 13,140 65/35

R, RMSE,
RAE,

MAE, RRSE

Past wave heights,
wind speed Wave height

Kumar et al. [50] MRAN,
GAP-RBF

Field
measurements 22,852 88/12 R, RMSE

Latitude and
longitude, wind
speed, month,

temperature, water
depth, atmospheric

pressure, past
wave heights

Wave height
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Table 2. Cont.

Author ML
Method Source of Data No of

Data
Training/
Testing%

Performance
Indicator * Inputs Outputs

Kumar et al. [16] MLP NN,
SVM SWAN 11,078 90/10 RMSE

Wave height, period,
direction, wind
speed, currents

Wave height,
period

O’Donncha
et al. [61] MLP NN SWAN N/A N/A RMSE,

MAPE
Perturbed inputs

into SWAN Wave height

O’Donncha
et al. [58] MLP NN SWAN 11,078 90/10 MAPE Perturbed inputs

into SWAN Wave height

Liu et al. [54] CNN Field
measurements 128

5-fold
cross-

validation
MAE, MSE Buoy acceleration Wave height,

period

Duan et al. [56] MLP NN Wave tank
experiment N/A N/A RMSE,

NDRMSE Past wave heights Wave heights

Ellenson
et al. [31]

Regression
Tree WAVEWATCH3 20,250 60/40 RMSE, Bias,

SI, PI

Wave height, period,
direction, wind
speed, direction

Wave height
error

Wei [52] LSTM Field
measurements 17,543 68/32 RMSE, R2

9 parameters related
to winds, waves,

temp, atmospheric-
pressure

Wave height,
period,

direction

Wei [53] LSTM Field
measurements 7929 47/53

RMSE, MAE,
MAAPE, R,

R2

Water levels, wind
speed, wind

direction,
bathymetric

transects

Wave height

Demetriou
et al. [32]

MLP NN,
Decision

Tree

Field
measurements 51,444 70/30

Accuracy,
Markedness,

Fscore,
Kappa
statistic

Wind speed,
direction, jetty

acceleration
Wave height

Ma et al. [55] MLP NN Wave tank
experiment 10,000 80/20 RMSE,

NDRMSE Past wave heights Wave heights

Gracia et al. [43]
MLP NN,
Decision

Tree
N/A 97,483 80/20 MAE, R

Date, time, wave
height, period,
direction, wind

speed,
direction, currents

Wave height,
period,

direction

Mahmoodi and
Nowruzi [51] ELM Field

measurements 5060 75/25 Accuracy

Wind direction,
wind speed, sea

level pressure, air
temp, water temp

Wave height

Wang et al. [59] PINN Xbeach/
experiment 126 50/50 RMSE, R2 Location, direction Wave height,

direction

Wei and
Davison [15] CNN SWASH/

experiment 10,000 80/20 MASE, R2

Water surface
elevation,

cross-shore velocity,
longshore velocity

Water surface
elevation,

cross-shore
velocity,

longshore
velocity

* Correlation coefficient (R); Root mean square error (RMSE); Mean absolute error (MAE); Mean square error (MSE);
Mean relative error (MRE); Mean square relative error (MSRE); Mean absolute relative error (MARE); Scatter
index (SI); Coefficient of efficiency (CE); Coefficient of determination (R2); Mean arctangent absolute percentage
error (MAAPE); Persistency index (PI); Root relative square error (RRSE); Non-dimensional RMSE (NDRMSE).

3.2. Water-Level Fluctuations

Table 3 summarizes the main practices employed in surrogate modeling and fore-
casting of sea level fluctuations and storm surges. The objectives and algorithms used
differ between those studies. The input features used varied between meteorological data,
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storm features, tidal components, astronomical variables, and past sea level measurements.
Sztobryn [64] investigated the application of ANNs in surge forecasting using past inputs
of sea levels. He concluded that ANN performance is comparable to traditional methods
when a continuous input series is used for forecasting. Later, Lee [65,66] used input factors
such as typhoon center pressure, wind speed, wind direction, and harmonic analysis of
tidal levels and employed a backpropagation NN to predict the resulting storm surge levels
for short lead times. In 2007, Tseng et al. [67] compared four MLP models with varying
inputs to predict typhoon surge levels for short lead times of up to 3 h. The best model
included 18 input parameters for typhoon characteristics and meteorological conditions
for present and previous times. Rajasekaran et al. [68] used the same input parameters
as Lee [65] to compare the performance of a finite-volume numerical model, neural net-
work, and SVM regression. The study concluded that the SVM was superior in terms of
accuracy and computational effort. On the other hand, a later study [69] found that SVMs
and ANNs had similar accuracy when compared together to predict the surge level due
to tropical storms. The models were trained using 1026 synthetic storms simulated on
multiple software such as WAM, STWAVE, and ADCIRC. The performance of SVMs and
ANNs were similar except that the ANN was better at predicting extreme events. The
study also investigated the minimum number of data needed for model training, which
was found to be at least 300 storms for an acceptable accuracy.

Jia and Taflanidis [70] used a Kriging model to predict storm surges and wave heights
at a large geographical area around the islands of Hawaii with a real-time risk assess-
ment. The study utilized synthetic training data from numerical models and used principal
component analysis (PCA) to decrease the number of output points and improve com-
putational efficiency. This is performed under the assumption of spatial and temporal
correlation between the output points. The study demonstrated that using PCA to decrease
output dimensionality significantly reduced memory demands but with a slight decrease
in accuracy. Furthermore, a comparison between the Kriging model and moving least
squares response [71] showed a similar performance in terms of accuracy but a favorable
computational efficiency for the Kriging model. Subsequently, Kim et al. [72] developed
an ANN to predict a time-dependent storm surge and storm inundation estimation in
advance of storm landfall. The study showed that the surrogate model accurately fore-
casted a time-series of storm surges before landfall; however, accuracy decreased after
storm landfall. Also, a decrease in accuracy was found at inland locations where complex
structures were found, such as inland marshes and lakes. In advance of the previous
studies, Jia et al. [73] examined the Kriging surrogate model combined with PCA to pro-
vide an accurate real-time time series and peak surge levels with reduced computational
resources. The study included a correction stage to address dry/wet nodes during some
storms. Later, Lee et al. [74] designed a new surrogate model to predict peak storm surges
in coastal regions by employing tropical cyclone track time series. The model depends on a
one-dimensional convolution neural network for the consideration of the track time series
and consists of K-means clustering and PCA to increase computational efficiency. The
authors trained the model with 1031 synthetic storms, including landfalling and bypassing
storms to consider all possible sources of surges.

Bass and Bedient [75] developed a surrogate model to predict the combined effect of
rainfall runoff and peak storm surges resulting from tropical storms over a wide coastal
area. They utilized the outputs of numerical models of 223 synthetic storms to provide
joint surge estimates and probabilistic distribution in the watershed area. The study also
compared the performance between an ANN and Kriging model and showed that the latter
was more accurate. The authors state that the Kriging model is better suited to learning
spatial information since it considers the covariance between input features and the output.
Another comparative study was carried out to assess the performance of ANN, Kriging,
and support vector regression models [76] on tropical storm surge prediction. Although it
was evident that the target surge height can significantly affect the accuracy of the surrogate
model, ANN and Kriging models showed a consistent performance in contrast to the SVR
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method. The Kriging method also displayed consistent conduct and accuracy when trained
with a small dataset, as opposed to the ANN and SVR.

Riazi [77] used an NN for tidal level estimation. The network has four input neurons,
three for astronomical factors and one for geology, geomorphology, and biological factors
combined. Although this study takes into consideration the effect of geomorphological
factors, their inclusion is only limited to one input value and is calculated as a bias term
to adjust the tidal levels in the model. The author used a genetic algorithm to obtain the
value of this neuron weight. Compared to a set of recorded tidal levels at six locations,
the model showed a reliable and accurate performance, even though the effect of sea
level rise was neglected. Similarly, Ishida et al. [78] used astronomical features such as
moon and sun positions, along with other variables, to estimate an hourly time series
of sea level change taking into consideration the effect of global warming on the sea
level. The study was conducted by an LSTM NN and applied to a dataset of 39 years.
The model showed that it could accurately predict hourly fluctuations along with the
timings of monthly fluctuations; however, peak values of sea levels were underestimated.
Alternatively, Accarino et al. [79] relied on previous time series of sea levels to give a three-
day prediction at specific locations using LSTM. The authors employed a multimodal LSTM
in which two independent networks were used. Each network was trained with different
time steps in the time series and used to predict the following three days. Then outputs of
both models were concatenated to obtain the best accuracy. Although it was shown that
the prediction quality decreased for the later days, the multimodal LSTM performed better
when compared to the SANIFS forecast model. Guillou and Chapalain [33] compared the
performance of multiple regression methods based on linear and polynomial functions and
an artificial neural network (ANN) for the prediction of water levels in the Elorn estuary in
Landerneau, France. Input variables considered were French tidal coefficients, atmospheric
pressure at mean sea level, wind velocity, and river discharge. The model was trained
against successive high tides. Results show that the best estimates were predicted for the
multiple polynomial regression of the second degree and the multi-layer perceptron with
three hidden layers and five neurons per layer.

Additionally, multiple efforts were undertaken to increase the accuracy of the devel-
oped surrogate models. Zhang et al. [80] developed a systematic methodology to assess the
addition of new synthetic storms for model training to increase the forecasting accuracy.
The study employed a Kriging model for storm surge estimation. An adaptive selection
procedure was used to identify storms whose addition to the training dataset would likely
increase the prediction accuracy using the least number of synthetic storms, thus increasing
computational efficiency. This selection procedure is accomplished iteratively, where new
storms are tested and the Kriging model is retuned and evaluated. The study also addressed
storm intensification and sea level rise for future extrapolation by giving larger weights to
more intense storms. Kim et al. [81] proposed a methodology to systematically select the
best parameters to develop a NN for sea level forecasting. The objective of their study was
to determine the best-performing model by changing the combination of input parameters
and the number of hidden units in a single hidden layer. The inputs were combined into
12 combination sets. Several models were developed for each set of inputs based on varying
hidden units and randomized weights and biases between the units. A total of 957 models
were explored to settle on the best performing model to predict 5, 12, and 24 h lead forecast-
ing times. Although the authors mentioned that their procedure is novel, their technique
is a brute force method. More recently, Kyprioti et al. [82] found that parameterizing the
inputs to the nearest point to the domain of interest instead of landfall as a reference point
could be a better representation and increase model accuracy. The study also investigated
the concern of overfitting as a result of limited training instances. They maintained that a
parametric analysis should be performed to measure the model accuracy given the number
of retained variables, especially when using principal component analysis.
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Table 3. Studies using ML techniques in sea level modeling.

Author ML
Method Source of Data No of

Data
Training/
Testing %

Performance
Indicator * Inputs Outputs

Sztobryn [64] MLP NN Field
measurements N/A N/A R, RMSE Sea levels, wind

speed, direction
Storm surge

elevation

Lee [65] MLP NN Field
measurements N/A N/A R, RMSE

typhoon center
pressure, wind

speed, wind
direction, and

harmonic analysis
of tidal

Storm surge
elevation

Tseng
et al. [67] MLP NN Field

measurements 16 75/25
R, CE, error of

surge peak, error
of peak time

5 typhoon
characteristics and
4 meteorological

conditions for
present and

previous times

Storm surge
elevation

Lee [66] MLP NN Field
measurements N/A 50/50 R, RMSE

Typhoon center
pressure, wind

speed, wind
direction, and

harmonic analysis
of tidal

Storm surge
elevation

Rajasekaran
et al. [68]

MLP NN,
SVM

Field
measurements 72 50/50 RMSE

Typhoon center
pressure, wind

speed, wind
direction, and

harmonic analysis
of tidal

Storm surge
elevation

Jia and
Taflanidis [70] Kriging ADCIRC,

SWAN 563 70/30 R2, AME

Landfall location,
angle of landfall,
central pressure,
forward speed,

radius of max wind,
tide level

Storm surge
elevation,

wave height

Kim et al. [72] MLP NN ADCIRC,
STWAVE 446 70/30 R, MSE

Latitude and
longitude, heading
direction, central
pressure, forward
speed, radius to

max wind

Storm surge
elevation

Jia et al. [73] Kriging ADCIRC,
STWAVE 446

Leave-
one-out

cross-
validation

R2, AME, AMSE

Latitude and
longitude, heading
direction, central
pressure, forward
speed, radius to

max wind

Storm surge
elevation

Hashemi
et al. [69]

MLP NN,
SVM

NACCS’s
model 70/30 MSE, R

Central pressure,
wind radius,

forward velocity,
storm track

Storm surge
elevation

Bass and
Bedient [75]

MLP NN,
Kriging

HEC-HMS,
HEC-RAS,
ADCIRC,

SWAN

223
10-fold
cross-

validation
R2, RMSE, AME

Central pressure,
radius to max wind,

forward speed,
angle of approach,

longitude

Joint
rainfall

flooding +
storm surge
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Table 3. Cont.

Author ML
Method Source of Data No of

Data
Training/
Testing %

Performance
Indicator * Inputs Outputs

Zhang
et al. [80] Kriging ADCIRC,

STWAVE 595

Leave-
one-out

cross-
validation

R, R2, RMSE

Latitude and
longitude, heading
direction, central
pressure, forward
speed, radius to

max wind

Storm surge
elevation

Kim et al. [81] MLP NN Field
measurements 460 75/25 R, NRMSE

surge level, sea level
pressure, drop of sea
level pressure, wind

speed, wind
direction, central

pressure, longitude
and latitude

Storm surge
elevation

Al Kajbaf and
Bensi [76]

MLP NN,
Kriging,

SVR
ADCIRC 1031 70/30 R, RMSE,

MSE, MAE

Latitude and
longitude, heading
direction, central
pressure, forward
speed, radius to

max wind

Storm surge
elevation

Ishida
et al. [78] LSTM ERA5 dataset N/A 67/33 RMSE, NSE

Wind speed, wind
direction, mean sea
level pressure, air
temperature, and
four variables of

moon and
sun position

Sea level

Riazi [77] MLP NN Field
measurements 130,584 71.6/28.4 MSE

Moon position,
Earth position and
rotation, geology

and geomorphology
factors

Tide level

Kyprioti
et al. [82] Kriging ADCIRC 156

Leave-
one-out

cross-
validation

NRMSE,
misclassification

index,
surge score

Latitude and
longitude, heading
direction, central
pressure, forward
speed, radius to

max wind

Storm surge
elevation

Accarino
et al. [79] LSTM Field

measurements N/A 80/20 R2, RMSE Past sea levels Sea level

Guillou and
Chapalain [33]

Multiple
regression,
MLP NN

Field
measurements 1536 70/30 MAE, RMSE, R2

French tidal
coefficients,
atmospheric

pressure,
wind velocity,

river discharge

Sea level

Lee et al. [74] CNN ADCIRC,
STWAVE 1031

10-fold
cross

validation

RMSE, mean
bias error

Latitude, longitude,
heading direction,
central pressure,

radius of
maximum winds,
translation speed

Storm surge
elevation

* Correlation Coeff. (R); Root mean square error (RMSE); Mean square error (MSE); Absolute mean error (AME);
Coeff. of determination (R2).
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3.3. Morphology Change

The ML algorithms were also used extensively in the field of sediment transport
and morphological changes. As with previous cases of wave and water-level variability
studies, the availability and increase in collected datasets paved the way for scientists
to engage with ML in coastal sediment studies. The motivation is to provide a more
reliable and accurate predictor, substituting the long computational hours demanded by
the morphological models.

Applications such as sediment transport rates, sediment properties, morphological
changes of beach profiles and shoreline, and integration of ML in physics-based numerical
models were all investigated and showed promising, if not superior, results compared to
the traditional techniques. Goldstein et al. [41] comprehensively reviewed the ML models
currently used in coastal sediment transport and morphodynamics. The review mentions re-
search applications in sediment transport, morphology models, and hybrid morphological
models. The reader is certainly advised to review this article for more insights.

Since then, numerous research studies have been performed in line with the previously
mentioned topics that highlight the capabilities and reliability that these models have set
forth since their synthesis. A summary of these studies is presented in Table 4. Shafaghat
and Dezvareh [83] used an SVM for classification and regression of sediment transport
rates measured from the coasts of Hormozgan province in Iran. The optimization of SVM
parameters was carried out using the RBF kernel, resulting in better accuracy than the
linear and polynomial kernels. The authors further investigated the results of Kamphuis’s
empirical equations [84,85] and compared them with the performance of the SVM and MLP
models. It was found that the Kamphuis equations produced an overestimated transport
rate, while the SVM and the MLP models were more accurate. Although the SVM and the
MLP models had marginal differences, the authors mention that using an SVM is preferable
because it requires less training time. Additionally, in cases of limited datasets, an SVM can
often perform better than an MLP, which needs large datasets for parameter fitting [86].
Similar results were found in an earlier study [87] in which they implemented the same
models and found that the SVM was 4% more accurate than the MLP in reproducing
sediment transport rates.

Phillip et al. [88] developed an ensemble ML method called Bayesian Optimal Model
System based on staking multiple algorithms [89] into one system where the final output
is a probabilistic estimation of the ripple wavelength. The system is based on two ML
algorithms, Gradient Boosting Regressor and XGBoost Regressor, and two empirical equa-
tions adopted from [5,90]. Their output is then passed to a Bayesian Linear Regression
model that computes the posterior probabilistic distribution of the ripple wavelengths.
The study utilized a dataset of more than 50 years compiled through field and labora-
tory studies of wave-induced ripples. The developed system provided better predictions
than each independent base model alone. Previously, Goldstein et al. [91] used a similar
dataset for wave ripple prediction. They used genetic programming to estimate the ripple
wavelength, height, and steepness under the action of waves. Most notably, the authors
employed a maximum dissimilarity algorithm to select the most dissimilar centroids of
the data, representing the variance in the dataset. This results in minimum training data
while leaving most of the data points available for testing and validation. Employing this
technique allowed the authors to use only 6% of the data for training, incredibly less than
any other study.

The determination of suspended sediment concentration was also explored using
data-based/artificial intelligence techniques. Makarynskyy et al. [92] used an ANN to
combine the modeling of waves and hydrodynamics with measured suspended sediment
concentrations. The HYDROMAP and SWAN models were used to calculate the parameters
of waves and hydrodynamics using tides and waves. Suspended sediment concentrations
from two different sites were then combined to train the model. Although results were
promising, this model was site-specific due to underlying assumptions and narrow data
range. Zhang et al. [93] also explored suspended sediment concentration by comparing
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multiple data-driven techniques. They implemented the least absolute shrinkage and
selection operator (LASSO) with a proposed temporal correlation on a large dataset for
the Bohai Sea in China, taking into consideration hydrodynamic parameters to give 1-h
forecasts. The performance of the LASSO model was then compared with classification
and regression tree (CART), SVR, and MLP. Although the LASSO technique had the best
accuracy, the differences between the models were nominal. However, incorporating
a one-order autocorrelation for the suspended sediment concentration resulted in an
improved accuracy for all the methods studied. Stachurska et al. [94] also investigated
the CART method for the determination of non-cohesive sediment velocity. The purpose
was to determine the wave-induced sandy sediment velocity over a rippled beach by
incorporating the outcome of particle image velocimeter and conditional characteristics
regarding waves and bed morphology. The authors employed two metaheuristic methods,
PSO and SPBO, for parameter optimization. Running the meta-heuristic optimization
increased computational time; however, it significantly increased the desired accuracy. They
further made a comparison between CART and ANFIS for the accuracy of sediment velocity
determination and concluded that the CART method was superior to the ANFIS method.

Bujak et al. [95], on the other hand, focused on the spatial variability rather than the
temporal changes. The authors developed an MLP model to predict the required gravel
nourishment volume along the Croatian shore. The study indirectly included the forcing
of waves through the fetch length and beach orientation. It was found that among basic
features such as beach area and length, fetch length had a significant effect on the ANN’s
predictability. Nonetheless, the model displayed both overprediction and underprediction
on several sites along the Croatian coast, with relatively high errors in some places; however,
the authors argue that these errors are acceptable since they are within 10% of the required
nourishment range. Another nourishment study investigated beach profile and erosion
tendencies by using different nourishment techniques [96]. The study was undertaken in
an experimental wave flume with four cases of nourishment, each with two sea levels. The
results of the experiments were then fed to a backpropagation NN to replicate the results.
Nonetheless, the results of the ANN were not significant due to the limited available
training data, which affirms the underlying limitation that ML is only effective with large
datasets. Conversely, Kumar and Leonardi [97] trained an ensemble of NNs on more than
500 Delft3D simulations to apply mega-nourishment projects, otherwise known as sand
engines, in Morecambe Bay, UK. The purpose was to develop a decision support system
with optimized modeling to provide an operational framework for the assessment of sand
engines and evaluate their effects on the nourished area. The authors used an ensemble of
eight ANN models combining both Recurrent Neural Networks and Feed-Forward Neural
Networks. They utilized simulations from Delft3D with varying sand engine designs and
fed them to the ML ensemble for the mean and maximum prediction of water depth, wave
height, and sediment transport both before and after the nourishment.

Similarly, Simmons and Splinter [9] utilized a large dataset of 39-year beach tran-
sects on the Sydney coastline to compare different modeling approaches in simulating
storm-induced erosion. They compared the errors of an empirical model developed by
Harley et al. [98], the SBEACH numerical model, the XBEACH numerical model, and an
MLP neural network model. The performance of each model was assessed based on the
beach dataset composed of moderate to large storm events. While the MLP model had the
best accuracy among the four models, an ensemble method of averaged weights of the four
models provided the best skill across all storms studied and the most accurate performance
above any separate model. On the other hand, Melo et al. [99] attempted to solve a full
2D morphological domain, not just transects, by replicating the morphological evolution
of complex coasts involving a groin and a breakwater by using a hybrid technique. To
reduce the computational cost of Xbeach to compute morphological evolution, the authors
developed an emulator of the morphological module capable of reproducing images of
current and cumulative bed level changes. Images of hydrodynamic numerical simulations
were fed into the network for morphology computation. The network architecture, adapted
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from Melo et al. [100], is composed of U-nets and recursively deconvolutional branched
networks to map the features of input images. These input images were the discretized
spatial domain of mean velocity and bed shear stresses resulting from the hydrodynamic
simulation. The resulting hybrid technique reduced the overall simulation time by 23% for
a high-resolution domain and 87% for a low-resolution domain, indicating that the hydro-
dynamic simulation had the most restrictions for the performance gain. The results of the
morphology network were very promising. Nonetheless, cases of erosion underestimation
were found near the groin structure. The authors relate these errors to the lack of sufficient
training instances.

Santos et al. [101] attempted to study the dune changes on Dauphin Island, northern
Gulf of Mexico, during storms using statistical methods. They implemented synthetic
storm generation following Wahl et al. [102] and used the 2D Xbeach model to generate
the training cases for the surrogate models with varying storm conditions. Multiple
Linear Regression, ANN, Random Forest, and Multivariate Adaptive Regression Spline
(MARS) methods were all trained on the storm conditions and the post-storm profiles
of 200 transects along the island’s coast. The ANN and MARS showed comparable and
superior performance across all the cases, proving that these models can indeed act as
surrogates for the physics-based models. However, the performance of the developed ANN
and MARS were bound by the pre-storm profile, making their application site-specific.
Athanasiou et al. [103] attempted to overcome this localized issue by incorporating a pre-
storm nearshore slope as an input to the ANN. They trained the ANN on profiles simulated
from the 1D Xbeach model. The inputs to the ANN were a combination of pre-storm
conditions, waves and morphology, and storm conditions. Although the study realized
some simplifying assumptions such as a 1D model, shore-normal waves, and sediment
size, the inclusion of pre-storm morphological conditions increased the prediction accuracy
of the model to 94% in terms of detecting erosion occurrence, with a skill score of 0.82 in
estimating erosion quantity, and arguably did not restrict the model to a specific location.
Itzkin et al. [104] also studied dune morphology by using an NN in conjunction with a
genetic algorithm to optimize the calibration process of the Windsurf model. The Windsurf
model would then produce a set of hindcasts upon which an LSTM neural network would
use, along with associated forces such as waves, tide, and wind, to produce a 5-year
forecasting of dune morphology. This work frame improved the calibration process used
to generate training instances for the LSTM. As such, the LSTM was shown to predict the
dune changes with good accuracy when the changes were close. Nonetheless, the model’s
performance was lacking when it attempted to forecast an “out of sample” instance, such
as Hurricane Florence. This behavior confirms the widely accepted consensus that ML
methods do not extrapolate well out of the range [41,105].

Perhaps one of the most comprehensive studies performed in this regard was by
Montaño et al. [106]. They carried out a contest of 19 different models to test their ability
to predict shoreline changes. The models were a mixture of traditional models relating to
different formulations of equilibrium transport rates and ML models, such as MLP, LSTM,
Bayesian networks, K-nearest neighbors, and Random Forests. The aim was to test each
model performance on 18 years (1999–2017) of daily averaged shoreline position in Tairua
beach, New Zealand. The models were trained and validated on data from years 1999 to
2014 and then tested on the remaining three consecutive years. It was found that almost all
models captured shoreline oscillations that happened on the order of 3 months. Traditional
models had a smoother prediction trend than ML, meaning that they often underestimated
extreme erosion events. ML techniques, on the other hand, were capable of detecting
sudden erosion/accretion events not captured by traditional models. However, these ML
models were more susceptible to other localized errors. In this regard, both modeling
approaches complement each other owing to the inductive/deductive nature of the ML
and traditional models, respectively. The authors concluded that an ensemble method,
combining both approaches, produces the best accuracy compared to any single model.
This conclusion was also shared by previously mentioned studies [9,58,61,88,97].
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Table 4. Studies using ML techniques in morphodynamics modeling.

Author ML Method Source of Data No of Data Training/
Testing %

Performance
Indicator * Inputs Outputs

Goldstein
et al. [91]

Genetic
Programming

Field
measurements,
Experiments

995 6/94 NRMSE, R

D50, mean
wave period,

wave amplitude,
water depth

Suspended
sediment

concentration

Makarynskyy
et al. [92] MLP NN

Field
measurements,
HYDROMAP,

SWAN

1059 75/25 NRMSE,
MRE

Suspended sediment
concentration,

current velocity,
wave height, period,

direction, bottom
wave orbital velocity

Suspended
sediment

concentration

Santos
et al. [101]

MLRM, MARS,
MLP NN,

Random Forest
XBeach 20,000 70/30 R, RMSE,

STD

Significant wave
height, wave period,
direction, tide level,

total water level

Dune toe
elevation, crest
elevation, area

across cross
profile, barrier
island width,

dune toe
location, dune
crest location

Dezvareh and
Shafaghat [87] SVM, MLP NN

Field
measurements,

LITDRIFT
32,949 90/10 R2, RMSE

Wave height, period,
direction,

sediment size

Sediment
transport rate

Montaño
et al. [106]

MLP NN,
LSTM, BNN,

K-NN, RF

Field
measurements

18 years
of daily

frequency
N/A R2, RMSE,

skill
N/A Shoreline

position

Bujak et al. [95] MLP NN Field
measurements 228 70/30 MSE

Beach area, beach
length, beach

orientation, fetch
length, gravel size,

wind intensity,
tidal range

Nourishment
volume

Kim and
Aoki [96] MLP NN Experiments 8 75/25 RMSE, MAE,

MSE

Cross-shore distance,
initial profile, time,
height, period, case,

sea water level

Change of
profile

Shafaghat and
Dezvareh [83] SVM, MLP NN Field

measurements 63,360 90/10 R2
Wave height,

period, direction,
sediment size

Sediment
transport rate

Zhang
et al. [93]

LASSO, CART,
SVR, MLP NN

Field
measurements N/A

10 fold
cross

validation
RMSE, MAE

Water depth, flow
speed, wind speed,

wave height,
wave period

Suspended
sediment

concentration

Athanasiou
et al. [103] MLP NN XBeach 12,540 80/20

Skill score,
Bias, RMSE,

Mielke index

Max dune volume,
beach volume, beach
width, beach slope,

nearshore slope,
wave height, period,
wave energy, storm
surge level, angle of

incidence, mean
high water level

Dune
erosion volume

Itzkin
et al. [104]

MLP NN,
LSTM

Field
measurements,

Windsurf
2783 60/40 RMSE, BSS

Vegetation friction,
vegetation density,
Aeolian transport

coeff., wave
asymmetry, wave
skewness, critical
slope, bed friction
coeff., alongshore
transport gradient

Dune crest
height, dune
toe elevation

Phillip
et al. [88]

Gradient
Boosting

Regressor,
XGBoost,
Bayesian

Regression

Field
measurements,
Experiments

3499
10 fold
cross

validation

R2,
RMSE, Bias

Grain size, wave
period, water depth,

semi-orbital
excursion,

ripple height

Ripple
wavelength
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Table 4. Cont.

Author ML Method Source of Data No of Data Training/
Testing %

Performance
Indicator * Inputs Outputs

Simmons and
Splinter [9] MLP NN Field

measurements N/A Cross-
validation NMSE

Wave height, wave
direction, wave

period, wave power,
wave runup, impact
hours, astronomical
water level, storm

duration, pre-storm
beach width, beach

volume, beach slope

Change in
beach width,

erosion volume

Stachurska
et al. [94] CART, ANFIS Experiments 1200 85/15 RMSE, R2,

NSE

Wave period, wave
height, ripple length,

ripple height,
thickness of

bottom layer,

Sediment
particle velocity

Melo et al. [99] CNN XBeach 204 80/20 RMSE, ME

Generalized
Lagrangian mean
velocity, bottom

shear stress

Current bed
level change,
cumulative
erosion, and

sedimentation

Kumar and
Leonardi [97]

RNN, MLP
NN Delft3D 552 90/10 Regression,

MAE, STD

Sand engine height,
sand engine radius,

wave height,
distance between
sand engine and
boundary, angle

of coastline, depth
average velocity

Water depth,
wave height,

sediment
transport

* Standard deviation (STD); Brier skill score (BSS); Normalized root mean square error (NRMSE); Mean error (ME).

4. Discussion

A variety of studies applying a range of ML tools in coastal engineering were examined,
particularly in the subfields of wave modeling, water level fluctuations, and morphology
change. It can be seen from the summary tables and Figure 9 that the most used ML method
is the NN. Nearly 60% of the reviewed articles avail to NNs to resolve the relationship
between inputs and the intended outputs. Clemente et al. [107] found a similar percentage
when reviewing applications of ML in wave energy conversion. This could be due to the
versatility of the NNs to detect implicit relationships between dependent and independent
variables. Neural networks also generally require less training effort compared to other
techniques [108,109], which can make them more appealing to researchers.

There are several types of NNs. This review identified five variations of NNs applied
to the coastal engineering field. Figure 10 shows that the most commonly used variation
among the reviewed articles was the MLP. Nearly three-quarters of the research that chose
to work with NNs resorted to MLP. This could also be explained by the simplicity of the
MLP compared to other types. Although LSTM, a type of RNN, showed great capability to
model time-dependent processes, it accounted for only in one-tenth of the research. Despite
the fact that this technique was formulated nearly three decades ago [110], its application
to coastal engineering has only been seen recently and is expected to increase due to its
memory-retaining capabilities, which makes it useful for temporal problems.

As model development depends highly on the quality of the past data used for training,
it is imperative to use reliable data sources. Figure 11a summarizes the source of data
used for model training. Nearly half of the articles used either field data alone or in
conjunction with other data types. This majority is logical since researchers aim to train the
ML models to mirror physical processes as accurately as possible, which means that these
models should see the realistic historical trends of these processes. Data generated from
numerical models were also used extensively, about 40% of the time. This was seen to be
due to two reasons: (i) field measurements are generally harder to obtain, which motivates
researchers to resort to established numerical models to generate sought data, and (ii) many
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of these articles aimed to partially or fully substitute the numerical models in certain aspects
to increase computational speed, thus training the models on the same numerical output.
Laboratory experiments, on the other hand, were not part of a significant number of studies.
They neither fully reflect the realistic processes, nor do they stand to be substituted by
other techniques. Given this understanding, it is expected that field measurements and
numerically generated data are the main sources for model development. Figure 11b shows
the combinations of utilized data sources. It is also clear here that the most used are the field
and the numerical data alone. It was seen in the review that researchers would occasionally
combine data from several sources to enlarge the training pool. However, only a small
percentage of research resorted to combined data sources.
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Figure 10. Frequency of used types of NNs.

Looking at the quantity of data utilized by each study to train and validate the
developed models, one can see a large variation in data instances among them. Figure 12
displays the total number of instances and the number of features used to develop the
models in the reviewed research. Most studies ranged from 100 to 100,000 instances divided
between training, validation, and testing. Given this high variability in training instances
and the different performance-measuring metrics that were used among the reviewed
articles, it is hard to pinpoint the exact impact that the quantity and quality of the utilized
data had on accuracy. Most of these studies were limited by the available data. The
determination of the required training size is highly dependent on the problem at hand and
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the sought accuracy. It is hard to map a relation between the number of variables and the
required data to yield an acceptable accuracy for each case. It is generally acknowledged
that more training data is beneficial for the development process since it gives the model a
chance to learn from a wider spectrum. However, since acquiring substantial data is often
a limiting issue, it is often a question of the minimum data needed to yield a noteworthy
performance. In this case, special care should be given to improve the data quality, namely
avoiding the presence of noise and outliers in the dataset. Nonetheless, this would raise
the risk of overfitting [82,83]. Hashemi et al. [69], for example, concluded that at least
300 instances were needed to train their model for an acceptable precision. This conclusion
was possible after trial and error, which is still the only way to provide clarification of
a specific sample size. On the other hand, Juan and Valdecantos [29] cite that 6000 data
instances are needed to perform a short-term prediction accurately. Beuzen et al. [111]
investigated shoreline recession using Bayesian networks and concluded that the amount
of data needed is highly dependent on the complexity of the network and the sensitivity of
the case. Therefore, providing a guideline for the complexity of the model and the amount
of data needed is a persistent issue that needs to be addressed in future research.
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Another ambiguous matter is the appropriate number of input parameters needed for
each case. It is not clear if increasing the input features would yield better performance.
It was seen that some models used as few as one or two inputs, relying on historical
trends for their predictive ability, while others used as many as 12 parameters trying to
mimic physical models to map the relations between the input features and the outcome
resulting in a high dimensionality and complex models. Still, this could also result in
overfitting [32,44]. This is especially true when the data are not enough to account for all
input combinations, resulting in a spurious fitting and a decreased predictive skill [111], in
which case, researchers resort to some techniques to reduce overfitting, such as stopping
training once validation gets worse, introducing weight penalties in the model, or using
dimensionality reduction tools such as PCA.

5. Challenges of Using Machine Learning in Coastal Engineering

The challenge of limited training datasets in coastal engineering is multifaceted. While
certain coastal areas are actively monitored and possess substantial historical data, these
datasets might not cover the diversity of conditions found across all coastal zones globally.
For example, sandy coastlines comprise only about a third of the global ice-free coasts [112].
The potential challenges of transfer learning of ML models in coastal applications become
apparent due to the significant spatial variability and diverse coastal landforms present
along global coastlines. ML models trained on data from a specific coastal area may struggle
to generalize well to new areas with different characteristics. Therefore, when applying a
pre-trained model to a new coastal zone, it is crucial to evaluate whether the environmental
features of that area align with the training data. This consideration underscores the
importance of ensuring the representativeness of the training dataset by incorporating
diverse data that capture the variability inherent in various coastal environments. Without
sufficient diversity in the training data, the performance of the ML model may be limited
when applied to new and unseen coastal zones, potentially leading to inaccurate predictions
or suboptimal outcomes. Thus, addressing these challenges requires careful attention to
dataset curation and model evaluation to ensure the robustness and generalizability of
ML-based solutions in coastal applications.

Consequently, to train ML models effectively, scientists and engineers often need to
resort to alternative methods, such as using existing numerical models or experimental
setups to generate synthetic training data as seen in the previous section. However, the
effectiveness of the ML models hinges on the quality and representativeness of the data.
If the training data is incomplete or skewed, it will lead to suboptimal performance. This
necessitates a careful prior processing of the data and constant validation against real-world
observations. The recent surge in remote sensing and satellite monitoring technologies
can substantially alleviate this challenge [1]. The volume of data generated by these
technologies, characterized by large spatial and temporal scales and high resolution, opens
up new possibilities for leveraging multidimensional and nonlinear datasets for machine
learning applications. The challenge now shifts to extracting meaningful insights from this
vast and complex data landscape. To aid in this challenge, data filtration, normalization,
and database unification become imperative. Shahri et al. [113] present an automated
method for processing large datasets and unifying databases.

Additionally, the challenge lies not only in the quantity and quality of the data but
also in the selection of input variables. The challenge of selecting suitable input parameters
for ML models in coastal engineering is essential for achieving accurate predictions. This
requires a clear understanding of the underlying system dynamics. Identifying the key
parameters that capture the complexities of the studied coastal engineering case is an itera-
tive process and involves domain expertise to recognize the relevant features influencing
the system.

The question of which ML technique to use for a specific task also introduces complex-
ity. Coastal processes are highly dynamic and involve complex interactions. Selecting the
most suitable ML algorithm is a critical decision in the modeling process. The challenge
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is to match the characteristics of the coastal engineering problem with the strengths and
weaknesses of different algorithms. Different tasks, such as storm surge prediction or
sediment transport modeling, may benefit from distinct ML methodologies. Predicting
beach erosion might require a different ML approach than predicting wave patterns, for
instance. This decision is influenced by factors such as the nature of the data, the complexity
of the problem, and the desired outcomes. The challenge is to navigate this landscape
effectively, experimenting with different algorithms and iteratively refining the approach
to find the one that provides the most efficient and accurate representation of the specific
problem at hand. It is nearly impossible to know which ML technique is best suited for a
given problem, except through trial and error or inferring from others’ work. Even then,
different data structures or a desired outcome of the same problem could benefit from
different methods. Techniques such as Bayesian networks, Gaussian-based models, and
ANNs can be first explored if the user is looking for a probabilistic answer for a problem. If
the problem is classification based, then decision trees and SVMs can be employed. For
problems that depend on multiple parameters and smooth or continuous outputs, ANNs,
genetic programming, and ANFISs can be used.

These challenges and knowledge gaps require further examination by future research.
Conducting benchmarking studies and comparative analysis on different ML models can
help elucidate these topics. Goldstein et al. [41] advocate making coastal ML research more
transferable and reproducible. They present some practices for researchers to follow which
would help reach this goal, some of which include making datasets available, providing the
weights of the model, mentioning the data-splitting technique, and defining the metrics for
model testing. These practices allow others to reproduce, compare, and critique different
models, eventually resulting in the buildup of knowledge.

6. Conclusions

The application of machine learning in coastal engineering presents a transformative
potential for how coastal processes are understood and modeled. Traditional empirical and
numerical models have served as the backbone for simulating coastal processes, offering a
blend of precision and effectiveness. However, the increasing complexity and computa-
tional demands of these models have catalyzed a shift towards data-driven techniques that
have the potential to substitute traditional techniques in the future. The review highlights
the growing preference for ML techniques in coastal engineering applications, especially in
the areas of wave pattern prediction, water level fluctuation, and morphology change. This
is by no means an exhaustive list of all the articles published in this regard, nor all available
ML algorithms. This article intends to showcase the recent advancements made in the field
and the capacity of different ML techniques to leverage vast amounts of data to simulate
complex coastal phenomena with greater efficiency and reduced computational costs. Also,
there is no doubt that as newer algorithms emerge, they will continue to be applied in
coastal research, which might overthrow all the challenges currently experienced.

ML models have not only demonstrated improved prediction skills over traditional
methods but have also offered substantial computational advantages, facilitating real-time
decision-making. Despite the promise of ML, challenges remain, particularly concerning
the availability and quality of training data, the interpretability of ML models, the selection
of suitable algorithms and features, and the generalization of the developed models. More-
over, as ML techniques are intrinsically data-driven, their success is contingent upon the
availability of high-quality and representative datasets to train the models, which can be
a limiting factor in most cases. To harness the full potential of ML in coastal engineering,
future research must focus on enhancing the robustness, accuracy, and applicability of these
models. This includes addressing questions about the quantity and quality of the data,
understanding which methods work best for which problems, and improving methodolo-
gies for model training and validation. The emergence of automated machine learning
(AutoML) can help address questions related to the applicability and optimization of ML
algorithms. AutoML promises to automate the ML development process to include pro-
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cesses such as data preparation, input selection, model generation, and evaluation [114]. As
stated by [115], AutoML aims to enable domain scientists to build ML applications without
extensive knowledge in statistics or machine learning, thus reducing the demand for data
scientists. This will undoubtedly increase the adoption of ML in coastal engineering and
help discover other techniques from the data sciences. The reviewed literature points to an
exciting future where ML not only complements but, in many cases, significantly enhances
our capabilities to predict and manage the complex dynamics of coastal environments.
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