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Abstract: The precise wake model is crucial for accurately estimating wind farm loads and power,
playing a key role in wake control within wind farms. This study proposes a segmented dual-Gaussian
wake model, which is built upon existing dual-Gaussian wake models but places greater emphasis
on the influence of initial wake generation and evolution processes on the wind speed profile in the
near-wake region. The enhanced model optimizes the wake speed profile in the near-wake region and
improves the accuracy of wake diffusion throughout the entire flow field. Furthermore, the optimized
dual-Gaussian wake model is utilized to estimate the power output and blade root vibration loads in
offshore wind farms. Through comparative analysis of high-fidelity simulation results and actual
measurement data, the accuracy of the optimized dual-Gaussian wake model is validated. This
approach offers high computational efficiency and provides valuable insights for load fluctuations
and power estimation, thereby advancing the development of wake control strategies rapidly.

Keywords: double-Gaussian wake model; blade root flap-wise loads; wake disturbances

1. Introduction

Offshore wind power is undergoing rapid development, with growing attention di-
rected towards the notable issue of wake interference [1]. Wake disturbances present
substantial challenges to the secure, stable, and efficient functioning of wind farms [2,3].
Studies indicate that changes in wake coverage have a considerable impact on load fluc-
tuations in wind turbines [4]. While individual turbine load control is typically achieved
through independent pitch adjustments, frequent changes in pitch angles can result in in-
creased fatigue loads on pitch bearings. To alleviate these additional fatigue loads, research
is increasingly focused on wake control through wake redirection, aiming to reduce wake
coverage [5,6], and providing a more comprehensive understanding of wind turbine load
fluctuations.

When conducting fluid dynamics analysis, high-fidelity wake field computations rely
on the unsteady Navier–Stokes equations to offer a detailed depiction and precise solutions
of the flow field, albeit incurring substantial computational expenses. In contrast, medium-
fidelity models opt to exclude specific physical parameters within the flow domain to
streamline computational intricacies, thereby overlooking the fluctuation terms inherent in
the Navier–Stokes equations. The utilization of the thin shear-layer approximation entails
the elimination of the pressure term and posits that velocity gradients exhibit significantly
greater magnitudes in the radial orientation than in the axial direction. Consequently, these
simplifications facilitate the derivation of analytical expressions governing momentum
conservation. Conversely, low-fidelity wake models are grounded on integral relation-
ships prevalent in fluid dynamics, mandating the preservation of constant rates of fluid
momentum and mass alterations within a designated control volume. Given the notable
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adaptability showcased by low-fidelity models in practical engineering applications, they
are frequently deployed in scenarios pertaining to wind farm control.

FAST.Farm [7], a mid-fidelity wind farm simulation tool, couples dynamic wake
models with the high-fidelity FAST software (V 3.5.1), offering precise calculations of
wind turbine dynamic responses, power estimation, and load calculations. However, real-
time performance is essential in practical wind farm control, emphasizing the need for
computational efficiency in wake modeling. Concerning the impact of wake disturbances
on wind turbine load fluctuations, the focus is primarily on the periodic load fluctuations
caused by non-uniform wind speed distribution in the rotor plane, often exhibiting low-
frequency characteristics [8]. Given accurate predictions from low-fidelity engineering
wake models, precise rotor plane wind speed distributions can be obtained. This study aims
to estimate wind turbine load fluctuations using a low-fidelity engineering wake model.

Common low-fidelity wake models include the Jensen wake model [9,10], based on
the principle of mass conservation, which assumes a uniform wind speed deficit. It laid the
foundation for subsequent research due to its simple calculations, and it is still considered
practical today [11]. Observations of wake profiles have revealed that the wake deficit pro-
file in the far wake region closely approximates a Gaussian function. Gaussian wake models
have been developed [12–14], and they were used for yaw wake prediction [15]. Com-
monly employed Gaussian wake models include the solutions proposed by Bastankhah
and Porté-Agel [12]. These models are grounded in the principles of mass and momen-
tum conservation, allowing for accurate wind speed calculations in the far wake region.
However, since wind energy is not absorbed at the blade root and nacelle, it leads to higher
wind speeds in the wake center region in the near-wake area [16]. As wind turbine spacings
decrease, the need for higher-precision wake models in the near-wake region becomes
apparent. Keane later introduced a Double Gaussian (DG) wake model [17], defining the
extremities of the wake profile as being at 75% of the blade span. This model captures the
DG characteristics in the near-wake region and retains the Gaussian characteristics in the far
wake region, in line with the spatial evolution of the real wake [18]; however, its accuracy
remains limited in the vicinity area of the Gaussian extremum. Zein Sadek considered
wake evolution with distance and defined the wake function form based on the influence
of different parts of the turbine [19]. Despite identifying crucial factors contributing to the
non-uniform radial wind speed distribution in the near-wake region, this study did not
account for variations in the wind capture capabilities of wind turbine blades. As wind
farms continue to expand with reduced wind turbine spacing and lower turbulence in
offshore wind farm, accurate estimation of wind speed distribution in the near-wake region
becomes crucial for improving wake model accuracy in wind farm control.

This research aims to optimize the DG wake model [20] based on the correlation
between initial wake generation and blade lift distribution. An approximate function
representing the initial wake distribution profile is developed using blade lift distribution.
The stream-tube outlet, which varies with atmospheric turbulence and thrust coefficient,
is determined by considering the wake expansion coefficient, thereby optimizing the
locations of Gaussian extrema. The wake model is validated using measurement data and
Computational Fluid Dynamics (CFD) simulation data. The following analysis reveals that
blade-root flap-wise loads are the primary source of overall wind turbine loads. Therefore,
for simplicity, the surrogate nonlinear models for blade-root flap-wise loads and power
are established based on the high-fidelity FAST software [21], with the goal of combining
this surrogate model with the wake model to rapidly estimate blade-root flap-wise loads
and power.

The paper is structured as follows: The second section describes the initial wake,
along with the necessary model parameter adjustments. The third section outlines the
construction of the Optimized-DG model as a correction to the DG wake model and its
validation using measurement data and Large Eddy Simulation (LES) data. The fourth
section presents the establishment of two surrogate nonlinear models for blade flap-wise
loads and power, estimating load and power under wake velocity disturbances based on



J. Mar. Sci. Eng. 2024, 12, 647 3 of 21

the Optimized-DG model, and subsequently comparing them with high-fidelity results.
The fifth section concludes with a discussion and summary in the final section.

2. Initial Wake Analysis

The wake is a critical factor representing the capacity for wind energy absorption. This
paper focuses on analyzing the initial wake velocity profile under this blade characteristic
using the NREL 5 MW Baseline wind turbine model as the research subject; its rotor
diameter (D) is 126 m.

2.1. Initial Wake Distribution Contour

Initial wake data are obtained through Simulator for Wind Farm Applications (SOWFA)
simulations [22], which is based on fluid dynamics theory, assuming air is an incompress-
ible fluid and follows the Navier–Stokes equations. Due to its high fidelity, SOWFA is
commonly used for comparison with medium- to low-fidelity models, but it comes with
high computational costs. Because wake diffusion is slow under steady wind conditions,
the wake in the near-wake region can essentially maintain the shape of the initial wake.
Therefore, a steady wind speed of 11 m/s was used in SOWFA simulations to generate
wakes, using the NREL 5 MW wind turbine as an example. Wake wind speeds were mea-
sured at the horizontal height of the hub center between 1.5 m outside the hub center (given
a hub radius of 1.5 m) and 63 m (blade tip position) as shown in Figure 1. In this study,
considering the slow wake diffusion, wake measurement positions were set at x = 10 m,
1D, 2D, and 3D to accurately capture the wake shape in the near-wake region. D is equal
to 126 m. Figure 1a illustrates a top view of the wind turbine, with the hub center point
as the origin, the direction of the incoming wind as the x-axis, the y-axis perpendicular
to the x-axis and pointing to the left side of the rotor plane as positive. The wind speed
measurement positions are located at x = 10 m, 1D, 2D, and 3D. Figure 1b shows the coordi-
nate system for measuring wake in three-dimensional space, where the z-axis represents
the vertical direction along the tower; at the hub center height of zh, z equals 0, and the
meanings of the x-axis and y-axis are consistent with Figure 1a.
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Figure 1. (a) Diagram of lift acquisition position and wake measurement position. (b) Three-
dimensional wind speed measurement schematic.
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Figure 2 presents a corresponding diagram illustrating the initial wake deficit distri-
butions right behind the rotor; the initial wake deficit distributions represent the initial
outline of the wake. Wake-velocity deficits were normalized for clarity. The data presented
stem from simulations using FAST and LES to model wake-velocity deficit distributions.
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As shown in Figure 2, the initial wake profile corresponds to the distribution charac-
teristics of blade element lift. The lift distribution profile across the span of blade elements
is correlated with the airfoil. Therefore, it is considered that the initial wake profile is
associated with the airfoil shape. Based on the initial wake obtained from the NREL 5 MW
wind turbine as illustrated in Figure 2, the profile shape conforms to the characteristics of a
piecewise function. This piecewise function is approximated as a combination of Gaussian
functions and straight lines. Near the blade root and tip, the wake follows the trend of
Gaussian functions (the black dashed line), while in the middle region of the blade span,
the wake variation approximately follows a linear pattern (the green dashed line); the
radial position of breakpoints are defined as r1 and r2. The breakpoints of this piecewise
function are empirically determined points where the wake profile curve and Gaussian
curve diverge.

2.2. The Near-Wake Region

With increasing downwind distance, the wake gradually expands under the influence
of atmospheric turbulence, and the influence of the blade on the wake profile diminishes.
Figure 3 illustrates the rotor’s single-sided radial wake velocity distribution at distances of
x = 1D, 2D, and 3D (as shown in Figure 1) simulated using SOWFA. Combining this with
Figure 2 on the right, it is observed that, including the initial position, at x = 1D and 2D,
the wake loss profiles conform to the piecewise function characteristics. However, at x =
3D, the piecewise function characteristics weaken, and a distinct Gaussian function feature
becomes more apparent, where the radial position of Gaussian function extremum defined
as r0. Based on this analysis, a reevaluation and modification of the DG wake model will
be undertaken in this study.



J. Mar. Sci. Eng. 2024, 12, 647 5 of 21

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 5 of 23 
 

 

Figure 2. Normalized data obtained from SOWFA; % represents the of node position on the blade 

span, the wake variation approximately follows a linear pattern (the green dashed line). 

As shown in Figure 2, the initial wake profile corresponds to the distribution 

characteristics of blade element lift. The lift distribution profile across the span of blade 

elements is correlated with the airfoil. Therefore, it is considered that the initial wake 

profile is associated with the airfoil shape. Based on the initial wake obtained from the 

NREL 5 MW wind turbine as illustrated in Figure 2, the profile shape conforms to the 

characteristics of a piecewise function. This piecewise function is approximated as a 

combination of Gaussian functions and straight lines. Near the blade root and tip, the 

wake follows the trend of Gaussian functions (the black dashed line), while in the middle 

region of the blade span, the wake variation approximately follows a linear pattern (the 

green dashed line); the radial position of breakpoints are defined as 𝑟1  and 𝑟2 . The 

breakpoints of this piecewise function are empirically determined points where the wake 

profile curve and Gaussian curve diverge. 

2.2. The Near-Wake Region 

With increasing downwind distance, the wake gradually expands under the 

influence of atmospheric turbulence, and the influence of the blade on the wake profile 

diminishes. Figure 3 illustrates the rotor’s single-sided radial wake velocity distribution 

at distances of x = 1D, 2D, and 3D (as shown in Figure 1) simulated using SOWFA. 

Combining this with Figure 2 on the right, it is observed that, including the initial position, 

at x = 1D and 2D, the wake loss profiles conform to the piecewise function characteristics. 

However, at x = 3D, the piecewise function characteristics weaken, and a distinct Gaussian 

function feature becomes more apparent, where the radial position of Gaussian function 

extremum defined as 𝑟0. Based on this analysis, a reevaluation and modification of the 

DG wake model will be undertaken in this study. 

 

Figure 3. The wake velocity distribution profiles at x = 1D to 3D. 

2.3. Parameter Determination 

In accordance with the findings in Section 2.1, due to the expansion of the wake, 

within the downwind distance of x < 3D, the wake profile exhibits piecewise function 

characteristics. We hypothesize that the location where the piecewise function 

characteristics of the wake profile vanish is the flow tube outlet [20], denoted as 𝑥0. 𝑥0 

varies with different wake expansion. Inside the stream tube outlet, where the fluid 

expansion coefficient is small, the piecewise characteristics of the wake profile are 

pronounced. On the exterior of the flow tube outlet, where the fluid expansion coefficient 

Figure 3. The wake velocity distribution profiles at x = 1D to 3D.

2.3. Parameter Determination

In accordance with the findings in Section 2.1, due to the expansion of the wake, within
the downwind distance of x < 3D, the wake profile exhibits piecewise function characteris-
tics. We hypothesize that the location where the piecewise function characteristics of the
wake profile vanish is the flow tube outlet [20], denoted as x0. x0 varies with different wake
expansion. Inside the stream tube outlet, where the fluid expansion coefficient is small, the
piecewise characteristics of the wake profile are pronounced. On the exterior of the flow
tube outlet, where the fluid expansion coefficient is large, the wake profile diffuses into
Gaussian features. Hence, in this study, the determination of parameters is divided into
two cases: x ≤ x0 and x > x0. Based on the distribution characteristics of the initial wake
deficit distributions in Figure 2, 0.21D/2 and 0.75D/2 are identified as the breakpoints for
the piecewise function of initial wake deficit distributions. These breakpoints are defined
as r1 and r2, respectively, assuming their variations are linear and eventually equal to r0,
represented by the following formulas:

In the horizontal direction :

 r1 = 0.75D
2 − 0.21D

2

(
x
x0

)2

r2 = 0.21D
2 + x

x0

(
0.54D

2 − 0.21D
2

x
x0

) (1a)

In the vertical direction :

 r1 = 0.75D
2 − 0.35D

2

(
x
x0

)2

r2 = 0.21D
2 + x

x0

(
0.54

2 − 0.35D
2

x
x0

) (1b)

The breakpoints are dependent on both the stream tube outlet x0 and the downstream
distance x. The parameter x0 determines the wake expansion function σ(x), which is
commonly presumed to vary linearly with the downwind distance x. The wake expansion
is influenced by the wake recovery and expansion, as illustrated in Equation (2) [20].

σ(x) = kw(x − x0) + ε (2)

where kw is the wake expansion coefficient, ε is the wake expansion at x0. The turbulence
intensity Iw is related to the wake expansion factor kw as follows [23]:

Iw =
(

0.4CT D0.5

x0.5 + I0.5
0

)2

kw = k Iw
I0

= k
(

0.4CT D0.5

x0.5 I0.5
0

+ 1
)2 (3)

where I0 is the ambient turbulence intensity, Iw is the wake turbulence intensity, CT is the
thrust coefficient, and k is an identification parameter with different values inside and
outside the stream tube outlet x0. Based on high-fidelity simulation results, the location
where the wake expansion coefficient exceeds a certain threshold is considered as the
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stream tube outlet x0. In this study, guided by high-fidelity simulation identification, the
expansion coefficient kw at the flow tube outlet is determined to be 0.0102, then we obtain
the following formula,

x0 =
(0.4CT)

2D(√
0.0102

k − 1
)2

I0

(4)

Moreover, due to the influence of the ground, the evolution of the wake differs in the
vertical and horizontal directions. As identified from high-fidelity simulation results:

In the horizontal direction: for x ≤ x0, k = 0.0037; x > x0, k = 0.01;
In the vertical direction: for x ≤ x0, k = 0.0037; x > x0, k = 0.015.
The variation of the Gaussian function’s extreme point r0 is associated with whether it

is located within the flow tube outlet. Inside the flow tube outlet, the extreme point exhibits
a linear change, while outside the flow tube outlet, the variation is small; in this study, it is
assumed to remain constant:

In the horizontal direction :

{
r0 = 0.63D

2 − x
2x0

(
0.63D

2 − 0.54D
2

)
, x ≤ x0

r0 = 0.54D
2 , x > x0

(5)

In the vertical direction :

{
r0 = 0.63D

2 − x
2x0

(
0.61D

2 − 0.4D
2

)
, x ≤ x0

r0 = 0.4D
2 , x > x0

(6)

3. Optimized-DG Model

This section incorporates corrections based on blade lift and wake wind speed to
adjust the DG wake model. This study refers to this modified model as “Optimized-DG”.

3.1. Derivation of Optimized-DG Model

The general form of the normalized wake model is typically as follows,

ûd =
U∞ − U(x, r)

U∞
= C(x) fd(D±(r, x), r) (7)

where U∞ is the freestream wind speed, U(x, r) is the wind speed at the radial position r in
the wake region at the downwind distance x, C(x) is the wind speed where wake deficit is
maximum, and fd(D±(r, x), r) is the wake profile.

Assuming that the wake profile conforms to a piecewise function, it is represented as
follows:

fd(D±(r, x), r) =
{

gd(r, x), (r1 ≥ r||r ≥ r2)
a1(r − r1) + a2, (r1 < r < r2)

(8)

where gd(r, x) is a DG function and a1(r − r1) + a2 is the straight line between the break-
points (in Figures 2 and 3).

gd(r, x) =
1
2

(
eD+ + eD−

)
, D± = −(r ± r0)

2/2σ2 (9)

The parameters a1 and a2 are represented as follows:a1 = eD+(r=r2)+eD−(r=r2)−eD+(r=r1)−eD−(r=r1)

2(r2−r1)

a2 = 1
2

(
eD+(r=r1) + eD−(r=r1)

) (10)

Neglecting the viscosity and pressure terms in the momentum equation, based on the
principle of momentum conservation, the rate of change of momentum through the rotor
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disk wind, equivalent to the effective thrust T acting on the rotor disk, is thus expressed as
follows:

C(x) =
M ±

√
M2 − 1

2 NCTd2
0

2N

(
eD+ + eD−

)
(11)

where,
M =

∫
r( fd(D±(r, x), r))dr (12a)

N =
∫

r( fd(D±(r, x), r))2dr (12b)

for x ≤ x0, derived from (12a) and (12b),

Mn = 2σ2e
−r2

0
2σ2 +

√
2πr0σer f

(
r0√
2σ

)
+ a1

(
r3

2
3
−

r1r2
2

2
−

r3
1
6

)
+ a2

(
r2

2 − r2
1

)
(13a)

Nn = 1
2 (a2

1

(
1
4 r4

2 −
2
3 r3

2r1 +
1
2 r2

1r2 − 1
4 r4

1 +
1
6 r3

1

)
+ 2a1a2

(
1
3 r3

2 +
1
6 r3

1 −
1
2 r2

2r1

)
+ 1

2 a2
1
(
r2

2 − r2
1
)
+ 2σ2e

−r2
0

σ2 + σ2

(
e−

r2
2+r2

0
σ2 − e−

r2
1+r2

0
σ2

)
+
√

πσer f
( r0

σ

)
− σ2

2

(
e
−(r1+r0)

2

σ2 + e
−(r1−r0)

2

σ2 − e
−(r2+r0)

2

σ2 + e
−(r2−r0)

2

σ2

)
−

√
π

2 r0σ(er f
(

r1+r0
σ

)
− er f

(
r1+r0

σ

)
− er f

(
r2+r0

σ

)
+er f

(
r2−r0

σ

)
)

(13b)
With the expansion of the wake, the influence of the blades on the wake gradually

becomes less pronounced. Eventually, at the outlet of the flow tube, r1 and r2 converge to
the same location, and the piecewise function characteristics disappear, for x ≤ x0, yielding,

M f = 2σ2e
−r2

0
2σ2 +

√
2πr0σer f

(
r0√
2σ

)
(14a)

N f = σ2e
−r2

0
σ2 +

√
π

2
r0σer f

( r0

σ

)
(14b)

Derived from the above formulas: in the wake region where x ≤ x0, the expression for
the wake loss function is as follows:

ûd =


Mn−

√
M2

n− 1
2 NnCT D2

2Nn
gd(r, x), (r1 ≥ r||r ≥ r2)

Mn−
√

M2
n− 1

2 NnCT D2

2Nn
(a1(r − r1) + a2), (r1 < r < r2)

(15)

In the wake region where x > x0, the expression for the wake loss function is as
follows:

ûd =
M f −

√
M2

f −
1
2 N f CT D2

2N f
gd(r, x) (16)

3.2. Considering the Optimized-DG Model with Wind Shear

Vertical wind shear is a common atmospheric boundary layer effect, leading to an
uneven distribution of wind speed in the vertical direction. It is crucial to consider this
effect in wake calculations. In this study, an exponential model of wind shear is employed.

U(z) = Uhub

(
z + zh

zh

)α

(17)
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where zh is the height of the hub center, z is the vertical height with zh as the reference
position, Uhub is the wind speed at the hub center, and α is the wind shear exponent. The
three-dimensional wake loss wind speed is expressed as follows:

ud(x, y, z) =
{

Cn(x) fd(D±(y, z, x), r), (x ≤ x0)
C f (x) fd(D±(y, z, x), r), (x > x0)

(18)

where r =
√

y2 + (z − zh)
2

Cn(x) =
Mn −

√
M2

n − 1
2 NnCT D2

2Nn
, C f (x) =

M f −
√

M2
f −

1
2 N f CT D2

2N f
(19)

3.3. Validation of the Optimized-DG Model
3.3.1. Validation of Horizontal Profile

This part utilizes wake measurement data and simulation data from existing litera-
ture [20]. The physical model of the turbine has a rotor diameter of 1.1 m and a hub height
of 0.8 m, which are proportionally scaled to the NREL 5 MW Baseline wind turbine with
a diameter of 126 m and a hub height of 90 m. The data in reference [20] can be used as
a reference, giving a thrust coefficient of 0.75, a wind speed of 5 m/s, and a turbulence
intensity of 6%.

Figure 4 provides a comparative analysis of horizontal wake velocity profiles at four
downstream near-wake locations (x = 1.4D, 1.7D, 2D, 3D) at the hub height. Experimental
data (EXP), CFD data, and the wake model data from DG are compared with the Optimized-
DG model. The horizontal axis represents the nondimensional distance from the rotor
plane in the horizontal direction to the hub center, normalized by the wind rotor diameter.
The vertical axis represents the nondimensional wake velocity compared to the velocity at
the hub center.
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Examining the wake loss profiles from EXP and CFD, the DG features are notably
evident within the x ≤ 3D range. Both the DG and Optimized-DG models effectively
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capture these features with high precision, particularly near the extremum points for
Optimized-DG. However, at x = 1.4D and x = 1.7D, where the impact of the blades on
the wake is significant, DG exaggerates the wake loss near the extremum points. The
wake profile described by Optimized-DG accurately represents the characteristics near
the extremum points, significantly enhancing the precision of the wake. In the vicinity
of y = 0, especially at x = 2D, the Optimized-DG model estimates wind speeds lower
than CFD and EXP values. This discrepancy may be attributed to an overestimation of
the Gaussian extremum point. Nevertheless, the Optimized-DG model demonstrates a
high level of agreement with CFD experimental data at x = 3D, indicating its capability to
effectively handle the transition in wind speed calculations at the flow tube outlet position.

Figure 5 illustrates the wake distribution at three horizontal planes (x = 4D, 6D, 90; z = 9D)
in the downstream far-wake region. At x = 4D and x = 6D, both EXP and CFD data exhibit
good agreement with the Optimized-DG model. In particular, at the transition from DG to
Gaussian characteristics in the wake, the Optimized-DG model provides a more accurate
estimate compared to the DG model. This enhancement is attributed to the correction of the
Gaussian extremum point, which more precisely captures the evolution of the average wake
profile. At x = 9D, the DG model overestimates the wake loss, while the Optimized-DG
model optimizes this estimation, indicating that the corrected wake spreading function in
the Optimized-DG model is more accurate. In summary, the corrected spreading function
and Gaussian extremum point demonstrate effective wake loss corrections at x = 4D, 6D,
and 9D.
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3.3.2. Validation of Vertical Profile

To validate the accuracy of the wind shear-considering model estimates, we reference
the wake data measured using lidar in the existing literature [16]. The measured wind
turbine has a hub height of 65 m, a rotor diameter of 77 m, a hub center wind speed of
9.2 m/s, a turbulence intensity of 11% over ten minutes, and a thrust coefficient of 0.72; the
fitted wind shear exponent is 0.14.

Figure 6 illustrates the comparison results between the wake model estimates and the
wake measurement data on six vertical profiles. The horizontal axis represents the vertical
wake velocity normalized by the inflow velocity at the hub center, while the vertical axis
represents the height normalized by the rotor diameter, with the hub center height as the
reference. The Optimized-DG model clearly exhibits wind shear characteristics, aligning
well with the measured data. At positions close to the wind turbine (x = 0.5D, x = 1.5D, x =
3D), the Optimized-DG model significantly outperforms the DG model when compared
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to experimental data. However, due to the tilt of the wind turbine rotor, causing the two
break-points in the vertical direction to be relatively close, they prematurely overlap during
the evolution of the wake. Therefore, no distinct segmentation features are observed in the
vertical direction.
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Additionally, as shown in Figure 6, in the wake region where x ≤ 3D and in the
vertical zone where z > 0.5D, the Optimized-DG model overestimates the wake velocity.
This phenomenon may originate from contingency in the measured wind speed, which
does not exactly fit the fitted wind shear model. Therefore, the Optimized-DG model
tends to overestimate the vertical velocity in this region. At x = 3D, the Optimized-DG
model overestimates the wake radius compared to the measurement. This error could be
attributed to the Optimized-DG model overestimating the wake expansion coefficient under
high turbulence intensity, exaggerating the vertical expansion of the wake (neglecting the
inhibiting effect of the ground on wake expansion). In the zone x = 6, 7D, z < −0.5D, the
Optimized-DG model consistently overestimates the wake velocity. This discrepancy may
arise from the influence of ground roughness on wake diffusion, an effect not accounted
for in the Optimized-DG model. Therefore, the Optimized-DG model does not align with
the wind speed measurements close to the ground.

To compare the accuracy between the optimized DG model and the DG model with
CFD data as the reference, the root mean square error (RMSE) is calculated separately.
This is shown in Figure 7, where, compared to the DG model, the Optimized-DG model
demonstrates an overall lower RMSE. Consistent with the observations in Figures 6 and 7,
at x = 1.4D and 1.7D, the Optimized-DG wake model significantly reduces the RMSE
values. At x = 2D, the Optimized-DG model exhibits a slightly higher RMSE compared
to the DG model. However, at positions ranging from x = 3D to x = 9D, the RMSE is
consistently lower for the Optimized-DG model compared to the DG model. This indicates
an overall higher estimation accuracy of the wake model, with significant improvement in
estimation precision for the Optimized-DG model compared to the DG model.
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4. Wind Turbine Load and Power Estimation Based on the Optimized-DG Model
4.1. Development and Validation of Blade Root Flap-Wise Moments and Power

In accordance with the principles of the Blade Element Momentum(BEM) theory [24],
shown in Figure 8, the lift and drag forces experienced by the blade element can be
delineated as follows: {

dFL = 1
2 ρV2

relcCldr
dFD = 1

2 ρV2
relcCddr

(20)

where ρ represents air density, Vrel represents the relative wind speed, c represents the
airfoil chord length at the blade element, Cl represents the lift coefficient, and Cd represents
the drag coefficient.
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The axial and tangential forces generated on the blades by the blade elements are
obtained from the conversion of lift and drag, as given in Formula (20). The axial and
tangential forces of each blade element can be determined by the following matrix transfor-
mation: {

PN = FL cos ϕ + FD sin ϕ
PT = FL sin ϕ − FD cos ϕ

(21)

where ϕ is inflow angle of the i th blade, PN is the blade root flap-wise moment, PT is the
blade root edge-wise moment.

According to (21), the blade root flapping load is determined by local wind speed,
rotor speed, thrust coefficient, drag coefficient, and inflow angle. The BEM solver from
AeroDyn [25] can be used to obtain Cl , Cd, and inflow angle ϕ under the corresponding
working conditions, and then obtain PN according to (21). Due to the close correlation
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between blade root flap-wise loads and wind speed, the above-mentioned method utilizes
the Optimized-DG model to calculate the blade root flap-wise loads by obtaining the wind
speed distribution within the rotor plane. However, in practice, the blade root flap-wise
loads of offshore floating wind turbines are simultaneously influenced by both waves
and wind conditions. Therefore, in this scenario, a nonlinear model is proposed based
on FAST’s rapid calculations, fitted with hundreds of thousands of simulated conditions,
taking into consideration the impact of waves on blade root flap-wise moment,

Myi = A ×
[
vi, ω, βi, ψi, W, viω, viβi, viψi, vi W, ωβi, ωψi, ωW, βiψi, βiW, ψiW, v2

i , ω2, β2
i , ψ2

i , W2
]T

(22)

where vi is the local wind speed, ω is the rotor speed, βi is the pitch angle, φi is the azimuth
angle, and W is the average wave height. A are the coefficient matrix of the nonlinear
model. According to the blade element theory, the power generated by the blade element is
expressed as follows:

P =
∫ 1

2
ρv3CpdAd, dAd = 2πrdr (23)

The BEM solver from AeroDyn [25] was also used to obtain Cp, and then to obtain the
power. Due to the action of waves, the relative motion of the wind turbine will alter the
relative wind speed. Therefore, similarly using the method of fitting blade root flap-wise
loads, determining the power of the wind turbine involves recognizing it as a nonlinear
function related to wind speed, rotor speed, pitch angle, and wave.

P = B ×
[
vi, ω, βi, ψi, W, viω, viβi, viψi, vi W, ωβi, ωψi, ωW, βiψi, βiW, ψiW, v2

i , ω2, β2
i , ψ2

i , W2
]T

(24)

where B are the coefficients matrix of the nonlinear model. To validate the accuracy of the
model (22) and (24), the nonlinear model fitted for a semi-submersible floating wind turbine
is compared with the OpenFAST [26] result. In this section, the simulation conditions are
set at a wind speed of 12 m/s, turbulence intensity of 6%, and wind shear of 0.13, as
shown in Figure 9 (top). Waves are generated by regular and irregular incident wave
kinematics models; the significant wave height of incident waves of the two models are
2 m, as shown in Figure 9 (bottom), where the vertical axis represents wave height. Two
sets of simulations were established to investigate the impact of waves on model estimates,
as shown in Table 1.
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Table 1. Sea conditions settings.

Experiments Sea Conditions

Test 1 Regular waves
Test 2 Irregular waves

Estimated blade-root flap-wise loads (My1) and power are obtained through simula-
tions, as depicted in Figure 10. The horizontal axis is represented by time, while the vertical
axis corresponds to normalized variables. Upon scrutinizing the OpenFAST results of My1
(first and second rows) and power (third and fourth rows), it becomes apparent that despite
minor variations in variables across distinct sea conditions, noteworthy observations can
still be made. Comparative analysis with OpenFAST outcomes reveals that the nonlinear
model adeptly captures the evolving trends in My1 and power. The precision in calculating
My1 is substantial, whereas the accuracy in power estimation is comparatively lower. The
extant error is, in part, attributed to variables not accounted for within the nonlinear model
and, alternatively, may arise due to the model overlooking dynamic responses. Through
comprehensive computations of average values derived from FAST and the nonlinear
model, it is discerned that the disparity between them is exceedingly marginal. This under-
scores the capability of the nonlinear model to represent the mean behavior of the wind
turbine amid wake disturbances.
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Figure 10. The time-history diagram of blade-root flap-wise load and power.

4.2. Simulation Settings and Wind Speed Acquisition for Load and Power Estimation

To apply the Optimized-DG model to the estimation of load effects caused by wake
interference, it is necessary to obtain the wind speed distribution on the rotor plane. High-
fidelity simulations of the NREL 5 MW wind turbine were conducted using SOWFA; wind
field parameters are shown in Table 2 and configuration information for SOWFA is in
Table 3.
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Table 2. Wind field parameters for NREL 5 MW wind turbine.

Description Unit Value

Rated power MW 5
Rotor diameter/hub diameter m 126/3

Cut-in/Rated/cut-out wind speed m/s 3/11.4/25
Hub Center Wind Speed m/s 12

Atmospheric Turbulence Intensity 6%
Wind shear 0.13

Thrust Coefficient (CT) 0.72

Table 3. Configuration information for SOWFA.

Description Unit Value

Horizontal Spatial Dimensions of the
Turbine m2 500 × 500

Simulation Space Size km3 2.5 × 1.25 × 1.25
Simulation Grid Division 800 × 400 × 400

Simulation Grid Size of Locally refined
region m 3.125

Time step s 0.5

Since the downstream wind turbine’s position relative to the wake is random, it is
necessary to validate the model’s disk wind speed at different downstream distances x
and lateral positions y, as illustrated in Figure 1b by the red circles, measuring radius
r = 2

3 R [26].
To compare the results obtained from the specified locations with SOWFA and the

Optimized-DG model, wake data were acquired at positions x = 3D, 6D, 9D; y =
1D, 0.5D, 0D,−0.5D,−1D.

Assuming the downstream wind turbine position is changed to different downstream
locations (x, y) as shown in Figure 1b, the positions selected for verification of wake
estimation accuracy at different downstream locations are x = 3D, 6D, 9D and y = 1D, 0.5D,
0, −0.5D, −1D, totaling 15 positions. Figure 11 illustrates the comparison between the
Optimized-DG model estimates and wake data profiles in SOWFA. The horizontal axis
represents the azimuth angle (ψ ∈ [0, 360] degree) within the rotor plane, and the vertical
axis displays normalized estimated wind speeds U/U∞, U∞ is the freestream wind speed at
the hub center without wake interference as the reference. The wind speed profiles obtained
from SOWFA at various azimuth angles demonstrate that the Optimized-DG model exhibits
good estimation accuracy. However, the Optimized-DG model demonstrates symmetry in
the wake, as observed at x = 3D, 6D, 9D; y = 0.5D,−0.5D. This symmetry is assumed
due to the assumed self-symmetry of the wake. In fact, minor variations in the wake
caused by rotor rotation, blade deformation, and other factors have not been considered in
the optimized-DG model, and these wake changes are very small and thus neglected in
this study.
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4.3. Rapid Blade Root Flap-Wise Load and Power Estimation Based on Optimized-DG

The following steps involve estimating the wake wind speed based on the combined
Optimized-DG method to assess the blade-root flap-wise moment and power. The proce-
dure is illustrated in Figure 12 and is executed as follows:

(1) The inflow wind speed and wave height are obtained from the measured average
wind speed and significant wave height at the upwind turbine location.

(2) Fit a wind shear model based on the measured free-stream wind speed. Combine
this with the Optimized-DG model in part 3 to jointly compute the wake wind speed
distribution on the rotor plane at downstream positions.

(3) Calculate the average wind speed on the rotor plane based on the wake wind speed
distribution obtained in (2). Utilize the steady-state response of the wind speed
function [5 MW] to determine the corresponding average rotor speed and blade pitch
angle for the average wake wind speed [27].

(4) Utilize the proxy model for blade root flap-wise loads and power presented in
Section 4.1 to calculate blade root flap-wise loads and power influenced by wake dis-
turbances.

To characterize the roles of different parts in the flowchart, yellow rectangles represent
the wake estimation section, red denotes the load estimation section, and green indicates
the power estimation section.
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4.4. Simulation Validation

Couple the wake wind speeds simulated in Section 4.1 of SOWFA into OpenFAST. To
validate the blade-root flap-wise load estimation based on Optimized-DG, the simulation
was conducted under the operational conditions of a semi-submersible floating wind
turbine. Due to the symmetry of wind speeds, to simplify the problem, we only investigate
wake load and power estimates at y = 0, −0.5D, and −1D positions, and the simulations
are designed as in Table 4.

Table 4. Simulation design.

Group Test x y Wave Type

G1
Test 1 x = 3D 0/−0.5D/−1D regular
Test 2 x = 3D 0/−0.5D/−1D irregular

G2
Test 1 x = 6D 0/−0.5D/−1D regular
Test 2 x = 6D 0/−0.5D/−1D irregular

G3
Test 1 x = 9D 0/−0.5D/−1D regular
Test 2 x = 9D 0/−0.5D/−1D irregular

The primary focus of this study is on the wind speed non-uniformity caused by wake
disturbances. Therefore, OpenFAST data was obtained to validate the model estimates of
average blade root flap-wise moments at different azimuth angles.

Figures 13–15 depict the comparison between the estimated blade-root flap-wise loads
My1 in the G1, G2, and G3 simulations and the OpenFAST results. The values of My1 on the
vertical axis have been normalized, with the normalization reference being the maximum
blade root flap-wise load obtained from the OpenFAST simulations at x = 3D, y = −0.5D, as
indicated by the marker in the first row, second column of Figure 13. The blue lines in the
figures represent the model estimates, while the red squares indicate the OpenFAST results.
Overall, the model estimates align well with the OpenFAST results.



J. Mar. Sci. Eng. 2024, 12, 647 17 of 21

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 18 of 23 
 

 

maximum blade root flap-wise load obtained from the OpenFAST simulations at x = 3D, 

y = −0.5D, as indicated by the marker in the first row, second column of Figure 13. The 

blue lines in the figures represent the model estimates, while the red squares indicate the 

OpenFAST results. Overall, the model estimates align well with the OpenFAST results. 

Each row in the figures corresponds to Test1 and Test2, where the x-axis represents 

the azimuth angle on the rotor plane, and the y-axis represents the normalized blade root 

flap-wise moments. The blade root flap-wise load reflects the variation trend caused by 

wake, wind shear, and blade pitch angle within the rotor plane. At different downstream 

distances, the blade root flap-wise load exhibits the following patterns: smaller average 

load in the near-wake region and larger average load in the far-wake region. At the y = 

−0.5D position, the load fluctuation amplitude is maximum, while at y = 0, −1D, the load 

fluctuation amplitude is smaller. 

Validation with OpenFAST results indicates that the model estimates can accurately 

track the variation of blade root flap-wise loads with azimuth angles within the rotor 

plane. The model can precisely identify the minimum and maximum load values and their 

corresponding azimuth angles. However, at y = 0 and y = −1D, OpenFAST results show 

that, around the azimuth angle of 200 degrees, the load exhibits a different trend from its 

surroundings, which the model fails to capture. This difference may be attributed to 

external factors not considered by the model. 

For downstream wind turbines, as the wake coverage area increases and the 

downstream distance decreases, the average blade root flap-wise load decreases. 

However, the maximum load at y= −1D is smaller than the maximum at y = −0.5D. This is 

because when the average wind speed in the rotor plane is higher than the rated wind 

speed, the blade pitch angle is greater than zero, leading to a reduction in blade root flap-

wise load. The increase in downstream distance, x, results in an increase in blade root flap-

wise load. However, this characteristic is not observed at y = −1D for x = 3D, x = 6D, and x 

= 9D, as the wake interference is minimal at this position, resulting in small load 

fluctuations. Although the model’s accuracy is not consistently high at every azimuth 

angle, it provides a relatively good description of maximum and minimum values. 

Additionally, there is minimal difference in accuracy between sine wave and 

harmonic wave load estimations, indicating the model’s ability to capture such variations. 

G1-Test1 

 

G1-Test2 

The normalization 

reference load 

Figure 13. Load comparison between model estimates and OpenFAST results for the G1 simulation.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 19 of 23 
 

 

Figure 13. Load comparison between model estimates and OpenFAST results for the G1 

simulation. 

G2-Test1 

 

G2-Test2 

Figure 14. Load comparison between model estimates and OpenFAST results for the G2 

simulation. 

G1-Test1 

 

G1-Test2 

Figure 15. Load comparison between model estimates and OpenFAST results for the G3 

simulation. 

According to the statistical results mentioned above, the maximum error of the 

model-estimated blade root flap-wise loads at different azimuth angles is 10.02%, 

compared to the corresponding OpenFAST results, with an average error of 3.93%. This 

Figure 14. Load comparison between model estimates and OpenFAST results for the G2 simulation.



J. Mar. Sci. Eng. 2024, 12, 647 18 of 21

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 19 of 23 
 

 

Figure 13. Load comparison between model estimates and OpenFAST results for the G1 

simulation. 

G2-Test1 

 

G2-Test2 

Figure 14. Load comparison between model estimates and OpenFAST results for the G2 

simulation. 

G1-Test1 

 

G1-Test2 

Figure 15. Load comparison between model estimates and OpenFAST results for the G3 

simulation. 

According to the statistical results mentioned above, the maximum error of the 

model-estimated blade root flap-wise loads at different azimuth angles is 10.02%, 

compared to the corresponding OpenFAST results, with an average error of 3.93%. This 

Figure 15. Load comparison between model estimates and OpenFAST results for the G3 simulation.

Each row in the figures corresponds to Test1 and Test2, where the x-axis represents
the azimuth angle on the rotor plane, and the y-axis represents the normalized blade root
flap-wise moments. The blade root flap-wise load reflects the variation trend caused by
wake, wind shear, and blade pitch angle within the rotor plane. At different downstream
distances, the blade root flap-wise load exhibits the following patterns: smaller average
load in the near-wake region and larger average load in the far-wake region. At the y =
−0.5D position, the load fluctuation amplitude is maximum, while at y = 0, −1D, the load
fluctuation amplitude is smaller.

Validation with OpenFAST results indicates that the model estimates can accurately
track the variation of blade root flap-wise loads with azimuth angles within the rotor
plane. The model can precisely identify the minimum and maximum load values and their
corresponding azimuth angles. However, at y = 0 and y = −1D, OpenFAST results show
that, around the azimuth angle of 200 degrees, the load exhibits a different trend from
its surroundings, which the model fails to capture. This difference may be attributed to
external factors not considered by the model.

For downstream wind turbines, as the wake coverage area increases and the down-
stream distance decreases, the average blade root flap-wise load decreases. However, the
maximum load at y= −1D is smaller than the maximum at y = −0.5D. This is because
when the average wind speed in the rotor plane is higher than the rated wind speed, the
blade pitch angle is greater than zero, leading to a reduction in blade root flap-wise load.
The increase in downstream distance, x, results in an increase in blade root flap-wise load.
However, this characteristic is not observed at y = −1D for x = 3D, x = 6D, and x = 9D,
as the wake interference is minimal at this position, resulting in small load fluctuations.
Although the model’s accuracy is not consistently high at every azimuth angle, it provides
a relatively good description of maximum and minimum values.

Additionally, there is minimal difference in accuracy between sine wave and harmonic
wave load estimations, indicating the model’s ability to capture such variations.

According to the statistical results mentioned above, the maximum error of the model-
estimated blade root flap-wise loads at different azimuth angles is 10.02%, compared to the
corresponding OpenFAST results, with an average error of 3.93%. This modeling estimation
method demonstrates its practicality in the low-frequency estimation of blade root flap-wise
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loads influenced by wake disturbances. It provides valuable reference for understanding
load fluctuations in wake control strategies implemented within wind farms.

In wake control, there is often little concern about power fluctuations due to changes
in azimuth angles, but rather a focus on the average power value. Therefore, unlike the
approach used to study blade root flap-wise loads, the average power at different positions
is estimated. As shown in Figure 16, the wind turbine exhibits varying power losses at
different locations. This indicates that as the downstream distance increases, power loss
decreases, and the larger the wake interference area, the greater the power loss. In general,
the nonlinear model is capable of estimating power under wake interference. Among all
layouts, when y/D = 0, the power estimation demonstrates the highest accuracy, while
at y/D = −0.5 and −1, the accuracy of power estimation is relatively lower. This may be
attributed to the accuracy of wind estimation, as explained in the wind speed analysis in
Section 4.2. Considering all cases, the maximum error in power estimation is 3%, with an
average error of 1%.
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5. Conclusions

In the previous engineering wake models, the unique characteristics of initial wake
velocities right behind the rotor by blades were not considered, adversely impacting the
accuracy of wind speed estimates in the near-wake region. To address this issue, this study,
based on an analysis of the wake velocity distribution right behind the rotor, proposes
varying wake parameters with downstream distance and modifies the DG wake model,
introducing the Optimized-DG wake model. Furthermore, an estimation method for the
fluctuation of blade-root flap-wise loads under wake interference is proposed based on the
wake model. All models are validated through experiments and CFD simulations to ensure
their accuracy. The summarized results are as follows:

(1) Establishment of a segmented functional initial wake profile behind the rotor: This
study optimizes the profile contours near the extremum points in the near-wake
region of the DG wake model. In this region, especially in areas close to the turbine,
the wake profile contours are significantly influenced by the blades. Using the wake
velocity distribution counter, the initial wake is approximated as a segmented function
composed of Gaussian functions and straight lines, leading to a refined wake profile
contour near the extremum points.

(2) Correction of the wake spreading function: Considering the spatial transport of the
wake as a flow duct, the study defines the flow duct exit position function and the
expansion coefficient inside and outside the flow duct based on high-fidelity data
identification. The wake spreading function is corrected according to the inside and
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outside of the flow duct. Combining the redefined near-wake region wake profile
and the corrected wake spreading function, a three-dimensional Optimized-DG wake
model is established. Validation using SOWFA and experimental data demonstrates
the high accuracy of the Optimized-DG model.

(3) Introduction of a rapid calculation method for wind turbine fluctuating loads and
power estimation under different wake interference: The fluctuations in wind turbine
loads caused by wake interference exhibit periodicity, depending on wind turbine
rotational speed, wind speed, pitch angle, blade azimuth angle, and wave height.
Utilizing the Optimized-DG model for wake velocity prediction, the study provides
a fast method to obtain the fluctuating loads varying with blade azimuth angle.
Through OpenFAST validation, the proposed model estimation method achieves a
maximum error of 10.02% and an average amplitude error of approximately 3.93% in
predicting blade root flap-wise loads under wake interference. The maximum error in
power estimation is 3%, with an average error of 1%.

Model limitations: All identified data in the simulation are obtained using the NREL 5
MW Base-Line simulation, so it is applicable to wind farms with turbine blades consistent
with the NREL 5 MW Base-Line, so the model may not be applicable to others.

Outlook for Future Research: The rapid load calculation method for wind turbines
based on the Optimized-DG model, proposed in this study, is suitable for quick load
estimation in wake control scenarios. In future research, a wind farm wake control method
will be developed that jointly considers wind turbine fluctuating loads and wind farm
power.
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