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Abstract: Sandwich structures are often used as protective structures on ships. To further improve the
energy-absorbing characteristics of traditional honeycomb sandwich structures, an energy-absorbing
mechanism is proposed based on the gradient folding deformation of lotus root nodes and a leafy
stem vein homogenizing load mechanism. A honeycomb sandwich structure is then designed that
combines lotus root nodes and leafy stem veins. Four types of peak-nest structures, traditional cellular
structure (TCS), lotus root honeycomb structure (LRHS), leaf vein honeycomb structure (LVHS), and
lotus root vein combined honeycomb structure (LRVHS), were prepared using 3D printing technology.
The deformation modes and energy absorption characteristics of the four honeycomb structures
under quasistatic action were investigated using a combination of experimental and simulation
methods. It was found that the coupling design improved the energy absorption in the structural
platform region of the LRHS by 51.4% compared to that of the TCS due to its mechanical mechanism
of helical twisting and deformation. The leaf vein design was found to enhance the peak stress of
the structure, resulting in a 4.84% increase in the peak stress of the LVHS compared to that of the
TCS. The effects of the number, thickness, and position of the leaf vein plates on the honeycomb
structure were further explored. The greatest structural SEA effect of 1.28 J/g was observed when the
number of leaf vein plates was four. The highest SEA of 1.36 J/g was achieved with a leaf vein plate
thickness of 0.6 mm, representing a 7.3% improvement compared to that of the 0.2 mm thickness.
These findings may provide valuable insights into the design of lightweight honeycomb sandwich
structures with high specific energy absorption.

Keywords: honeycomb structure; lotus root node; vein lines at the base of a leaf; deformation
characteristics; energy-absorbing properties

1. Introduction

Ships in normal operation are threatened by a variety of explosive impacts, waves, and
other impact loads. The excellent performance of the new anti-explosion and anti-impact
structure is important for improving ship vitality. Porous structures [1–3] with high specific
strength [4] and high energy absorption properties [5] are widely used in the design of
engineering structures such as aerospace materials, vehicles, ships, and oceans. Given the
limitations of single lattices [6–11] or honeycomb structures [12] in engineering applications,
they are often combined with metal or composite sheets to serve as core layers in multilayer
sandwich structures [13–15]. Scholars are increasingly focusing on advanced multilayer
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sandwich structures to capitalize on their protective capabilities and enhanced energy
absorption to make ships more blast- and impact-resistant.

The energy-absorbing properties of honeycomb sandwich structures are influenced
primarily by the configuration and materials of the core layer. The core layers can be cate-
gorized into honeycomb structures [16], composite corrugated structures [17], and cellular
geometries [18], and the materials used are mainly aluminum alloys [19] and EPS foam
materials [20]. Despite their advantages, both lattice-structure core layers and honeycomb-
structure core layers have drawbacks. Lattice structures are susceptible to crushing effects
under load [21–23], leading to limited energy absorption properties. Similarly, special
structures, such as stiffened panels in the hull of a ship, are subjected to bending and
deformation when the structure is subjected to load. Since stiffened panels are prone to
over-bending under sustained forces, resulting in a loss of load-carrying capacity, only
a small amount of energy is absorbed by the deformation of the stiffened panels therein
during the loading process [24]. On the other hand, while honeycomb sandwich structures
exhibit efficient energy absorption [25], they are prone to significant deformation under
loading, resulting in reduced load-carrying capacity. In recent years, scholars inspired by
biological structures have been working on improving the load-bearing role and increasing
the energy absorption capacity of structures [26–36]. Novel structural designs incorpo-
rating biomimetic inspirations are being proposed. Sun et al. [37] designed a structure
using leaf veins and performed quasistatic compression. They found that the structural
load-bearing effect and energy absorption improved significantly. Xu [38], Zhang [39], and
others designed honeycomb structures based on bionic ideas and found that the capacity
for absorption by honeycomb structures was significant. Ganesh et al. [40] were inspired by
Nautilus to use 3D printing of tubular lattice structures and found that the lattice structures
are lightweight and have high load-carrying capacity. Zhang et al. [41] were inspired by
the structure of grapefruit peel to design a layered honeycomb and found that the specific
energy absorption and platform stress of the layered honeycomb were 1.5 and 2.5 times
greater than those of the conventional honeycomb. Xu et al. [42] were inspired by the lotus
root structure and found that the lotus root structure has better energy absorption and
crashworthiness than a square tube structure.

While scholars have researched to enhance the design of honeycomb sandwich struc-
tures, the core layer configurations of existing structures are mostly limited to a single
grid configuration or honeycomb configuration. Shi et al. [43] proposed a grid-hexagonal
honeycomb sandwich structure, which improves the energy absorption of the overall
sandwich structure by filling the grid structure, and the load bearing is increased by 28%
compared to that of the orthogonal grid structure. Shi et al. [44] proposed an S-shaped
hexagonal honeycomb sandwich structure, where the filling of S-shaped structures inside
the honeycomb led to an increase in the energy absorption of the sandwich structure. When
the number of S-reinforcement structures was adjusted to 20, the specific energy absorption
increased by 8.41% compared with that of the normal aluminum honeycomb sandwich
structure. Fan et al. [45] designed square-shaped structures, which greatly improved energy
absorption and enhanced the structural strength by a factor of 2.27–2.6 compared to those
of natural honeycomb structures. Indeed, in leaf structures, the leaf stem vein structure can
exert a mechanical mechanism that homogenizes the load pressure. With its porous internal
structure and gradient internal diameter, the lotus root can exert its unique mechanical
mechanism of gradient folding and deformation when subjected to loads, resulting in a
superior energy absorption capacity. The results are based on the research of previous schol-
ars [43–45]. The goal of this work was to further improve the energy-absorbing capacity of
traditional honeycomb sandwich structures. A honeycomb sandwich structure designed
by combining lotus root nodes and leaf stem veins was proposed. Its energy-absorbing
characteristics, inspired by leaf stem vein and lotus root node structures, were investigated.

To study the energy absorption characteristics of honeycomb sandwich structures
incorporating lotus root vein combinations, four types of specimens (traditional honey-
comb sandwich structure, lotus root honeycomb sandwich structure, leaf vein honeycomb
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sandwich structure, and lotus root–leaf vein combination honeycomb sandwich structure
specimens) were designed and prepared via 3D printing. Quasistatic compression experi-
ments were carried out on the four specimen configurations, and numerical simulations
were conducted to compare and analyze the deformation and energy absorption character-
istics of the honeycomb sandwich structures under quasistatic compression. In addition to
investigating the coupling effect and leaf vein influence, this paper examines the impact of
the position, number, and thickness of leaf vein plates. The main framework of this paper is
organized as follows: Section 2 introduces the coupling-vein combination design sandwich
structure. The results of the experimental study on the quasistatic compression of four
honeycomb sandwich structures are presented in Section 3. Numerical simulation studies
are described in Section 4. Section 5 discusses the coupling effect, the leaf vein effect, and
the influence of the leaf vein plate position, number, thickness, and peak force on energy
absorption. The main conclusions are summarized in Section 6.

2. Bionic Structural Design

The concept of a honeycomb sandwich structure based on the combined design of
lotus root nodes and leaf stem veins is illustrated as follows: The honeycomb structure is
shown in Figure 1I, and the conventional honeycomb structure is derived from the actual
honeycomb structure, as shown in Figure 1II. A honeycomb structure designed with leaf
veins is shown in Figure 1III, taking into account the load homogenization role of leaf stem
veins. Lotus roots are shown in Figure 1IV, and based on the mechanical mechanism by
which lotus root nodes undergo gradient folding deformation and energy absorption in
nature, a combined lotus root node–leaf vein honeycomb structure is proposed, as shown
in Figure 1V. The honeycomb structure is combined with the upper and lower panels to
form a new honeycomb sandwich structure featuring a combined lotus root-vein design, as
shown in Figure 1VI.
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3. Honeycomb Compression Experiment
3.1. Material Properties and Specimen Preparation

ABS resin (acrylonitrile butadiene styrene) was selected for 3D printing of honeycomb
sandwich structures due to its moderate cost, high strength, good toughness, and ease
of processing. Three tensile specimens were prepared using 3D printing technology, as
shown in Figure 2a. The dimensional variations in the specimens created during their
fabrication are shown in Table 1. To determine the mechanical properties of the ABS resin
materials, standard tensile specimens were printed following the ASTM D638 standard [46],
and three specimens were subjected to tensile loading for the measurement of mechanical
properties using a WDW-100 electronic universal experimental machine with a loading
rate of 2 mm/min. The experimental results are shown in Figure 2b. The modulus
of elasticity of ABS is 12.07 MPa, the yield strain is 0.012, and the stress magnitude is
11.78 MPa. To investigate the performance of honeycomb sandwich structures with a
coupling-leaf vein combination design under quasistatic compression, as shown in Figure 3,
four honeycomb structure specimens were designed and prepared for this paper. The
compression experiments on the four honeycomb structures were carried out at a constant
speed of 2 mm/min. The traditional cellular structure, lotus root honeycomb structure,
leaf vein honeycomb structure, and lotus root vein combined honeycomb structure are
abbreviated as TCS, LRHS, LVHS, and LRVHS, respectively. The overall dimensions of the
four honeycomb structures are 84 mm (Lc) × 41.6 mm (LB) × 20 mm (LZ), and the thickness
of the honeycomb structure (TC) was 0.4 mm. The upper and lower panels were 100 mm
(L) × 50 mm (B), with a thickness (Tt) of 3 mm.
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(b) is the tensile specimen stress–strain curve).

Table 1. Tensile specimen process parameters and errors.

Specimen
Samples

L1
(mm)

L2
(mm)

L3
(mm)

W1
(mm)

W2
(mm)

T
(mm)

Mass
(g)

1 164.8 114.7 49.9 19.3 13.3 3.1 8.5
2 164.8 114.8 49.8 19.1 13.1 2.9 8.5
3 165.3 115.3 50.3 19.2 13.2 3 8.4

Error ±0.3 ±0.3 ±0.3 ±0.3 ±0.3 ±0.2
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the LVHS, (c) is the LRHS, and (d) is the LRVHS).

3.2. Energy Absorption Index

The energy absorption index is an important index for measuring the mechanical prop-
erties of honeycomb structures. This index is usually assessed in terms of platform stress,
EA, SEA, and other parameters [47], where the densification strain is usually determined
by the energy absorption efficiency η versus the highest point on the strain curve.

dη(ε)

dε

∣∣∣∣
ε=εd

= 0 (1)

where the energy efficiency can be determined by the ratio of the energy absorbed by the
multicellular material to the corresponding nominal stress.

η(ε) =

∫ ε
0 σ(ε)dε

σ(ε)
(2)

EA is the absorbed energy, and the specific formula is defined as

EA =
∫ δ

0
F(x)dx (3)
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where F(x) is the instantaneous impact force, x is the instantaneous impact displacement,
and δ is the effective displacement during the impact process.

The specific energy absorption (SEA) represents the energy absorbed per unit mass,
which is an essential criterion for lightweight design, and the specific formula is defined as
follows:

SEA =
EA
M

(4)

where M denotes the mass of the structure.

3.3. Experimental Results

Figure 4 illustrates the deformation process of the LVHS and LRVHS specimens under
quasistatic compressive loading. In Figure 4a, the LVHS experiences initial destabilization
at the bottom at a strain of 0.06. As loading progresses, the bottom of the LVHS continues to
compress at a strain of 0.2, as shown in Figure 4b. Figure 4c shows that as the strain reaches
0.4, the LVHS is subjected to continuous loading until the core intermediate structure is
completely stacked. Figure 4d shows that the LVHS is excessively deformed at a strain
of 0.57. Figure 4e shows that for the LRVHS, the middle section buckles first at a strain
of 0.052, resulting in a decrease in structural stability. Figure 4f shows that as the load
displacement increases, the upper and lower trapezoidal portions of the LRVHS undergo
stacked compression at a strain of 0.14. Figure 4g shows a spiral twist in the middle part of
the LRVHS at a strain of 0.34. Figure 4h shows that the LRVHS is excessively deformed
at a strain of 0.54. The experimental deformation process reveals distinct patterns for the
LVHS and LRVHS under loading. The bottom of the LVHS exhibits buckling and folding,
resulting in a loss of overall stability, while the middle portion of the LRVHS buckles,
deforms, and develops a spiral twist.
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Figures 5–7 show the stress–strain curves and deformation processes of four hon-
eycomb sandwich structures under quasistatic compression. The deformation process
can be divided into four stages: linear elastic deformation, plastic deformation, platform
deformation, and densification. The linear elastic phase of the structure can be determined
from the linear elastic deformation of the structure with a linear increase in the stress–strain
curve, and the linear elastic phase ends when the increase ends. The structural platform
phase can be determined by the inflection point or change in the rate of change in stress.
Using the energy absorption efficiency method based on densification strains, the end of
the platform phase and the beginning of the densification phase can be determined [48].
For the LVHS, the entire structure underwent linear elastic behavior within the strain
range of 0–0.06. The internal stress increases linearly with strain during this phase until
the structure reaches the peak stress at a strain of 0.06, at which point the bottom of the
structure undergoes flexural deformation. The LRVHS is in the linear elastic phase within
the strain range of 0–0.052. Unlike the LVHS, the middle part of the LRVHS deforms within
this phase. The peak force of the LRVHS when subjected to quasistatic compression was
greater than that of the TCS when the peak stress reached 3.8 MPa, representing a 13.2%
increase compared to the TCS stress. Within the strain range of 0.06–0.22, the LVHS enters
the plastic deformation stage. The overall deformation of the structure increases so that
the stress decreases rapidly, with high energy absorption occurring within this stage. The
LRVHS is in the plastic deformation stage at a strain of 0.14, and the change in internal
stress during this stage follows a pattern similar to that of the plastic deformation stage
of the LVHS. The LVHS experiences the platform stage in the strain range of 0.22–0.54;
the overall deformation of the structure increases, the energy absorption is smooth, and
the energy absorption effect in this stage is affected by the geometric configuration of the
structure. The LRVHS plateaued within a strain range of 0.22–0.52. The upper and lower
parts are deformed and compressed against each other due to the lotus node configuration.
A larger contact area of the structure results in a significant increase in energy absorption.
Unlike the LVHS, the LRVHS undergoes a spiral-twisting phenomenon in the middle part
of the platform stage. The LVHS reaches a densification stage after a strain of 0.54, and the
structure is excessively deformed.
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Figure 8 shows that the SEAs in the TCS and LRHS are 1.02 J/g and 1.23 J/g, respec-
tively. A 3.86% and 4.29% difference were observed in the SEA compared to the LVHS and
LRVHS, respectively. Additionally, as shown in Figure 7, the LVHS stress peak was greater
than that of TCS, resulting in significantly greater structural energy absorption. The best
energy-absorbing structure in Figure 7 was in the LRVHS, with an SEA of 1.28 J/g. The
plateau stresses of the LRHS and LRVHS were greater than those of the TCS and LVHS. This
can be attributed to the mechanical mechanism of deformation involving helical twisting
during the platform phase, as illustrated in Figure 4.
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4. Numerical Simulation
4.1. Finite Element Modeling

The four honeycomb sandwich structures were modeled using 4-node curved shell
finite elements (S4R) with the help of Abaqus/Explicit 2021. The core structure in the
sandwich structure needs to be constrained between the top and bottom panels to simulate
the boundary conditions during the quasistatic compression process, as shown in Figure 9.
The bottom panel is fully solidly supported. The top panel was subjected to a downward
movement at a controlled rate of 2 mm/min under a displacement-controlled load. This
approach ensured that the kinetic energy was negligible compared to that in other works,
meeting the conditions required for quasistatic compression in the experiment. Universal
contact with a coefficient of static friction of 0.2 was employed between the model units. As
shown in Figure 10, a mesh convergence analysis was conducted. At a mesh size of 1 mm,
the error between the peak stress and the platform stress in both the experimental and
numerical simulations was less than 5%. Therefore, a mesh size of 1 mm was determined
to be the ideal choice. The mechanical parameters of ABS were determined from the tensile
experiment in Figure 2; the material had a modulus of elasticity of 1207 MPa, a yield stress
of 11.78 MPa, a Poisson’s ratio of 0.33, and a density of 1.18 g/cm3.
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Figure 10. Verification of mesh convergence.

4.2. Numerical Results

As shown in Figure 11, during the linear elastic stage of the LVHS, the outer core walls
bent outward while the inner core walls tilted, and the numerical simulation results were
close to the experimental outer wall tilt angle. The bending of the core walls was more
pronounced during the plastic deformation stage, when no significant fracturing had yet
occurred. In the platform stage, the folds that formed in the middle part of the experimental
structure at this point basically match those in the numerical simulation. In the final stage
of densification, the overall structure was entirely destroyed. Figure 12 illustrates the
behavior of the LRVHS during its elastic phase. The outer core walls bent inward, and the
inner core walls tilted. The numerical simulation had essentially the same tilt angle as the
experimental outer wall. During the plastic deformation stage, folding began to occur in the
middle part of the structure. As the load continued to be applied in the platform stage, some
regions of the structure exhibited a spiral twisting phenomenon, with the experimental
and numerical simulation results generally being consistent. As the load was continuously
applied, the structure entered a densification stage, during which overall damage occurred.
Figure 13 shows that when the LRVHS was subjected to quasistatic compression, the middle
portion of the structure deformed first, and the overall structure elements were compressed
against each other. The structure reached its peak stress and underwent deformation at a
strain of 0.052. At a strain of 0.22, the structure entered the platform stage, where energy
absorption improved rapidly. During this stage, the middle part of the LRVHS exhibited a
spiral twisting phenomenon, enhancing energy absorption through mutual compression.
This stage proved to be the most effective for energy absorption. After reaching a strain
of 0.52, the structure enters the densification stage, where it is overcompressed under the
constant action of the load, resulting in severe deformation.
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5. Discussion and Analysis
5.1. The Lotus Root Effect

Figure 14 shows the stress–strain curves and deformation processes of the TCS and
LRHS under quasistatic compression. Under quasistatic action, the peak stress was reached
at a TCS strain of 0.052, at which point the structure yielded. At this time, the LRHS single-
cell meta-structure was in stage I. The inner core wall of the middle part of the structure
was tilted. The contact area between the upper and lower parts of the structure was larger
than that between the other parts, which can provide the structure with a load-bearing
capacity and an energy-absorbing effect. Thus, the LRHS deformed less than the TCS
under load, with the peak stress of the LRHS being 9.97% greater than that of the TCS.
At a strain of 0.32, the LRHS had greater structural deformation than the TCS due to the
helical stacking phenomenon that occurred in the middle part of the LRHS. At this time,
the LRHS single-cell meta-structure was in stage III. The inner core walls of the middle
part of the structure are tilted. The outer core walls were bent inward, which resulted in
a helical twist in the middle part of the structure, and more energy was absorbed by the
structure. Therefore, the LRHS had a greater energy absorption effect than the TCS in the
plateau stage. Compared with that of TCS, the mechanical mechanism of helical twisting
and deformation from the lotus root effect increased the energy absorption of the LRHS in
the plateau stage by 51.4%. In addition, Xu et al. [42] performed quasistatic compression
on a lotus root structure and reported that the structure was able to absorb more energy
and absorb more specific energy during compression. The excellent energy absorption of
the LRHS originates from the deformation mechanics mechanism of helical twisting, which
enhances the energy absorption of the entire structure.
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5.2. The Leaf Venation Effect

Figure 15 shows the stress–strain curves and deformation processes of the TCS and
LVHS under quasistatic compression. The structural deformation of the LVHS was less
than that of the TCS under quasistatic action. The TCS underwent yield deformation at a
strain of 0.06, with the peak stress reaching 3.34 MPa, indicating a 4.84% lower peak stress
than that of the LVHS. Under the load action, the leaf vein plate action in the LVHS began in
Stage I. The lower part of the leaf vein plate underwent initial fold deformation, presenting
an overall arc deformation mode. Structural deformation played a crucial role in providing
out-of-plane bearing capacity, resulting in a larger stress peak for the structure. As the
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leaf vein plate transitioned into Stage II, two deformations were manifested in the lower
part of the leaf vein plate, which adopted an overall S-shaped deformation pattern. This
deformation not only enhanced the energy-absorbing effect of the structure but also marked
the beginning of stress reduction. Moving into Stages III and IV, three folds emerged in the
leaf vein plate, shaping the overall leaf vein plate into a W-shaped deformation pattern.
Overall, the leaf vein plate lost its energy-absorbing effect due to excessive deformation.
Under load, the leaf vein plate changed through arc, S, and W shapes, resulting in the
greater out-of-plane load-carrying capacity and energy absorption capacity values of the
LVHS than of the TCS. Lv et al. [49] designed a CFRP orthogonal mesh-reinforced structure
that was found to have the strongest load-carrying capacity at the reinforced part of the
foliation plate. Leaf vein plates have excellent energy absorption properties and better
out-of-plane load-carrying capacity for resisting high loads.
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5.3. Effect of Leaf Vein Plate Position, Number, and Thickness

The experimental results show that the SEA of the LRVHS was better than that of
other structures. To further investigate the effect of the position and number of leaf vein
plates on the energy absorption of the structure, the position of the structural leaf vein
plates was adjusted while ensuring that the number of leaf vein plates remained the same.
As shown in Figure 16a, three different positions on the leaf vein plates were set up to
analyze the energy absorption effect. Among these configurations, Type 3, with a total of 6
leaf vein plates, demonstrated the most effective energy absorption. Compared with those
of Type 1 and Type 2, the energy absorption increases were 3.8% and 2.5%, respectively.
Structurally, the configuration absorbs energy from the center pointing outward, where the
position of the leaf vein plate is to the outside. This was because, during the quasistatic
compression process, the outer cell element first deformed and failed. The outer cell element
deformed to a greater extent than the inner cell element, which increased the structural
out-of-plane bearing capacity under the action of the foliation plate. Thus, the structural
energy absorption effect was enhanced. The effect of the leaf vein plate position on the
energy absorption of the structure was analyzed. The number of structural leaf vein plates
was analyzed based on the above-optimized positions of the leaf vein plates to explore
the overall energy absorption of the structure with different numbers of structural leaf
vein plates. Figure 16c shows the strain-SEA maps for different numbers of leaf vein plate
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structures. Type 6 had the best SEA effect, with a value of 1.11 J/g. As the number of leaf
vein plates increased, the structural SEA effect further decreased because too many leaf
vein plates increased the mass of the structure. The excessive out-of-plane bearing capacity
provided by the leaf vein plates resulted in a structure that was less prone to deformation,
consequently diminishing its ability to absorb energy. The structure attained the optimal
SEA effect with a leaf vein plate number of 6, and the SEA was reduced by 14.9% compared
to the results of the LRVHS experiment in Figure 8. When the number of leaf vein plates
was 16, the highest out-of-plane bearing capacity occurred. This resulted in a maximum
SEA at a strain of 0.052. However, at strains of 0.21 and 0.48, the SEA values were smaller
than those of structures with other leaf vein plate numbers. Consequently, the optimal SEA
for the structure was achieved when the number of leaf vein plates was 4, as this provided
the best balance between the out-of-plane bearing capacity and energy absorption.
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The effects of different vein plate thicknesses on the structural peak force and SEA
variation under quasistatic action were explored. Figure 17 shows the structural peak
force and SEA at the different vein plate thicknesses for the LRVHS. The magnitude of
the peak structural force increased with increasing thickness of the foliation plate, and
the slope of the peak structural force gradually increased. The peak force of the structure
was 20.61 kN when the thickness of the vein plate was 0.8 mm, representing the optimal
structural out-of-plane load-carrying capacity. This corresponds to a 7.9% increase in the
peak force compared to that of the structure with a vein plate thickness of 0.2 mm. Lv
et al. [50] compared honeycomb vein plates with thicknesses of 1 mm, 2 mm, and 3 mm
under loading and found that with increasing vein plate thickness, the results increased.
When the load gradually increased to produce a peak force load, the higher the peak force
load was, the less the structural energy absorption changed, and the greater the thickness
was, the greater the peak load was. The structural peak force can be modulated by varying
the thickness of the vein plate. This is compared to Lv et al. [50], who reported that the
thickness of a honeycomb structure under load is essentially stable with respect to the SEA
variation. The variation in the thickness of the leaf vein plate in the LRVHS reported in
this paper had a significant effect on the structural SEA. The SEA showed an increasing
trend until the leaf vein plate thickness reached 0.6 mm. The SEA was optimal when the
leaf vein plate thickness was 0.6 mm. With a value of 1.36 J/g, there was a 7.3% increase in
SEA compared to the leaf vein plate thickness of 0.2 mm. After exceeding a thickness of
0.6 mm, the SEA decreased instead by continuously increasing the thickness. The reason
for this difference was that the increase in vein plate thickness contributed to an increase
in the peak force of the structure, subsequently enhancing its energy absorption capacity.
Increasing the thickness of the leaf vein plate further increases the mass of the structure
while enhancing its energy absorption effect. However, beyond a thickness of 0.6 mm, this
positive impact on energy absorption, driven by increased plate thickness, was offset by
the negative effect of reduced energy absorption associated with the escalating mass due to
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the thickness increase. This resulted in an overall decrease in the specific energy absorption
(SEA) of the structure.
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6. Conclusions

In this paper, a novel honeycomb sandwich structure based on the combined design
of lotus root nodes and leaf stem veins is proposed by combining the biomimetic concepts
of lotus root nodes and leaf stem veins. Using 3D printing technology, four kinds of honey-
comb sandwich structure specimens were designed and prepared. Quasistatic compression
experiments and numerical simulations were carried out to explore the deformation and
energy absorption characteristics of the four kinds of sandwich structures under quasistatic
compression. The following conclusions are drawn:

(1) Quasistatic compression experiments with TCS, LVHS, LRHS, and LRVHS were
carried out. The LRHS and LRVHS deformation patterns exhibited helical twisting
under continuous load application. The nominal stress–strain curves of the TCS,
LVHS, LRHS, and LRVHS were analyzed. Compared with TCS, the LRHS had greater
peak nominal stress and plateau stress values. The SEA differences between TCS and
LRHS and between LVHS and LRVHS were 3.86% and 4.29%, respectively.

(2) Research on the mechanisms of the lotus root effect and leaf vein effect was carried
out. It was found that through the lotus root effect mechanism, the energy absorption
of LRHS increased by 51.4%. Compared with that of TCS in the plateau stage, the
deformation mechanical mechanism of the LRHS was helical twisting in the plateau
stage. Compared with that of TCS, the peak nominal stress of LVHS increased by
4.84% through the mechanism of the leaf vein effect. The leaf vein plate provided
greater out-of-plane load-carrying capacity and energy-absorbing effect values for the
overall structure through changes in the arc, S-type, and W-type deflections.

(3) An extensive analysis was conducted to examine the impact of the leaf vein plate
position, number, and thickness on the overall mechanical properties of the structure.
Optimal energy-absorbing properties were observed when the leaf vein plates were
positioned outward. The structure exhibited the most effective SEA when the number
of leaf vein plates was 4. Leaf vein plate thickness played a significant role in deter-
mining the peak force magnitude, with an increasing trend observed as the thickness
increased. Notably, at a leaf vein plate thickness of 0.6 mm, the SEA was enhanced
by up to 7.3% compared to that at other thicknesses. However, above a thickness of
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0.6 mm, the structure’s energy absorption decreased with increasing leaf vein plate
thickness.
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