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Abstract: Chlorine is used commonly to prevent biofouling in cooling water systems.  

The addition of chlorine poses environmental risks in natural systems due to its tendency to 

form chlorination by-products (CBPs) when exposed to naturally-occurring organic matter 

(NOM). Some of these CBPs can pose toxic risks to aquatic and benthic species in the 

receiving waters. It is, therefore, important to study the fate of residual chlorine and CBPs 

to fully understand the potential impacts of chlorination to the environment. The goal of this 

study was to develop improved predictions of how chlorine and CBP concentrations in 

seawater vary with time, chlorine dose and temperature. In the present study, chlorination of 

once-through cooling water at Ras Laffan Industrial City (RLIC), Qatar, was studied by 

collecting unchlorinated seawater from the RLIC cooling water system intake, treating it 

with chlorine and measuring time series of chlorine and CBP concentrations. Multiple-rate 

exponential curves were used to represent fast and slow chlorine decay and CBP formation, 

and site-specific chlorine kinetic relationships were developed. Through extensive analysis 
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of laboratory measurements, it was found that only some of the control parameters identified 

in the literature were important for predicting residual chlorine and CBP concentrations for 

this specific location. The new kinetic relationships were able to significantly improve the 

predictability and validity of Generalized Environmental Modeling System for Surfacewaters 

(GEMSS)-chlorine kinetics module (CKM), a three-dimensional hydrodynamic and  

chlorine kinetics and transport model when applied for RLIC outfall studies using actual 

field measurements. 

Keywords: chlorination; disinfection by-products; cooling water; Ras Laffan Industrial City 

(RLIC); Qatar; kinetic experiments; second-order reaction; numerical modeling 

 

1. Introduction 

1.1. Chlorination 

The liquefied natural gas (LNG) industry in Qatar located within Ras Laffan Industrial City (RLIC) 

utilizes more than 1 million m3/h of seawater for cooling demands. The total length of its seawater 

distribution network is approximately 6 km. Chlorine is extensively used as a powerful oxidizing agent 

for water treatments and for biofouling control. This is because it is a well-tested technology, has had a 

history of long-term worldwide industrial use and is of acceptable cost. Sodium hypochlorite (NaOCl, 

commonly termed chlorine) is the only biocide added to the RLIC seawater to prevent fouling and is 

produced on site by means of an electro-chlorination plant (ECP). 

The chemistry of chlorine disinfection of seawater is complex [1–3]. In seawater, chlorine produces 

a mixture of hypochlorous acid (HOCl) and hypochlorite ion (OCl−). These rapidly react with the 

bromide ion to form a mixture of hypobromous acid (HOBr) and hypobromite ion (OBr−). The acute 

oxidants formed by chlorination are therefore short lived and are not persistent in seawater. A summary 

of the main chemical pathways is given in Figure 1. The environmental concern of chlorination is the 

production of numerous, and more persistent, compounds formed by complex reactions between 

chlorine/bromine and the organic constituents of seawater, collectively described as chlorination  

by-products (CBPs) [4–6]. Many CBPs are persistent and may be toxic to marine organisms subjected 

to long-term exposures [7,8]. Hence, new guidelines were established by the Qatari Ministry of 

Environment (MoE) for residual chlorine and CBPs in cooling discharge waters. The new regulations 

set by MoE specify that the maximum concentration of free residual chlorine is 0.05 mg/L at the 

discharge point. However, greater than 0.05 mg/L is permitted if a site-specific dispersion model is 

developed to demonstrate that the chlorine concentration does not exceed 0.01 mg/L at the edge of the 

mixing zone. To assist in the meeting of these new guidelines, a numerical hydrodynamic model was 

developed jointly by ExxonMobil Research Qatar (EMRQ) and Environmental Resource Management 

(ERM). The model was calibrated to predict the fate of residual chlorine and CBPs from industrial 

cooling water discharged from RLIC [9–11]. This model is novel, since the individual and cumulative 

effects of cooling water discharges from several outfalls are estimated in a single simulation instead of 

requiring separate model runs for each outfall. 
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Figure 1. Outline of the chlorine and bromide pathway modified from [12], with permission 

from © 1977 American Chemical Society. CPO stands for “chlorine-produced oxidant”.  

Numerous empirical models for disinfectant decay and CBP formation have been proposed in recent 

decades for both fresh and seawater [13,14], but these models have, in most cases, not been generally 

applicable to all possible site conditions. The strength of any model lies in its flexibility and applicability, 

and a useful model should be able to accommodate site-specific factors, such as water quality 

(particularly variability in important variables, such as total and dissolved organic carbon and bromide) 

and operating conditions (e.g., pH, chlorine dose and temperature). The literature and our experience 

during the work described here suggest that an appropriate approach to this problem is to develop a 

standardized set of laboratory procedures to derive site-specific data on chlorine decay and CBP 

formation and to develop a robust, simplified site-specific mathematical model for predicting chlorine 

and CBP discharge concentrations. 

1.2. Model Development 

The modeling of chlorine decay is a complex task due to the difficulty related to ambient water 

quality. A large number of variables have been found to affect the fate of chlorine. As such, development 

of a universal model capable of predicting chlorine decay or CBP formation is virtually impossible 

without the aid of focused laboratory studies performed on the receiving water. Generic mathematical 

models for the decay of chlorine have been developed that can predict the formation of CBPs. These 

generic mathematical models form the basis of site-specific models, which take into account local 

ambient water quality and operating conditions. 

A number of models have been developed to predict chlorine decay in cooling discharge  

systems [15–17]. The most popular model is the first-order decay model in which the chlorine 

concentration is assumed to decay exponentially. 

ሻݐሺܥ ൌ ଴݁ି௞௧ (1)ܥ

where ࡯ is the chlorine concentration at time ࢚ and ࢑ is the decay rate. Fang Hua et al. [18] reported the 

effect of water quality parameters on the decay constant for free chlorine in different water samples. 

They found an empirical relationship between initial chlorine concentration and the decay constant at a 

fixed temperature for three types of water. 
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Clark [19] developed the second-order chlorine decay model based on the concept of competing 

reacting substances. He investigated a two-component model, which accounts for both disinfectant and 

a fictitious reactant via the hypothetical irreversible reaction. 

ܽA ൅ ܾB → P (2)݌

where ۯ is the chlorine component, ۰ is a fictitious reactive component, ۾ is the disinfectant by-product 

component and ࢈ ,ࢇ, and ࢖ are the stoichiometric reaction coefficients. Clark [19] assumed a first-order 
reaction rate with respect to ۯ and ۰ and a second-order overall reaction rate. Jadas-Hécart et al. [20] 

and Ventresque et al. [21] divided the chlorine decay into phases, i.e., an initial phase of its immediate 

consumption during the first 4 h and the second phase of its slower consumption after the first 4 h, the 

latter being known as long-term chlorine demand. 

EMRQ and ERM conducted a comprehensive field and laboratory study in 2005–2006, aimed at 

developing a chlorine and CBP kinetics model that could be implemented, tested and validated for RLIC. 

As part of this study, a three-dimensional hydrodynamic, fate and transport model based on Generalized 

Environmental Modeling System for Surfacewaters (GEMSS) was developed. A new computational 

module (CKM, chlorine kinetics module) was developed to estimate and predict chlorine and CBP 

concentrations within the GEMSS modeling framework. While the transport of chlorine and CBPs was 

based on the built-in transport module of GEMSS, fate processes were estimated based on parametrizing 

kinetic processes that result in the decay of chlorine and the growth of various CBPs. Details of this 

study are available in Adenekan et al. [9], Saeed et al. [11,22,23] and Kolluru et al. [23]. 

Laboratory experiments conducted as part of this study were designed to measure the changes in 

concentrations of residual chlorine and a selected suite of CBPs with time under a variety of conditions. 

It was assumed that the prominent factors that affect chlorine decay and CBP formation included initial 

chlorine dosage, temperature, salinity, pH and the amount of natural organic matter (NOM). Since the 

goal of the study was to develop a site-specific chorine kinetics model for RLIC, salinity was later 

excluded due to its lack of spatial or temporal variation within the ambient waters. A combination of 

three temperatures (20 °C, 30 °C and 40 °C), three pH values (7.1, 8.1 and 9.1) and three initial chlorine 

dosages (1 mg/L, 2 mg/L and 5 mg/L) gave a total of 25 laboratory experiments. Chlorine kinetic 

relationships were developed by using results from these experiments and then implemented into CKM 

for temporal and spatial prediction of chlorine and CBPs. These predictions were then compared against 

the field measurements [10]. It was found that the model predictions were reasonable; however, the 

parameterization of chlorine kinetics lacked some much needed detail. Laboratory experiments used 

water that was not collected from the site, but had been chemically modified to mimic ambient waters 

of RLIC. Furthermore, the range of temperatures considered did not cover the high temperatures seen 

near the outfalls. Finally, the measurements collected during these experiments were not very frequent, 

i.e., they lacked the temporal resolution ideally needed to accurately predict the change between the two 

phases identified by Jadas-Hécart et al. [20] and Ventresque et al. [21]. As such, EMRQ and  

ERM developed a new laboratory study to further enhance the chlorine kinetic relationships  

developed previously. 
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2. Purposes of This Article 

This article is intended for serve several purposes. First, it provides a brief introduction to the 

development of mathematical models that can be used to predict the fate of residual chlorine. Secondly,  

it provides a theoretical background on the parameterization of these chlorine kinetic relationships. 

Thirdly, it provides a demonstration of how two separate laboratory studies were designed such that a 

site-specific mathematical model could be developed and then enhanced for the prediction of chlorine 

and CBP fate. Finally, it provides a foundation for the application of this laboratory procedure and 

mathematical modeling approach to other sites where customized field and laboratory studies can be 

designed and implemented to re-parameterize the model. 

The specific goals of this study were: (1) to develop a numerical model capable of predicting residual 

chlorine fate and CBP formation; (2) to run laboratory experiments to study the chlorine kinetics and 

formation of CBPs based on to site-specific parameters; and (3) to use the laboratory data to improve 

the previously-developed chlorine kinetic relationships model and, hence, the model’s ability to predict 

how concentrations of chlorine and CBPs change with time. 

3. Materials and Methods 

3.1. Materials and Analysis: Water Chemistry 

Water samples were collected from the inlet of the RLIC industrial cooling plant. Before beginning 

the laboratory experiments, all containers and glassware were cleaned with de-ionized water to ensure 

that no chlorine demand was present. Sample pH values were determined with a pH meter (VWR 8700) 

(VWR, Radnor, PA, USA), salinity with a refractor meter and TOC with a Skalar TC/TN Analyzer 

(Skalar Inc., Buford, GA, USA). Samples were chlorinated with calcium hypochlorite (Ca(ClO)2,  

70% active), which was obtained from Sigma Aldrich (St. Louis, MO, USA). Chlorine titrations were 

performed using an Autocat 9000 (Hach, Loveland, CO, USA) [24]. Iodine, potassium iodide (KI) and 

phenylarsine oxide were purchased from Hach (Loveland, CO, USA). 

Laboratory experiments were performed using a specific combination of control variables, including 

the desired initial stock chlorine concentration, temperature, salinity and pH. The desired stock chlorine 

concentration was set to 0.38, 0.50, 1.00, 2.00 and 5.00 mg/L; temperature was set to 19, 27, 35, 42 and 

47 °C; pH was set to 7.8, 8.0, 8.2 and 8.3; salinity was set to 40, 41, 42 and 43. The combination of these 

control variables resulted in 25 runs of good quality experimental data for analysis. 

3.2. Chlorine Measurement 

Determination of residual chlorine (often referred to, more accurately, as “residual oxidants”, due to 

the complex mixture of chlorine and bromine compounds present in chlorinated seawater) in seawater 

was conducted using Hach’s automated USEPA (United States Environmental Protection Agency, Fort 

Meade, MD, USA)—Approved amperometric titration methods [25]. In this study, 1 mL of KI and  

1 mL of acetate buffer (pH = 4) were added to 200 mL of test samples. The samples were mixed gently 

and titrated with phenylarsine oxide to the end point. The end point and concentration of residual 

chlorine was automatically calculated using titrant concentration and the volume of titrant delivered at 



J. Mar. Sci. Eng. 2015, 3 777 

 

 

the end point. Calibration standards were prepared with a serial dilution of the iodine standard solution 

(50, 250, 500, 1000, 2500, 5000 μg/L I2) with deionized water. Each standard was mixed with 1 mL of 

KI and 1 mL of acetate buffer before being titrated with phenylarsine oxide. 

3.3. Determination of Decay Rate 

To mimic the chlorination of seawater in a cooling discharge system, 4 L of seawater (TOC content: 

1.9–2.4 mg/L) were heated to a given temperature and then chlorinated. The initial addition of chlorine 

was set to meet the chlorine demand of the samples (found, by trial and error, to be 40%–50% in excess 

of desired concentration). Immediately after mixing, the chlorinated seawater samples were transferred 

into 500-mL amber bottles (Uline, Pleasant Prairie, WI, USA) with no chlorine demand; the bottles were 

then tightly closed with no headspace and put inside a water bath, and the temperature was maintained 

statically in the water bath by using a thermal controller (Delta Products Corporation, Fremont, CA, 

USA). Chlorine decay was monitored by taking 200-mL samples periodically and measuring residual 

chlorine by titration as described above. 

3.4. Determination of CBP Formation Rate 

CBP concentrations (bromoform, chloroform, dichlorobromomethane (DCBM) and 

dibromochloromethane (DBCM)) were determined with the headspace technique using a GC8000 

Fisons gas chromatography with ECD detection (Fisons Instruments Inc., Parkton, MD, USA). 

Headspace vials (10 mL) were filled with 5 mL of chlorinated solution. After quenching the excess of 

chlorine with Na2SO3 (100 µL of 100 g/L Na2SO3 solution), vials were heated for 15 min at 60 °C before 

1 mL of the headspace was withdrawn and injected on a DB-5 column (Agilent Technologies, Santa 

Clara, CA, USA). 

3.5. Time Series Data Management and Error Checking 

Data obtained from 25 laboratory experiments were assembled into a master spreadsheet:  

the spreadsheet includes the control variables (chlorination dosing concentration and temperature) and 

time series of chlorine, bromoform, BDCM and DBCM concentrations. After the data were screened for 

quality and after anomalous data were removed, two-rate exponential functions were fitted to  

25 experimental time series to obtain optimal estimates of equations governing chlorine decay.  

The duplicate samples are averaged to produce a mean time series that is used in all subsequent analysis. 

At a given time, if only one (some) of the samples is (are) acceptable, the mean value is determined from 

the other sample(s); there are cases in which only one of the samples is below the detectable limit. If all 

of the samples are unacceptable, the mean is also unacceptable, and it is flagged and excluded from any 

further analysis. The mean chlorine time series was then plotted for each run to visually identify values 

that were inconsistent with the expected monotonic exponential decay pattern (see the discussion below). 

This flagging is only done at 24 h and later, as these values have a greater impact on the exponential fits 

described below. 
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4. Results and Discussion 

Prior to the start of the study, the following assumptions were made based on preliminary studies of 

the intake seawater: 

(1) Chlorine is subject to both a rapid first order decay and a slower first order decay; 

(2) The pH, salinity and TOC/DOC content of the Arabian Gulf waters remain nearly constant for 

all samples: pH (8 ± 0.2), salinity (40–43 ppt) and TOC/DOC (3 ± 0.5 mg/L). 

4.1. Chlorine Decay Model 

An empirical formulation is used to model free available chlorine decay and CBP growth.  

The expression used here for the decay of free available chlorine concentration ܥሺݐሻ is that reported  

by [15] and [16]: 

ሻݐሺܥ ൌ ௞భ௧ି݁ܣ଴ሺܥ ൅ ሺ1 െ ሻ݁ି௞మ௧ሻ (3)ܣ

where ݐ  is time, ܥ଴  is the initial concentration (at ݐ  = 0), ݇ଵand ݇ଶ  are two decay rates and ܣ  is a 

dimensionless coefficient that defines the split between the two decay rates. Equation (3) assumes there 

are two types of chlorine demand: (1) fast reactions with labile NOM (݇ଵ term); and (2) slow reactions 

with refractory NOM (݇ଶ term). When Equation (3) is used to model free available chlorine consumption, 

the differential form is used: 

ሻݐሺܥ݀
ݐ݀

ൌ െܥ଴ሺ݇ଵି݁ܣ௞భ௧ ൅ ݇ଶሺ1 െ ሻ݁ି௞మ௧ሻ. (4)ܣ

4.2. CBP Formation Model 

The expression used here for the growth of CBP concentration ܳሺݐሻ is: 

ܳሺݐሻ ൌ ሺ1்ܣ଴ቀܥ	 െ ݁ି௞భ௧ሻ ൅ ሺ1்ܤ െ ݁ି௞మ௧ሻቁ (5)

where ்ܣ ൌ ଵ்݇ܣ ݇ଵ⁄  and ்ܤ ൌ ሺ1 െ ሻ݇ଶ்ܣ ݇ଶ⁄  are dimensionless coefficients and where ݇ଵ் and ݇ଶ் 

are fast and slow rates of reaction, respectively, between chlorine and NOM that produce a CBP.  

A detailed derivation of Equation (5) is presented in Sohn et al. [16,17,26]. The derivative form of  

Equation (5) is: 

݀ܳሺݐሻ
ݐ݀

ൌ ௞భ௧ି݁ܣ଴ሺ݇ଵ்ܥ ൅ ݇ଶ்ሺ1 െ ሻ݁ି௞మ௧ሻ (6)ܣ

GEMSS-CKM requires specification of the values of the parameters in these expressions. 

Determination of these parameters is a complex process and requires multi-level regression analysis. 

The text below describes the regression analyses performed to determine the various parameter values. 

4.3. Curve Fitting 

Fitting the expression for ܥሺݐሻ in Equation (3) to the chlorine measurements in each experimental run 

produces the optimal sets of values for ሺܣ, ݇ଵ, ݇ଶሻ. MATLAB’s Curve Fitting toolbox provides the fits 

via the nonlinear least squares method. The chlorine dosage, ܥ଴, is set to the measured chlorine at zero 
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time. For runs in which the reported chlorine at zero time is not the run maximum and is flagged,  

the chlorine data are time shifted to move the maximum value to zero time prior to fitting, and the data 

and fits are then shifted back after fitting. The fit for each run is constrained to have: 

ሺ0 ൑ ܣ ൑ 1ሻ, ሺ݇ଵ ൒ 0ሻ, ሺ݇ଶ ൒ 0ሻ (7)

The standard error, a measure of fit goodness and listed as “std. err.” in Figures 2 and 3, is defined by: 

ܧܵܵ ൌ෍ሾܥௗሺݐ௜ሻ െ ௜ሻሿଶݐሺܥ
ே

௜ୀଵ

 (8)

and: 

std. err. ൌ ඨ
ܧܵܵ
ܨܱܦܴ

 (9)

where ݐ௜ is the time of the ݅-th chlorine measurement ܥௗሺݐ௜ሻ, ܥሺݐ௜ሻ is the corresponding fit value, ܰ is 

the number of chlorine measurements and the residual degrees of freedom ܴܨܱܦ are normally ሺܰ െܯሻ 
with ܯ set to the number of parameters in the expression fit (ܯ ൌ 3 for Equation (3)). Because the 

parameters are constrained (Equation (7)), if one or more of the estimated parameters is at a limit, those 

parameters are considered fixed, and ܴܨܱܦ is increased by the number of such parameters. 

Another measure of fit goodness is the coefficient of determination, which is the fraction of variance 

in a set of data explained by the function fit to them. An adjusted coefficient of determination is provided 

in each figure (“r2 adj.”) and is defined by: 

r2 adj. ൌ 1 െ

ܧܵܵ
ܨܱܦܴ
ܵܵܶ

ሺܰ െ 1ሻ

 (10)

where ܵܵܶ is the sum of squares total: 

ܵܵܶ ൌ෍ൣܥௗሺݐ௜ሻ െ ௗ൧ܥ
ଶ

ே

௜ୀଵ

 (11)

where ܥௗ  is the mean over all ܥௗሺݐ௜ሻ. The ܴܨܱܦ factor adjusts for the number of parameters in the 

function fit. When additional parameters are added, the adjusted coefficient of determination will only 

increase if the fraction of variance explained increases by more than would be expected by chance.  

Over all 25 runs, the quality of fit varies based on the quality of data, with adjusted r² ranging from 

0.2660 to 0.9977. 

Fitting the expressions for ܳሺݐሻ in Equation (5) to the measurements for each CBP in each available 

experimental run produces the optimal sets of values for ሺ்ܣ,  ሻ. The nonlinear least squares method்ܤ

again provides the fits. The fit for each run is constrained to have: 

ሺ்ܣ ൒ 0ሻ, ሺ்ܤ ൒ 0ሻ (12)
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4.4. Chlorine Decay and CBPs Formation with Different Initial Chlorine Dosing Levels 

In this study, five initial chlorine concentration settings (0.38, 0.5, 1.0, 2.0 and 5.0 mg/L) were used 

to examine the effect of initial chlorine concentration on the availability of residual chlorine in seawater. 

The decay of residual chlorine in seawater with different initial chlorine concentrations is shown in 

Figure 2. Equation (3) was fit to each time series. 

Figure 2. Curve fit results for the effect of initial chlorine concentration on chlorine decay 

and chlorination by-product (CBP) formation. Insets show run properties and a statistical 

summary of the curve fit.  

4.5. Chlorine Decay and CBP Formation at Different Temperatures 

The level of residual chlorine in seawater is known to be temperature dependent. In this study, five 

temperature settings (19, 27, 35, 42 and 47 °C) were used to examine the effect of temperature on the 

change in concentration with the time of residual chlorine in seawater (Figure 3). 
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Figure 3. Chlorine decay and CBP formation data and fits at different temperatures.  
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4.6. Multivariate Dependencies 

Many studies have identified chlorine dosage, temperature, pH, bromide concentration (ݎܤ) and 

natural organic matter (ܱܰܯ) as the most important properties impacting the formation of CBPs [27]. 

The dependence of parameters ܣ, ݇ଵ and ݇ଶ on these properties and salinity ܵ (potentially important in 

seawater) is expressed as: 

parameter ൌ 	ܽሺܥ଴ሻ௕ሺܶሻ௖ሺܪ݌ሻௗሺܵሻ௘ሺݎܤሻ௙ሺܱܰܯሻ௚ (13)

Values for ݎܤ and ܱܰܯ were not available in the present study and, so, are not considered beyond 

this point. However, as shown below, omitting these variables does not seem to significantly weaken  

the model. 

Prior to performing the multivariate regression analysis, a dependency analysis was performed to 

understand the dependence of these parameters on the various control parameters. Due to the range of 

values considered, dependency on the control variables could be evaluated. 

The dependence of ܣ , ݇ଵ  and ݇ଶ  on control variables ܥ଴ , ܶ ܪ݌ ,  and ܵ  can be evaluated using a 

graphical approach. Each fit parameter (ܣ, ݇ଵ or ݇ଶ) is plotted against each control variable in turn, while 

holding the other control variables roughly constant. The goal is to extract information regarding the 

direction and magnitude of the partial derivative, for example, for the dependence of ܣ on ܥ଴: 

ܣ ൌ ܽሺܥ଴ሻ௕ሺܶሻ௖ሺܪ݌ሻௗሺܵሻ௘ (14)

ܣ߲
଴ܥ߲

ൌ ܾܽሺܥ଴ሻ௕ିଵሺܶሻ௖ሺܪ݌ሻௗሺܵሻ௘ (15)

The ability to determine the dependence on one control variable while holding the others constant is 

necessarily limited by the set of control variables available in the 25 runs. Therefore, instead of holding 

each of the other control variables exactly constant, grouping into small reasonable ranges was 

considered. Desired stock chlorine is used to set up the ܥ଴ groups, but the actual ܥ଴ values are the ones 

used in the dependency analysis. The chlorine groups are four equally-sized bins between 0.5 and  

5.0 mg/L. The temperature groups are three equally-sized bins between 19 and 47 °C. The pH groups 

are two equally-sized bins between 7.8 and 8.3. The salinity groups are two equally-sized bins between  

40 and 43. 

4.7. Multivariate Parameter Equation 

How these parameters vary with initial chlorine concentration and temperature was also investigated 

through multivariate regression. The kinetics of chlorine consumption and by-product formation 

reactions are known to depend on the initial residual chlorine concentration, pH, salinity, water 

temperature and the nature and concentration of natural organic matter in the water. The significance of 

most of these factors on the reaction kinetics was investigated here using the set of laboratory 

experiments conducted to establish multivariate regression relationships. 

The parameters ܣ , ்ܣ	 ்ܤ , , ݇ଵ  and ݇ଶ  are functions of the initial chlorine concentration (ܥ଴ ), 

temperature (ܶ) and ܪ݌. After estimating the values of these parameters in the curve fitting discussed 

above, a second and multivariate regression analysis is performed to determine ்ܤ ,்ܣ ,ܣ, ݇ଵ and ݇ଶ as 

functions of control variables ܥ଴, ܶ and ܪ݌. The general form of the function is: 
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ݎ݁ݐ݁݉ܽݎܽܲ ൌ ܽሺܥ଴ሻ௕ሺܶሻ௖ሺܪ݌ሻௗሺܵሻ௘ (16)

where ܽ, ܾ, ܿ, ݀ and e are obtained from multivariate regression analysis. 

4.8. Multivariate Regression 

These analyses represent simplified kinetics for chlorine using regression analyses to find functional 

relationships between the parameters of the assumed rate equations: ܣ , ்ܣ	 ்ܤ , , ݇ଵ  and ݇ଶ  and the 

experimental controls ܥ଴ , ܶ  and ܪ݌ . Such functional relationships are required to develop a set of 

algorithms for describing chlorine transformation in the numerical model. 

Based on the results of this dependency analysis, ܪ݌ and salinity were dropped as control variables 

due to the fact that these variables do not vary significantly within the seawater samples and also that a 

consistent dependency could not be determined based on the limited number of runs. Then,  

Equation (14) reduces to: 

ݎ݁ݐ݁݉ܽݎܽܲ ൌ ܽሺܥ଴ሻ௕ሺܶሻ௖ (17)

Multivariate regression analysis is applied to the chlorine parameters, and the resulting values for 

ܽ , 	ܾ  and 	ܿ  are summarized in Table 1. The multivariate functions for ܣ , ݇ଵ  and ݇ଶ  are shown in  

Figures 4–6, respectively. For brevity, these figures are only shown for chlorine and not for CBPs. 

 

Figure 4. Multivariate function resulting from regression for chlorine parameter ࡭. 

 

Figure 5. Multivariate function resulting from regression for chlorine parameter	࢑૚. 
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Figure 6. Multivariate function resulting from regression for chlorine parameter ݇ଶ. 

Table 1. Coefficient and exponents obtained for chlorine using multivariate regression analysis. 

Parameter 
Parameter ൌ  ࢉሻࢀሺ࢈૙ሻ࡯ሺࢇ

 ࢉ ࢈ ࢇ

 100 × 1.149− 1−10 × 2.737− 101 × 1.550 ܣ
݇ଵ (h−1) 5.416 × 10−4 −5.524 × 10−1 2.442 × 100 
݇ଶ (h−1) 4.612 × 10−7 −1.277 × 100 3.287 × 100 

Similar multivariate regression analysis can be done for the CBPs. Bromoform was reported in 19 of 

25 runs and is one of the major CBPs produced as chlorine is consumed. In contrast, BDCM and DBCM 

were only reported in 7 and 12 runs, respectively. Because the number of laboratory runs for BDCM and 

DBCM is insufficient and because bromoform is a major concern, the only CBP to which the 

multivariate regression analysis is applied is bromoform. Table 2 summarizes the results of the 

multivariate regression analysis for bromoform. 

The correlation between laboratory measurements and multivariate regression (with coefficients  

and exponents listed in Table 1) -predicted chlorine concentrations are shown in Figure 7 for different 

initial chlorine dosages and for all temperature settings. The value of R2 is 0.83 for C0 = 0.5 mg/L,  

0.85 for C0 = 1.0 mg/L, 0.90 for C0 = 2.0 mg/L and 0.83 for C0 = 5.0 mg/L. 

The correlation between laboratory measurements and multivariate regression (with coefficients and 

exponents listed in Table 2) -predicted bromoform concentrations are shown in Figure 8, for different 

initial chlorine dosages and for all temperature settings. The value of R2 is 0.84 for C0 = 0.5 mg/L,  

0.79 for C0 = 1.0 mg/L, 0.92 for C0 = 2.0 mg/L and 0.77 for C0 = 5.0 mg/L. 

Table 2. Coefficients obtained for bromoform using multivariate regression analysis. 

parameter 
parameter ൌ  ࢉሻࢀሺ࢈૙ሻ࡯ሺࢇ

 ࢉ ࢈ ࢇ

 1−10 × 2.330− 1−10 × 6.932− 1−10 × 1.090 ்ܣ
 1−10 × 8.955 1−10 × 1.965 3−10 × 2.872 ்ܤ
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Figure 7. Correlation between observed and multivariate regression predicted chlorine 

decay at different chlorine dosages for all temperature settings. 

The relative errors between the predicted value and real determination were practically acceptable 

based on R2 values and considering uncertainties associated with laboratory sampling analysis. 

Therefore, this prediction model would be applicable to industrial plants that access seawater with 

properties similar to those described above. 

4.9. Effect of Water Composition 

The characterization of seawater collected from the inlet of cooling seawater in RLC industrial plants 

in Qatar indicated that the pH was between 7.8 and 8.3, salinity between 40 psu and 43 psu and TOC 

between 1.9 and 2.4 mg/L. As discussed above, the predictive power of the model appears to be relatively 

independent of these variables, which is not surprising given their narrow range of variability at this site. 
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Figure 8. Correlation between laboratory measurements and multivariate regression predicted 

bromoform formation at different chlorine dosages for all temperature settings. 

4.10. Comparison with Previous Study 

The goal of the existing study is to improve upon the previously-developed relationships. As such, 

the performance of these chlorine decay and CBPs formation relationships was compared against the 

previous field study from the year 2006 (9 and 10). The contour plot of GEMSS model predicted residual 

chlorine concentrations in the vicinity of RLIC outfall using previously developed relationships and with 

the updated relationships in the vicinity of RLIC outfall during a typical flood tide stage is shown in 

Figure 9. Field measurements during this time are also shown in the same figure. Figure 9 clearly shows 

that the model-predicted results using the updated chlorine decay relationship improve the predictability 

when compared with the field measurements. In the same figure, the model-predicted bromoform 
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concentrations using the new CBP formation relationship are shown, which also compare reasonably 

well with the field measurements for the same tide stage. 

 

 

Figure 9. Correlation between laboratory measurements and multivariate regression-predicted 

bromoform formation at different chlorine dosages for all temperature settings. 

The results shown in Figure 9 illustrate model-field comparison only for one tide stage. However, 

several field measurements were conducted for other tidal stages during the year 2006 [9,10]. Therefore, 

in order to perform a more comprehensive comparison of these results, GEMSS results and the 

corresponding field measurements were plotted in Figures 10 and 11 in a more summarized fashion. The 

model predictions are much closer to field measurements in the case of new relationships when 

compared with previous relationships. Model predictability has significantly improved across the 

various tidal conditions for both chlorine and bromoform. The updated relationships have a 0.92 for R2, 

while the previous relationships had a 0.63 for R2. These results clearly show that the new relationships 

are able to support the validity of the GEMSS-CKM model and significantly improve the model’s 

predictability for a real-world case. 
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The present study has some significant improvements over the previous study: 

• Actual intake water was used, resulting in chlorination of water that consisted of NOM 

representative of the ambient RLIC waters. 

• Use of the actual intake water indicated the small variability of pH and salinity. This resulted in 

exclusion of pH and salinity as control variables. 

• In the present study, a range of 19–47 °C was used for temperature and a range of 0.38–5.00 mg/L 

was used for chlorine dosage. These wider ranges were more representative of actual operations 

and site-specific ambient conditions, which helps cover all possibilities for the predominant 

control variables, resulting in improved analysis. 

• Each lab run was done so that better temporal resolution was achieved during the early parts of 

the run with measurements every 15 min for the first hour and every 30 min for the next hour. 

This higher resolution provided additional data to help with studying the fast reaction after the 

initial dosing. 

• Each lab run was also run for a much longer time during the present study, which assured 

increased data during the latter part of the run when the slow reaction is dominant. Data during 

the slow reaction is crucial, as the water dosed with chlorine enters the RLIC water during this 

period. It is highly important to put more emphasis on the slow reaction phase, as the interaction 

with NOM in the ambient water and the resulting environmental impacts would occur during  

this period. 

• The increased number of data during the slow reaction phase (݇ଶ) provided increased quality of 

fit during this phase. Due to the longer period, the quality of fit could be evaluated for up to 

several days, as compared to the previous relationships. 

 

Figure 10. Comparison of GEMSS model predictions vs. field measurements for previous 

and present study chlorine decay rate regressions. 
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Figure 11. Comparison of GEMSS model predictions vs. field measurements for previous 

and present study bromoform formation rate regressions. 

5. Conclusions 

Use of chlorination as a method to avoid biofouling is a common practice globally. Some 

environmental concerns exist where the residual chlorine can react with the NOM of the ambient water 

to produce CBPs. The study described in this article discusses a field and laboratory study designed to 

develop a mathematical model capable of predicting residual chlorine and resulting CBP fate and 

transport. A generic mathematical model is introduced, which, then, is further customized to provide  

site-specific predictive capabilities. 

The article provides a demonstration application where a comprehensive set of laboratory experiments 

were used to parameterize mathematical models capable of predicting chlorine and CBP fate. Since the 

study was built on a previous study, several improvements were outlined as identified from experience 

gained from site-specific application. The results from this study showed that only some of the control 

parameters identified in the literature were important for predicting residual chlorine and CBP 

concentrations for this specific location. Initial chlorine concentration and temperature were identified 

to be important parameters, while pH, salinity and initial TOC concentration were found as independent 

variables due to them being almost constant at this site. Although further enhancements and steps have 

been identified within this article, the study demonstrates a comprehensive and flexible framework of 

laboratory procedures and mathematical modeling that can be applied worldwide for predictive chlorine 

and CBP modeling. This framework can be further enhanced to work with exposure models for 

environmental impact assessments to sensitive receptors. 
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Furthermore, this predictive model could also be used in the design of cooling systems with known 

general conditions and an established median lethal concentration (LC50) for local marine organisms. 

Safe concentrations of chlorine dosage and discharge can be calculated as part of cooling system designs. 

If the criteria for residual chlorine discharging into ambient seawater are determined, the optimal 

chlorine concentration for a cooling system can be calculated by measuring residual chlorine in the 

system and knowing the cooling pipeline length. 
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