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Abstract: Modern joint probability methods for estimating storm surge or flood statistics are based
on statistical aggregation of many hydrodynamic simulations that can be computationally expensive.
Flood risk assessments that consider changing future conditions due to sea level rise or other drivers
often require each storm to be run under a range of uncertain scenarios. Evaluating different flood risk
mitigation measures, such as levees and floodwalls, in these future scenarios can further increase the
computational cost. This study uses the Coastal Louisiana Risk Assessment model (CLARA) to examine
tradeoffs between the accuracy of estimated flood depth exceedances and the number and type of
storms used to produce the estimates. Inclusion of lower-intensity, higher-frequency storms significantly
reduces bias relative to storm suites with a similar number of storms but only containing high-intensity,
lower-frequency storms, even when estimating exceedances at very low-frequency return periods.
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1. Introduction

Flooding is the most frequently occurring weather-related natural disaster. In the United States,
for example, 90 percent of all natural disasters involve flooding [1]. While not all flooding is caused by
severe storms, coastal communities are particularly at risk of flooding from storm surge. Sea level rise
and, in some areas, land subsidence will compound the problem, making many coastal communities
significantly more vulnerable to storm surge hazards in future decades [2–4]. In addition, multiple
studies have concluded that the average intensity of Atlantic hurricanes is likely to increase in the
future due to projected increases in sea surface temperatures and other factors [5–8].

The Joint Probability Method with Optimal Sampling (JPM-OS) is one approach for estimating the
probability distribution function of flooding in a region [9–13]. Storms are characterized using a set of
parameters such as their minimum central pressure deficit, forward velocity, and location at landfall. A
hydrodynamic model is used to simulate storms whose parameters span the range of plausible values
that could occur in nature. A joint probability distribution function (PDF), fit to the historical record
of observed storms, is used to estimate the relative likelihood of observing each storm in the suite of
simulated, “synthetic” storms. The form of the joint PDF is based on assumptions about conditional
relationships between the storm parameters and structural assumptions about how parameters are
distributed; for example, the potential intensity of a hurricane is related to its size (radius of maximum
windspeed) [14]. The probability masses associated with each synthetic storm are combined with their
simulation results to build a cumulative distribution function (CDF) for quantitative metrics of flood
risk like surge elevations, flood depths, or direct economic damage.
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Long-range planning for flood risk management can involve evaluation of a large number of
possible flood control or risk management strategies, such as different combinations of levee and
floodwall projects, hazard mitigation, or broader coastal resiliency investments. Benefit-cost analysis
entails predicting risk reduction benefits in multiple future time periods over a project’s useful lifespan.
Uncertainty about climate change, land subsidence, or other deeply uncertain drivers may necessitate
that a range of future scenarios should be modeled. All of these factors multiply the number of
scenarios, and thus model runs, needed to conduct a thorough and complete comparison of the
benefits and costs of different flood risk reduction investments. Computational, budget, and time
constraints can thus put downward pressure on the number of storms that can be run per case. We
refer to the resulting problem of deciding what storms should be included in the analysis storm suite
as the “storm selection” process.

This problem is exacerbated in diverse and complex wetlands ecosystems, such as those present in
coastal Louisiana. In these areas, lower-resolution hydrodynamic models may produce biased results,
and simplifying assumptions regarding future climate or sea level rise impacts may be invalid [15,16].
A high-resolution hydrodynamic simulation such as the ADvanced CIRCulation (ADCIRC) model is
needed to accurately reproduce storm surge behavior from coastal storms [17].

This study has produced estimates of flood depth and damage at different exceedance probabilities
associated with storm surge hazard in coastal Louisiana using the Coastal Louisiana Risk Assessment
model (CLARA), a quantitative simulation model of storm surge flood risk developed by researchers
at the RAND Corporation [18–20]. CLARA was developed to better understand how future coastal
changes could lead to increased risk from storm surge flooding to residents and assets in Louisiana
and assess the degree to which investments in risk mitigation could reduce this risk.

We have expanded upon the original storm selection approach described in Fischbach et al. [18]
by examining flood depth and damage exceedances rather than surge elevation exceedances. The
storm selection analysis was performed as part of a larger model development effort in support of
the State of Louisiana’s 2017 Coastal Master Plan. This paper draws largely from Fischbach et al. [20],
a technical report describing the larger project; interested readers may refer to that document and
Fischbach et al. [18] for additional details about CLARA.

Flood depth exceedance and expected annual damage estimates were produced using a reference
set of 446 storms—the complete corpus of storms developed for use in recent JPM-OS studies of the
Gulf coast—and with various subsets of the reference set, ranging from 40 to 304 storms. This paper
examines the biases in flood depth and damage exceedances introduced by reducing the storm suite
relative to a full implementation of JPM-OS using 446 storms. We also discuss the estimated parametric
uncertainty associated with results from different storm suites. The results provide guidance for the
types and size of storm suites that can be used to produce a good approximation of the results from
the reference case when a full implementation of JPM-OS is computationally infeasible or prohibitively
expensive for regions like coastal Louisiana.

2. Methods

The original storm selection problem was to choose a suite of storms to simulate that, when used
to fit a surge response surface, produces a probability distribution of surge that closely replicates the
true underlying distribution [9]. Prior analyses developed a suite of 304 idealized, synthetic storms that
are defined parametrically by their central pressure cp, radius of maximum windspeeds rmax, forward
velocity v f , longitudinal location at landfall x, and angle of incidence at landfall θl . For the Louisiana
coastline, landfall was defined as the point when the eye of the storm crosses 29.5˝ N latitude [21,22].
These studies focused on representing storms that produce Category 3 or greater wind speeds on
the Saffir-Simpson scale (minimum central pressure of 960 mb or lower); later work increased the
number of available storms to 446 by adding intermediate storm tracks and less extreme storms with a
minimum central pressure of 975 mb.
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The 446 storms were run through a dynamically coupled set of storm surge and wave models:
ADCIRC and Simulating WAves Nearshore (SWAN), respectively [17,23,24]. These models were
adapted and calibrated to current environmental and landscape conditions by other researchers
working with the State of Louisiana [20]. The storms were also run through these models using coastal
landscape and sea level conditions in the year 2065 as projected for the “Less Optimistic” scenario
used in Louisiana’s 2012 Coastal Master Plan [16,25]. An initial screening analysis, described in the
Experimental Design section, used results from the current conditions model outputs. The final,
detailed analysis focused on the Less Optimistic future scenario, rather than current conditions. The
higher level of risk (particularly in areas enclosed by ring levees) associated with the Less Optimistic
future allows more information about bias to be drawn from a wider range of return periods, as there
are fewer return periods where no flooding occurs.

Using this approach, we estimate flood depth and damage statistics at a large number of spatial
grid points. Estimates of flood statistics derived from the full 446-storm suite—referred to as the
reference set—are used as a reference standard for comparison. We ran CLARA’s modified JPM-OS
procedure for a relatively large number of subsets of the reference set to investigate the use of smaller
suites of synthetic storms. While we cannot assert that the 446-storm results are themselves unbiased
or a true representation of the underlying storm risk, they represent the most complete set currently
available for this region and are the best available basis for comparison when evaluating subsets.

In some cases, subsets were formed by eliminating storms from the reference set in ways that we
hypothesized would introduce minimal bias. In other cases, subsets were formed by reducing the
number of parameters that vary within the storm subset. For example, the storm tracks represented in
the reference set are based on analysis of historic storm landfalls, in which a mean angle of incidence
θl was calculated for each landfall point x. The reference set includes storms that follow the mean
historic landfall angles, as well as storms that proceed along tracks 45 degrees to either side of the
mean angle; some of the subsets we tested were formed by eliminating these “off-angle” tracks from
the reference set. Further details on the subsets of storms considered are provided in the experimental
design section of this manuscript.

For each subset of the reference set we proceeded as follows.

1. Fit response surfaces for peak storm surge and peak significant wave heights at each location not
enclosed by a levee represented in the CLARA model (the “unenclosed grid points”) and at special
points (“surge and wave points,” or SWP) 200 meters in front of levees and floodwalls along
the boundary of enclosed protection systems [20]. Separate response surfaces are fit for surge
hydrographs (surge elevations over time) and wave periods at the SWPs. The wave heights and
periods are calculated at the time of peak surge in the surge hydrograph; the response surfaces
for these quantities are fit using these values, and they are assumed to be constant over time
(Estimated wave heights are also limited by the depth of the underlying surge. Holding wave
heights and periods constant throughout the hydrograph reduces computational complexity and
provides a first-order approximation of wave behavior during the points in the surge hydrograph
where surge levels are high (i.e., when overtopping may occur).).

2. Estimate peak surge and significant wave heights, using the response surface fits to obtain the
predictions; also predict the surge hydrographs and wave periods at SWPs. In unenclosed areas,
the effective flood elevations resulting from each synthetic storm are calculated as the sum of
peak surge and the free-wave crest height. At SWPs, the predicted surge and wave characteristics
are used as inputs to the flood module (as described in Step 4).The response surface fits are based
upon the ADCIRC and SWAN outputs for each storm included in a given subset; these storms
are sometimes referred to as the “training set” in the ensuing discussion. In some cases, the
response surfaces can be used to predict surge and wave characteristics for a larger number of
synthetic storms than those used to fit the response surface. For example, Set D3 includes storms
on each track with a central pressure of 960 mb and rmax values of 11 and 35.6 nautical miles. The
response surface is fit using these storms to estimate the effect of rmax on surge and waves. The
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predictions also include a storm with an intermediate rmax of 21 nautical miles. Predictions are
made for all storms in the 446-storm set that can be estimated using a response surface based on
a given subset. For example, if a subset only includes storms with v f = 11 knots, the response
surface cannot identify the marginal effect of v f on surge and waves, so synthetic storms with
other values for v f are excluded from the set of synthetic storms used to generate predictions.
A general rule is that for any combination of track and angle represented in a training set, the set
of predicted synthetic storms run through the rest of the steps listed below includes all storms
from the 446-storm corpus corresponding to that track and angle, excluding storms with v f = 6 or
17 knots if the training set does not also include storms with variation in the forward velocity.

3. Partition the JPM-OS parameter space by the synthetic storms used for predictions and estimate
the probability mass associated with each synthetic storm. The probabilities assigned to each
synthetic storm are derived using maximum likelihood methods on a data set of observed historic
storms, under certain structural assumptions about the joint probability distribution of the storm
parameters [26].

4. Run the predicted synthetic storms through CLARA’s flood module using the predicted SWP
hydrographs and wave heights to obtain final still-water flood depths on the interior of enclosed
protection systems. The flood module includes analysis of overtopping from surge and waves,
system fragility and the consequences of breaches, and routing of water between interior polders,
also accounting for pumping capacity and rainfall [20,27]. The probability of system failure is
modeled as a function of overtopping rates [28].

5. Combine the flood depths and probability masses associated with each predicted synthetic storm
to build the distribution functions of flood depths at each CLARA grid point.

6. Extract the flood depth exceedance values from the cumulative distribution functions at various
return periods (A flood depth value with a (1´1/n)% annual exceedance probability (AEP)—the
chance of occurring or being exceeded in a given year—is referred to as having an n-year return
period. For this study, we recorded 5-, 8-, 10-, 13-, 15-, 20-, 25-, 33-, 42-, 50-, 75-, 100-, 125-, 150-,
200-, 250-, 300-, 350-, 400-, 500-, 1000-, and 2000-year exceedances.).

7. Run the flood depth exceedances through CLARA’s economic module to estimate economic damage
exceedances. Also estimate the expected annual damage (EAD) associated with each storm subset.

Full details on how each of these steps are accomplished (for example, the specification of the
response surface model) can be found in Fischbach et al. [20]. We have found that deriving flood depth
exceedance curves from small numbers of storms can be problematic in enclosed areas behind levee
systems, with large, sudden jumps in exceedance values; for example, one might estimate a 12-foot
difference in flood depths between the 100-year and 125-year exceedances [29]. If one uses a small
number of storms, leaving large gaps in the parameter space, each storm may produce very different
results from its “nearest neighbor” storms. This is exacerbated by the nonlinear relationship between
surge and wave heights and levee overtopping, and also by the impact of system fragility. As a result,
using the response surface to generate predicted synthetic storms with intermediate parameter values
not represented in the training set is necessary for “smoothing out” the exceedance curve and making
it less sensitive to small changes in the probability weights assigned to each storm. For consistency,
when running synthetic storms through the CLARA flood module, we use the response surface
predictions for all synthetic storms tested as part of a particular test set (as opposed to using the actual
hydrodynamic modeling outputs for storms, when available, and response surface predictions only
for storms outside of the training set).

The performance of each storm subset was evaluated by summarizing the bias in predicted flood
depths at various return periods, relative to the results generated by the reference set. We also analyzed
and compared the estimated standard errors associated with each subset.
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3. Experimental Section

We first conducted a screening-level analysis by evaluating a large number of storm
suites—sixteen in total, inclusive of the 446-storm reference set. For the initial screening, flood depths
were calculated at a total of 18,273 grid points across the coast. These grid points were chosen by
selecting a limited sample of 24 watersheds that varied by (a) size, (b) proximity to the coast, (c) degree
of economic development, and (d) whether the watershed is protected by some federally-accredited
levee or floodwall system. (The full CLARA v2.0 study region for coastal Louisiana consists of
77,643 grid points comprising 117 watersheds (excluding points consisting of open water). Grid
point resolution varies with the concentration of population and assets, with a maximum distance of
1 km between neighboring points.) Watersheds protected by a fully-enclosed ring levee system were
excluded from the initial screening sample to avoid running CLARA’s flood module (step 4 above) as
part of the screening exercise. Damage results were also excluded from the screening analysis.

The ten JPM-OS tracks used in the 2012 Coastal Master Plan analysis are sometimes referred to as
primary tracks. They were labeled E1 through E5 and W1 through W5 for tracks in the eastern and
western halves of the coast, respectively. Secondary storm tracks correspond to paths in between the
primary tracks and were denoted by a B at the end of the track name (e.g., track E1B). Tracks also vary
by their angle of incidence made with the coastline upon landfall. Tracks following the mean landfall
angle are referred to as central-angle tracks; those making landfall at angles 45 degrees less or greater
than the mean angle are referred to as off-angle tracks.

The modeled subsets were chosen to be collections of storms with easily interpretable and describable
characteristics, to have variation in the total number of storms, and to have variation in the types of
storms represented over the subsets. They were also chosen to avoid groups of storms that could cause
identifiability or other performance issues in the response surface model. Louisiana’s Coastal Protection
and Restoration Authority (CPRA) also identified a need for storm sets with fewer than 154 storms—and
preferably fewer than 100 storms—that could be used to evaluate a range of individual structural protection
projects during 2017 Coastal Master Plan model production using available computing resources. Table 1
describes what types of storms comprise each of the storm suites evaluated in the screening-level analysis.
The number of storms listed in the table represents the number of storms in the training set used to fit the
response surface in Step 1 of the procedure described in the Methods section; as noted in the description
of Step 2, the set of predicted synthetic storms run through the rest of the procedure may be larger than
the training set. However, the size of the training set is the relevant number to discuss when comparing
storm suites, as it represents the number of storms that must be run through the more computationally
intensive ADCIRC and SWAN models.

Table 1. Characteristics of storm suites selected for screening-level analysis.

Set Storms Description

S1 446 Reference set
S2 40 2012 Master Plan (MP) storm suite: 10 primary storm tracks, 4 storms per track varying cp and rmax
S3 90 2012 MP storm suite expanded to 9 storms per track that vary cp and rmax
S4 304 LACPR storm suite: all storms in reference set, except those with 975 mb cp
S5 194 All storms from LACPR storm set with 11-knot v f
S6 154 All storms from LACPR storm set with 11-knot v f on primary storm tracks
S7 216 All storms from reference set with 11-knot v f on primary storm tracks
S8 144 All storms from reference set on primary storm tracks with 900 mb or 930 mb cp
S9 120 All LACPR storms on primary, central-angle tracks (includes variation in v f )
S10 264 All storms from reference set with 11-knot v f
S11 50 2012 MP storm suite expanded to 5 storms per track varying cp and rmax
S12 60 Set 11, plus storms with 975 mb cp and central values for rmax
S13 120 All central-angle, primary-track storms with 11-knot v f (includes 975 mb storms)
S14 148 Set 13, plus all 960 mb and 975 mb storms on secondary storm tracks
S15 154 Set 3, plus all 960 mb and 975 mb storms on primary, off-angle storm tracks
S16 182 Set 3, plus all 960 mb and 975 mb storms on secondary tracks or primary, off-angle tracks

Notes: cp—central pressure; rmax—radius of maximum windspeed; v f —forward velocity; LACPR—Louisiana
Coastal Protection and Restoration study [22].
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The initial findings led to the development of several new test suites, ranging from 60 to 154 storms,
for the detailed analysis. The final sets tested, including number of storms and a description of key
characteristics, are shown in Table 2 below. Note that the storm set ID numbers for the detailed analysis
do not all match up with the IDs used in the screening analysis; although some sets from the screening
analysis were included in the detailed analysis, the ID numbers were designated independently. The
detailed analysis included estimation of flood depth exceedances at all grid points across the coast,
including in areas enclosed by ring levees. Damage exceedances and bias in EAD were also analyzed
for these storm suites.

Table 2. Characteristics of storm suites selected for detailed investigation.

Set Storms Description

D1 446 Reference set

D2 40 2012 Master Plan (MP) storm suite: 10 primary storm tracks, 4 storms per track varying
cp and rmax

D3 60 2012 MP storm suite, expanded to 5 storms per track varying cp and rmax, plus storms
with 975 mb central pressure and central values for rmax

D4 90 2012 MP storm suite, expanded to 9 storms per track varying cp and rmax

D5 90 2012 MP storm suite, expanded to 7 storms per track (excludes one 930 mb and one
900 mb storm), plus 975 mb storms using extremal (rather than central) rmax values

D6 92 Set 3, plus 960 mb and 975 mb storms on off-angle tracks only in E1-E4

D7 92 Set 3, plus 960 mb and 975 mb storms on off-angle tracks only in W3-W4, E1-E2

D8 100 All central-angle, primary-track storms with 11-knot v f , plus 975 mb storms with central
rmax values

D9 110 All central-angle, primary-track storms with 11-knot v f , plus 975 mb storms with
extremal rmax values

D10 120 All central-angle, primary track storms with 11-knot v f , including all 975 mb storms

D11 154 Set 4, plus all 960 mb and 975 mb storms on primary, off-angle storm tracks

Notes: cp—central pressure; rmax—radius of maximum windspeed; v f —forward velocity.

The off-angle tracks for sets D6 and D7 were selected based on their paths passing near to
New Orleans, and thus having the potential for significant flooding in urban centers where a large
number of grid points and economic assets are densely packed. Our hypothesis was that including
off-angle storms affecting the greater New Orleans region would improve accuracy in estimating how
likely it is for the city to experience the catastrophic flooding associated with levee failures.

4. Results and Discussion

An example result from the screening analysis is shown in Figure 1. The depicted storm suite
(Set S3 from Table 1) is comprised of nine storms from each of the ten primary tracks. Within a track,
storms vary by cp and rmax. The central pressure values represented are 900, 930, and 960 mb; storms
with 975 mb pressures were not included. All storms have the central value for v f of 11 knots. The
figure illustrates bias in the estimated 100-year flood depths, relative to the reference set. Note that this
particular suite tends to strongly overpredict 100-year depths (blue coloring), relative to the 446-storm
reference set, in the far eastern portion of the state, east of New Orleans and the Mississippi River,
while it tends to underpredict depths (orange coloring) in the watersheds farthest west.
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Figure 1. Deviation from reference set in 100-year flood depth exceedances in screening analysis
watersheds from a suite consisting of 90 storms (screening set S3).

Figure 2 summarizes the findings of the screening-level analysis. It shows the root mean squared
error (relative to the reference set), averaged over all grid points in the screening watersheds, for each
modeled storm suite; the figure plots this average bias as a function of the number of storms in each
suite. Blue points represent storm suites which contain at least one storm with a 975 mb minimum
central pressure, the dot shape represent suites which contain off-angle storm tracks. Sets 8 and 9
(as well as the reference set) from the screening analysis also contain storms with non-central values
for forward velocity.
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flood depths.

In addition to the dimensions illustrated in the figure, sets S4, S8, and S9 contain storms with
non-central values for forward velocity. The screening results suggest that including higher-frequency
storms with 975 mb central pressure improved statistical performance. By contrast, secondary or
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off-angle storm tracks and storms with non-central values for forward velocity did not yield similar
improvement and were generally not included in the more detailed final testing and results.

4.1. Flood Depth Bias and Variance Comparisons

Figure 3 summarizes the average coastwide 100-year flood depth bias (root mean squared error,
y-axis) and coefficient of variation (point size) for each set in the detailed analysis, plotted against the
number of storms in a given storm suite (x-axis). As before, colors indicate whether the set includes
975 mb storms, and shape indicates whether off-angle tracks are included. Bias is estimated relative to
the flood depth results from the reference set.

Summary results show that average bias in flood depths at the 100-year interval varies from less
than 0.25 m to nearly 1 m, depending on the storm sample. Substantial bias is observed for Set D2,
the 2012 Coastal Master Plan suite, compared with the other candidate sets tested. All additional sets
with more than 40 storms improve upon the 40-storm results. In fact, increasing the number of storms
to 60 (Set D3) leads to substantial improvement, reducing average bias by more than a half a meter.
Similar results are observed at other return periods.J. Mar. Sci. Eng. 2016, 4, 10  8 of 18 
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We focused primarily on suites of storms that include 975 mb storms because the screening
analysis results suggested that such suites outperform suites that exclude the less intense storms. The
relatively poor performance of sets D2 and D4, the suites with no 975 mb storms, suggests that this is a
still a valid conclusion when considering the full coastal study region. Improvement is less apparent
when off-angle tracks are included, however, especially for sets in which only certain off-angle tracks
were included (e.g., Sets D6 and D7).

Figure 4 illustrates how the average bias, again measured by RMSE, changes for each storm
suite at different return periods of the flood depth distribution. The x-axis is the return period, on a
logarithmic scale. The thickness of the lines shown in the figure reflects the coefficients of variation, a
measure of the uncertainty around derived point estimates; thicker lines denote greater uncertainty.
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With few exceptions, the relative order of performance across storm subsets is consistent over
a wide range of return periods. Sets D2 and D4 are conspicuous in their poor average performance;
neither set contains any storms with central pressures of 975 mb, further emphasizing the importance
of including higher-frequency events in the training set. Interestingly, this effect is still particularly
apparent in the tail of the distribution beyond the 100-year AEP interval, indicating that exclusion of
higher-frequency events from the response surface model also skews the model’s predictive accuracy
for more extreme synthetic storms.

In general, average bias is smaller at 50-year and more frequent return periods. This is due to the
large number of points in which no flooding occurs for these exceedances. The absolute error is more
likely to be small when the depth estimates themselves are small. Set D11, with 154 storms, performs
well across most of the distribution, and better than any smaller sets. However, several of the sets with
fewer than 100 storms are not far behind in terms of average bias across the exceedance distribution.J. Mar. Sci. Eng. 2016, 4, 10  9 of 18 
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Figure 5 shows a sequence of maps that display the spatial patterns of bias, relative to the reference
set, for three of the storm suites tested. Flood depths at the 100-year return period, as estimated using
the reference set, are shown for comparison in Figure 6; when examining the three maps in Figure 5,
this gives some indication of the magnitude of the biases relative to the baseline flood depths. When
examining the spatial distribution of bias, some interesting patterns emerge. The Set D2 results,
representing the 2012 Coastal Master Plan’s 40-storm sample, show a substantial overestimate of flood
depths across nearly the entire study region. This effect occurs because of the types of storms excluded
from Set D2; it only contains extreme central-angle storms on primary tracks, leaving out both 975 mb
and off-angle storms. For instance, Set D2 excludes off-angle storms that pass well to the east of New
Orleans. These storms would tend to lower the estimated flood depth exceedances in St. Bernard
Parish, so as a result Set D2 has positive bias in that region.

Set D3, which includes 60 storms, improves dramatically on the Set D2 results. Some positive bias
is still noted in the western portion of the coast and many areas east of the Mississippi River, but the
magnitude is notably lower than Set D2. In addition, Set D3 actually underestimates 100-year flood
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depths compared with the reference in some enclosed areas, including the East Bank of the Greater
New Orleans Hurricane Storm Damage Risk Reduction System (HSDRRS) and the Larose to Golden
Meadow levee system.

Set D11 yields the lowest overall bias when averaged over all points, and it shows balanced results
coastwide when looking at geospatial patterns. Positive bias is still observed in the western parishes,
but again with a lower magnitude than Sets D2 or D3. There are some instances where the 100-year
flood depth estimates are both positively and negatively biased within the same watershed. When
these differences in flood depths are translated into damage, the coastal and parish-level results are
more similar to those of the reference set.

The differences between enclosed and unenclosed areas are clearly shown in Figures 7 and 8 (note
the different scale on the y-axis between figures). The curves shown in Figure 4 are broken out by showing
the same results for points enclosed by (Figure 7) and unenclosed points (Figure 8), respectively.J. Mar. Sci. Eng. 2016, 4, 10  10 of 18 
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HSDRRS was accredited in 2014 by the United States Federal Emergency Management Agency
as protecting the Greater New Orleans area against at least 100-year surge levels [30]. However, the
same standard may not be met in 2065 under the Less Optimistic future scenario assumptions in a
future without further mitigating actions. The precise level of protection provided by HSDRRS is
uncertain [31]. As such, the average coefficient of variation is relatively large, over 100% for many
storm suites over large portions of the distribution.

In unenclosed areas, the performance of all suites but Set D2 is relatively good and largely similar.
With the exception of Set D2, all storm suites have an average bias of less than half a meter at all
exceedance intervals, and the average uncertainty in the predicted values is also considerably smaller
than for points within HSDRRS. This reflects that the exceedance curves in unenclosed areas have
lower variance and are more stable, in the sense that few points experience sudden, sharp increases in
flood depths at any point of the distribution.

The greater variation in performance in enclosed areas illustrates that flood depth estimates
are more sensitive to the choice of storm suite when the accuracy and uncertainty in response
surface predictions is further compounded by interactions with engineered flood protection systems.
Maintaining accuracy with fewer storms is easier for prediction of storm surge elevation exceedances,
as in the original storm selection problem faced by JPM-OS, than for flood depth exceedances when
accounting for the levee and floodwall failures, overtopping, and interior drainage dynamics.

Figure 9 focuses in on differences in storm suite performance for enclosed points within HSDRRS,
on the east and west sides of the Mississippi River, at the 500-year AEP interval. Consistent with what
was shown in Figures 7 and 8 results are most uncertain and show the greatest variance in the East
and West Bank areas. Except for Set D2, all sets considered yield an average bias of approximately
0.3 meters (1 foot) or less in enclosed locations on the East Bank. Uncertainty is greater on the West
Bank. Similarly, Sets D3 through D11 also result in less than 1 meter of average bias in enclosed areas
not within HSDRRS, with many sets also yielding less than 0.3 meters of average bias in these areas
(results not shown).

J. Mar. Sci. Eng. 2016, 4, 10  12 of 18 

 

uncertain [31]. As such, the average coefficient of variation is relatively large, over 100% for many 

storm suites over large portions of the distribution. 

In unenclosed  areas,  the performance of  all  suites but Set D2  is  relatively good  and  largely 

similar. With the exception of Set D2, all storm suites have an average bias of less than half a meter 

at all exceedance intervals, and the average uncertainty in the predicted values is also considerably 

smaller than for points within HSDRRS. This reflects that the exceedance curves in unenclosed areas 

have  lower variance  and are more  stable,  in  the  sense  that  few points  experience  sudden,  sharp 

increases in flood depths at any point of the distribution. 

The greater variation in performance in enclosed areas illustrates that flood depth estimates are 

more sensitive to the choice of storm suite when the accuracy and uncertainty in response surface 

predictions  is  further  compounded  by  interactions  with  engineered  flood  protection  systems. 

Maintaining accuracy with fewer storms is easier for prediction of storm surge elevation exceedances, 

as in the original storm selection problem faced by JPM‐OS, than for flood depth exceedances when 

accounting for the levee and floodwall failures, overtopping, and interior drainage dynamics. 

Figure  9  focuses  in  on  differences  in  storm  suite  performance  for  enclosed  points  within 

HSDRRS, on the east and west sides of the Mississippi River, at the 500‐year AEP interval. Consistent 

with what was shown  in Figure 7 and Figure 8, results are most uncertain and show  the greatest 

variance in the East and West Bank areas. Except for Set D2, all sets considered yield an average bias 

of approximately 0.3 meters (1  foot) or  less  in enclosed  locations on  the East Bank. Uncertainty  is 

greater on the West Bank. Similarly, Sets D3 through D11 also result in less than 1 meter of average 

bias  in  enclosed  areas not within HSDRRS, with many  sets  also yielding  less  than  0.3 meters of 

average bias in these areas (results not shown). 

 

Figure 9. Average bias and variation, 500‐year flood depths, east and west banks of the Greater New 

Orleans Hurricane Storm Damage and Risk Reduction System. 

Figure 9 confirms that Set D11 is the best or near‐best performer in terms of mean bias across all 

enclosed areas. For sets with fewer than 100 storms, performance depends on HSDRRS location. Set 

D3 performs substantially worse, however, on the West Bank, as do many other sets. By contrast, Set 

D7 was specifically designed to improve performance in the West Bank area of HSDRRS. This suite 

Figure 9. Average bias and variation, 500-year flood depths, east and west banks of the Greater New
Orleans Hurricane Storm Damage and Risk Reduction System.



J. Mar. Sci. Eng. 2016, 4, 10 13 of 18

Figure 9 confirms that Set D11 is the best or near-best performer in terms of mean bias across all
enclosed areas. For sets with fewer than 100 storms, performance depends on HSDRRS location. Set
D3 performs substantially worse, however, on the West Bank, as do many other sets. By contrast, Set
D7 was specifically designed to improve performance in the West Bank area of HSDRRS. This suite
adds storms to Set D3, including off-angle tracks for the middle of the coast with landfall locations
observed to have the greatest effect on this portion of HSDRRS. The results bear this out: Set D7 is the
best overall set in terms of bias in the West Bank, even slightly better than the larger Set D11. However,
Set D7 produces greater bias in the East Bank HSDRRS, and is among the worst performers when
looking at enclosed areas other than the West Bank. It also has a significantly larger coefficient of
variation on the West Bank than Sets D5 and D6, which both have nearly identical average RMSE
and number of storms to Set D7. This illustrates that while it may be possible to carefully tailor a
storm suite to perform well in a particular region, results may be significantly worse in other, even
nearby, areas. It can be difficult to predict the overall performance of a storm set, which emphasizes
the importance of conducting a storm selection analysis like this on at least one landscape scenario
before embarking on a major flood risk assessment encompassing many future scenarios, time periods,
and system configurations.

4.2. Damage Bias Comparisons

Next, we sought to understand how the potential bias from different storm suites translates to
bias in damage estimates. Somewhat surprisingly, we found that the total bias associated with a suite
of storms was typically driven by bias in unenclosed areas, although such regions are more sparsely
populated and contain fewer assets than in protected areas like New Orleans. The greater protection
in enclosed areas provided by federal levee systems instead meant that there was a lower projected
baseline risk in those regions; most storm suites did not predict extensive flooding in enclosed areas
except at lower-frequency AEPs, so this resulted in less bias.

Figure 10 below shows a similar spatial breakdown as Figure 9, for example, but instead displays
bias in terms of damage (EAD, median results) estimated by the CLARA v2.0 economic damage model.
Set D2, which yields very high EAD bias overall, is omitted from the figures below for clarity. Figure 10
confirms the performance noted above, with roughly the same overall ranking of storm suites by EAD
bias as with flood depths. Sets D5, D6, D7, and D11 all have a cumulative bias of less than $0.5 billion
across all points. D3 shows a total bias over all points of about $1.5 billion; D8 has bias of $2 billion,
while D4 has $2.5 billion.

Increasing the number of storms from 60 up to 90–110 does not substantially improve EAD
performance for enclosed areas; Sets D4 and D8 consistently produce worse error than Set D3, despite
having 90 and 100 storms, respectively. Instead, it is the addition of 975-mb storms that appears to
drive improvement. Set D4 has no such storms, while Set D8 contains half as many 975-mb storms
than the other suites with 90–110 storms.

Similarly, Figure 11 shows a summary by coastal Louisiana parish (county) of bias in EAD
compared to the reference set. Some storm suites, regardless of coastwide performance, produce large
bias in specific parishes. For example, Set D4 produces approximately 50% more damage in Jefferson
and St. Bernard Parishes than the 446-storm reference set. In turn, this leads to a substantial upwards
bias in coastwide EAD because these parishes contain large concentrations of assets.

Sets D5, D6 and D11 are the highest performers when disaggregating results over the parishes;
they are the only storm sets with only one parish’s bias over 20% and a maximum bias of magnitude
25% or less. The maximum bias for any parish from Set D11 is 22% in Calcasieu Parish, which is in
the far west of the state and includes relatively few assets. All storm suites overestimated EAD in
Calcasieu, with errors ranging from 14 to 41%, indicating a general difficulty in reproducing estimates
of risk so far west with a small number of storms. Each of the other storm suites produces biases
as large or larger in several parishes. Few storm sets performed well, with errors of 10% or less, in
both Orleans and Jefferson parishes, the two parishes with the largest value of assets at risk. EAD
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performance in non-HSDRRS parishes, by contrast, is typically more similar across all sets tested in
this round of analysis.J. Mar. Sci. Eng. 2016, 4, 10  14 of 18 
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The results discussed so far have portrayed the median (50th percentile) outputs over the sampling
design, with the coefficients of variation giving some information about the parametric variation across
different suites. Figure 12 illustrates the distribution of EAD in another way. The y-axis indicates the
bias in coastwide EAD relative to the full 446-storm reference set; the three points for each subset, from
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bottom to top, represent the bias associated with the 10th, 50th, and 90th percentile values, respectively,
of EAD.J. Mar. Sci. Eng. 2016, 4, 10  15 of 18 
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The primary takeaway here is that many storm suites end up with similar ranges of uncertainty in
terms of EAD bias relative to the reference set, when aggregating damage coastwide. Considering only
suites with fewer than 100 storms, Set D5 is the best performer at the median, but includes a wider
range of results across the parametric distribution than Set D6, and the 10th percentile estimate is that
Set D5 may underestimate EAD more strongly than any other set. Set D3 has the smallest range of
variation in bias between the 10th and 90th percentile estimates, but it has a larger median bias than
most of the larger sets; Set D6 has the second smallest range of uncertainty. Six sets underestimate
EAD at the 10th percentile but overestimate it at the median and 90th percentiles.

5. Conclusions

The storm selection analysis shows a tradeoff between the number of storms and the resulting
bias when compared with the reference set of 446 storms. Results show that nearly all storm sets
tested produce lower bias when compared with the 2012 Coastal Master Plan 40-storm suite (Set D2).
Aside from the fact that Set D2 was the smallest storm suite tested, this should not be surprising, given
that the 2012 Coastal Master Plan was intended to model damage associated only with Category 3 or
greater hurricanes. Substantial improvement is noted when storms with 975 mb central pressure were
included, as well as with the addition of off-angle storms in some cases. The inclusion of storms with
variation in forward velocity was found to have little impact on performance.

Of the storm suites tested, Set D6 (92 storms) appears to yield the best balance of results. It
shows relatively low bias compared with the reference set in terms of both flood depth and damage,
no concerning spatial patterns of bias, and reasonable performance in enclosed areas (particularly
Greater New Orleans). It also has the second smallest range of uncertainty in damage among the suites
analyzed. Set D3 is notable for producing less average error in flood depths than expected given that it
contains only 60 storms.

The results of this storm selection analysis suggest some insights for future planning studies using
a JPM-OS approach with high-resolution storm surge and wave modeling. First, the number of storms
needed to estimate unbiased flood depths or damages can vary greatly depending on the size of the
geographic area of focus, landscape type and configuration, presence of hurricane protection structures,
and range of exceedance probabilities targeted. In some cases—for instance, in areas without protection
structures or with relatively similar landscape characteristics over a broader area—a smaller storm
suite may yield acceptably low bias, with results suitable for screening or planning-level decisions.

In some areas, however, large numbers of storms are needed to avoid bias and assess a wide
range of plausible storm impacts from storms with different characteristics. Larger storm suites are
also needed to support flood protection engineering and design studies, where decision makers need
confidence that the widest range of plausible outcomes are simulated and adequate factors of safety
have been developed accordingly.

For the 2017 Coastal Master Plan, a hybrid approach will be adopted: a smaller suite of 60 storms
(Set D3) will be used for preliminary evaluation and testing of individual risk reduction projects,
but coastwide alternatives—including hurricane protection structures, ecosystem restoration, and
nonstructural risk reduction (hazard mitigation for buildings)—will be evaluated and compared using
a larger set of 92 storms (Set D6). This two-step approach will help to confirm or validate preliminary
project-level results and ensure that potential risk and damage reduction benefits from the plan as a
whole are relatively unbiased.
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