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Abstract: The general vorticity equation for turbulent compressible 2-D flows with variable viscosity
is derived, based on the Reynolds-Averaged Navier-Stokes (RANS) equations, and simplified versions
of it are presented in the case of turbulent or cavitating flows around 2-D hydrofoils.
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1. Introduction

The vorticity equation has been utilized by several authors in the past to analyze the viscous
flow around bodies. Vortex element (or particle, or blub) and vortex-in-cell methods have been used
for several decades for the analysis of 2-D or 3-D flows, as described in Chorin [1], Christiansen [2],
Leonard [3], Koumoutsakos et al. [4], Ould-Salihi et al. [5], Ploumhans et al. [6], Cottet and Poncet [7],
and Cottet and Poncet [8]. Those methods essentially decouple the vortex dynamics (convection and
stretching) from the effects of viscosity.

In recent years, the VIScous Vorticity Equation (VISVE), has been solved by using a finite volume
method, without decoupling the vorticity dynamics from the effects of viscosity. This method has been
applied to 2-D and 3-D hydrofoils, cylinders, as well as propeller blades as described in Tian [9], Tian
and Kinnas [10], Wu et al. [11], Wu and Kinnas [12], Wu et al. [13], Wu and Kinnas [14]. The major
advantage of this approach is that it requires a significantly smaller computational domain than RANS
over which VISVE must be solved, as shown in Figure 1, due to the fact that the vorticity vector
vanishes much closer to the body surface (in the order of 1–3 maximum body thickness), as opposed to
the velocity vector which vanishes much farther (in the order of 5–10 body lengths) from the body
surface. Due to the significantly smaller domain, VISVE requires a much smaller number of cells (5–50
times smaller) than RANS for the same accuracy of the predictions, and subsequently, a significantly
smaller CPU time, as reported in Wu et al. [11].

All applications of VISVE mentioned above have addressed laminar flow of an incompressible
fluid. However, in the case of incompressible turbulent flow the vorticity equation must be modified
since the viscosity (molecular + turbulent) varies within the flow. In addition, in the case of cavitating
flow, treated via a mixture model, both the density and the viscosity vary within the flow. In this
work the general equation in terms of the mean vorticity is derived in the case of turbulent flows with
variable density and viscosity, and then simplified in the case of turbulent or cavitating flows around
2-D hydrofoils.

J. Mar. Sci. Eng. 2020, 8, 191; doi:10.3390/jmse8030191 www.mdpi.com/journal/jmse

http://www.mdpi.com/journal/jmse
http://www.mdpi.com
https://orcid.org/0000-0002-5615-2682
http://dx.doi.org/10.3390/jmse8030191
http://www.mdpi.com/journal/jmse
https://www.mdpi.com/2077-1312/8/3/191?type=check_update&version=2


J. Mar. Sci. Eng. 2020, 8, 191 2 of 11

Figure 1. Typical domain and grids for flow around hydrofoil, from RANS with 150K cells (left) and
from VISVE with 28K cells (right). Note the image on the right is drawn at a larger scale than that on
the left.

2. Review of Reynolds-Averaged Navier-Stokes Equations

We consider flow of a fluid, where ~q = (u1, u2, u3) is the mean velocity in a x1, x2, x3 coordinate
system. The Navier-Stokes equations are as follows:

ρ
∂~q
∂t

+ ρ(~q · ~∇)~q = −~∇p + ~∇ · T− ~∇Φ (1)

where ρ is the density of the fluid, p is the mean pressure, Φ is the potential of a conservative body
force per unit volume (Φ = ρgz in the case the body force is the gravity, with the gravity acceleration g
pointing in the -z direction.), and T is the (symmetric) tensor of viscous stresses

T =

τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 and ~∇ · T =


∂τ11
∂x1

+ ∂τ21
∂x2

+ ∂τ31
∂x3

∂τ12
∂x1

+ ∂τ22
∂x2

+ ∂τ32
∂x3

∂τ13
∂x1

+ ∂τ22
∂x2

+ ∂τ33
∂x3

 =


∂τ11
∂x1

+ ∂τ12
∂x2

+ ∂τ13
∂x3

∂τ21
∂x1

+ ∂τ22
∂x2

+ ∂τ23
∂x3

∂τ31
∂x1

+ ∂τ32
∂x2

+ ∂τ33
∂x3


with

τij = µ

[
∂ui
∂xj

+
∂uj

∂xi

]
− δij

2
N

[
µ~∇ ·~q + ρk

]
(2)

where µ = µm + µt is the total dynamic viscosity, with µm being the molecular viscosity and µt being
the turbulent viscosity of the fluid, under the Boussinesq approximation for the turbulent stresses; δij
is the Kronecker delta; k is the turbulent kinetic energy; N = 2 for two-dimensional flows, and N = 3
for three-dimensional flows. The second term in Equation (2) guarantees that τii = −ρu′iu

′
i = −2ρk,

where u′i is the turbulent velocity in the ith direction.
Equation (1) can also be written as follows, as shown in the Appendix A:

ρ
∂~q
∂t

+ ρ(~q · ~∇)~q = −~∇p + 2~∇ · (µ~∇~q) + ~∇× (µ~ω)

− 2
N
~∇[µ~∇ ·~q]− 2

N
~∇[ρk]− ~∇Φ (3)

where ~ω = (ω1, ω2, ω3) = ~∇×~q is the vorticity of the flow, and the tensor ~∇~q is the gradient of ~q,
defined as follows

~∇~q =


∂u1
∂x1

∂u2
∂x1

∂u3
∂x1

∂u1
∂x2

∂u2
∂x2

∂u3
∂x2

∂u1
∂x3

∂u2
∂x3

∂u3
∂x3
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With the help of some identities of vector calculus, as shown in the Appendix A, Equation (3)
becomes:

ρ
∂~q
∂t

+ ρ(~q · ~∇)~q = −~∇p + µ∇2~q + 2(~∇µ · ~∇)~q + µ~∇(~∇ ·~q) + ~∇µ× ~ω

− 2
N
~∇[µ~∇ ·~q]− 2

N
~∇[ρk]− ~∇Φ (4)

Dividing Equation (4) by ρ and rearranging will give us:

∂~q
∂t

+ (~q · ~∇)~q = −
~∇p
ρ

+ ν∇2~q + ν~∇(~∇ ·~q) + 2
ρ
(~∇µ · ~∇)~q + 1

ρ
~∇µ× ~ω

− 2
Nρ

~∇[µ~∇ ·~q]− 2
Nρ

~∇[ρk]−
~∇Φ

ρ
(5)

where ν = µ
ρ is the kinematic (total) viscosity

2.1. Flow with Constant Density

In that case, since ~∇ ·~q = 0 and ρ = constant (In this work we consider incompressible flow
when ρ = constant, as opposed to the more general definition of incompressible flow when Dρ

Dt = 0),
Equation (5) becomes:

∂~q
∂t

+ (~q · ~∇)~q = −
~∇p
ρ

+ ν∇2~q + 2(~∇ν · ~∇)~q + ~∇ν× ~ω− 2
N
~∇k−

~∇Φ
ρ

(6)

In the case of Newtonian fluid in laminar flow (µ = µm =constant and k = 0) and incompressible
flow, in which case ~∇ ·~q = 0, Equation (4) reduces to its most common form:

ρ
∂~q
∂t

+ ρ(~q · ~∇)~q = −~∇p + µm∇2~q− ~∇Φ (7)

3. Vorticity Equation in 2D

We consider 2D flow, in which case x1 = x, x2 = y, x3 = z; u1 = u, u2 = v, u3 = w; ∂
∂y = 0 and

v = 0. The velocity has two components: ~q = (u, w), and the vorticity has only one component in
the y direction ω2 = ω = ∂u

∂z −
∂w
∂x . As shown in the Appendix A the vorticity equation will become

as follows:

∂ω

∂t
+ ~∇ · (ω~q) = −~∇

(
1
ρ

)
× ~∇p + ~∇ν×∇2~q + ν∇2ω + ~∇ν× ~∇(~∇ ·~q)

−ω∇2ν−ω~∇ ·
[

ν
~∇ρ

ρ

]
+ ~∇ν · ~∇ω +

ν

ρ
~∇ρ · ~∇ω

+2

[
∂

∂z

(
~∇µ

ρ

)
· ~∇u− ∂

∂x

(
~∇µ

ρ

)
· ~∇w

]

−~∇
(

1
ρ

)
× ~∇(µ~∇ ·~q)− ~∇

(
1
ρ

)
× ~∇(ρk)− ~∇

(
1
ρ

)
× ~∇Φ (8)
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As shown in the Appendix A Equation (8) may also be written as follows:

∂ω

∂t
+ ~∇ · (ω~q) = −~∇

(
1
ρ

)
× ~∇p +∇2(νω)− 2ω∇2ν

+2~∇ν× ~∇(~∇ ·~q)−ω~∇ ·
[

ν
~∇ρ

ρ

]
+

ν

ρ
~∇ρ · ~∇ω

+2

[
∂

∂z

(
~∇µ

ρ

)
· ~∇u− ∂

∂x

(
~∇µ

ρ

)
· ~∇w

]

−~∇
(

1
ρ

)
× ~∇(µ~∇ ·~q)− ~∇

(
1
ρ

)
× ~∇(ρk)− ~∇

(
1
ρ

)
× ~∇Φ (9)

3.1. 2D Flow of Fluid with Constant Density

In that case ρ = constant, ~∇ρ = 0, ~∇
(

1
ρ

)
= 0, and ~∇ ·~q = 0. Then Equation (9) reduces to:

∂ω

∂t
+ ~∇ · (ω~q) = ∇2(νω)− 2ω∇2ν− 2

∂~∇ν

∂x
· ~∇w + 2

∂~∇ν

∂z
· ~∇u (10)

or, by expressing ω = ∂u
∂z −

∂w
∂x in the second term on the RHS of Equation (10), and by making use of

the continuity equation, ∂u
∂x + ∂w

∂z = 0, we get:

∂ω

∂t
+ ~∇ · (ω~q) = ∇2(νω) + 2

∂2ν

∂z2
∂w
∂x
− 2

∂2ν

∂x2
∂u
∂z

+ 4
∂2ν

∂x∂z
∂u
∂x

(11)

It is worth noting that Equation (10) is valid for turbulent flows (with the vorticity ω being the
mean vorticity), but the turbulent kinetic energy k is not involved in the equation.

In the case of laminar flow of Newtonian fluid ν = µm
ρ = constant, Equation (10) becomes the

vorticity equation in its most common diffusion equation form:

∂ω

∂t
+ ~∇ · (ω~q) = ν∇2ω (12)

or, since ~∇ ·~q = 0:
Dω

Dt
≡ ∂ω

∂t
+~q · ~∇ω = ν∇2ω (13)

3.2. 2D Flow around Hydrofoil

In that case we assume that the hydrofoil is placed along axis x, with the inflow also along x axis,
and that ∂

∂x << ∂
∂z , especially within the narrow region close to the hydrofoil and its wake where

ω 6= 0. Then, as shown in the Appendix A, Equation (9) reduces to:

∂ω

∂t
+ ~∇ · (ω~q) = ∇2(νω) + ~∇ ·

[
ν
~∇ρ

ρ
ω

]
(14)

4. Conclusions and Future Work

The vorticity equation (in terms of the mean vorticity) is derived in the case of turbulent flows
with variable density and viscosity, and its simplified version in the case of flows around 2-D hydrofoils
has been provided. Equation (14) has already been implemented by Yao and Kinnas [15] to address the
turbulent non-cavitating flow around 2-D hydrofoils and cylinders, as well as the cavitating laminar
flow around 2-D hydrofoils, using the mixture model, by Xing et al. [16].

Representative results from the work of Yao and Kinnas [15] are shown in Figures 2–4 together
with results from RANS by using the commercial code ANSYS/Fluent (https://www.ansys.com/

https://www.ansys.com/products/fluids/ansys-fluent
https://www.ansys.com/products/fluids/ansys-fluent
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products/fluids/ansys-fluent). In this case Equation (14) was used where the turbulent viscosity
was evaluated by synchronous coupling of VISVE with the open source RANS code OpenFOAM
(https://www.openfoam.com/). As described in more detail in Yao and Kinnas [15], at every time
step the velocities determined by VISVE were passed into the part of OpenFOAM which solved the
k,ε equations and then returned the turbulent kinematic viscosity back to VISVE, in order to solve
Equation (14) with the updated values of the kinematic viscosity.

Figure 2. Vorticity contour plots from RANS (ANSYS/Fluent, top) and VISVE (bottom) for turbulent
flow around hydrofoil. Re = 2× 106.

In the case of the hydrofoil the velocity profiles predicted by VISVE, shown in Figure 3, are in
good agreement to those predicted by RANS. It should be noted that the hydrofoil assumption has also
been used in the case of the cylinder, for which results are shown in Figure 4. The results from VISVE
compare well with those from RANS, even though with somewhat larger differences downstream of
the cylinder, up to the time shown in the figure, but deteriorate for later times as shown in Yao and
Kinnas [15], once asymmetry appears between the top and bottom flow (not shown in this paper).

In the future, the author and his students intend to assess numerically the effect of the last three
terms in the right-hand side of Equation (10), on the prediction. These terms are currently ignored,
but they might affect the accuracy of predictions, especially in the case of a hydrofoil at high angles of
attack where the hydrofoil assumptions, made in this paper, would not hold. The ultimate objective of
this research is to extend VISVE in the case of turbulent flows around 3-D hydrofoils, and eventually
propeller blades.

https://www.ansys.com/products/fluids/ansys-fluent
https://www.ansys.com/products/fluids/ansys-fluent
https://www.openfoam.com/
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Figure 3. Velocity profiles of turbulent flow around hydrofoil, from RANS (ANSYS/Fluent) and from
VISVE, at different locations along the chord, c, on the suction side. Re = 2× 106.

Figure 4. Vorticity contour plots and velocity profiles for turbulent flow over cylinder from RANS
(ANSYS/Fluent) and from VISVE, at t = 4 s and Re = 106.
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Appendix A. Proofs

Appendix A.1. How to Get from Equation (1) to Equation (3)

We consider the ith component of Equation (1):

ρ
∂ui
∂t

+ ρ~q · ~∇ui = −
∂p
∂xi

+
∂τji

∂xj
− ∂Φ

∂xi
= − ∂p

∂xi
+

∂τij

∂xj
− ∂Φ

∂xi
(A1)

with the
∂τji
∂xj

term meant in the Einstein notation with j = 1, 2, 3
We then consider the rate of strain term of the expression for τij, as given by Equation (2):

µ

[
∂ui
∂xj

+
∂uj

∂xi

]
= 2µ

∂ui
∂xj

+ µ

[
∂uj

∂xi
− ∂ui

∂xj

]
= 2µ

∂ui
∂xj

+ εkijµωk (A2)

where εkij is the Levi-Civita symbol.
Then for given i and with j = 1, 2, 3, using the Einstein notation we have:

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi

)]
= 2

∂

∂xj

(
µ

∂ui
∂xj

)
+ εkij

∂(µωk)

∂xj

= 2~∇ · (µ~∇ui) + εijk
∂(µωk)

∂xj

= 2~∇ · (µ~∇ui) + εij′k′
∂(µωk′)

∂xj′
+ εik′ j′

∂(µωj′)

∂xk′
(i 6= k′ 6= j′ 6= i)

= 2~∇ · (µ~∇ui) + εij′k′
∂(µωk′)

∂xj′
− εij′k′

∂(µωj′)

∂xk′
(i 6= k′ 6= j′ 6= i)

= 2~∇ · (µ~∇ui) + [~∇× (µ~ω)]i (A3)

where [~∇× (µ~ω)]i means the ith component of ~∇× (µ~ω)

Based on Equations (2) and (A3) we get:

∂τij

∂xj
= 2~∇ · (µ~∇ui) + [~∇× (µ~ω)]i −

2
N

∂

∂xi

[
µ~∇ ·~q + ρk

]
(A4)

which eventually leads to Equation (3).

Appendix A.2. How to Get from Equation (3) to Equation (4)

~∇ · (µ~∇~q) =

~∇ · (µ~∇u1)
~∇ · (µ~∇u2)
~∇ · (µ~∇u3)

 (A5)

Using vector identities we get:

~∇ · (µ~∇ui) = ~∇µ · ~∇ui + µ∇2ui (A6)

or
~∇ · (µ~∇~q) = (~∇µ · ~∇)~q + µ∇2~q (A7)
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Then
~∇× (µ~ω) = µ~∇× ~ω + ~∇µ× ~ω (A8)

~∇× ~ω = ~∇× (~∇×~q) = ~∇(~∇ ·~q)−∇2~q (A9)

Using the equations above we get to Equation (4).

Appendix A.3. How to Get from Equation (5) to Equation (8)

We consider 2D flow, in which case x1 = x, x2 = y, x3 = z; u1 = u, u2 = v, u3 = w; ∂
∂y = 0 and

v = 0. The velocity has two components: ~q = (u, w), and the vorticity has only one component in the
y direction ω2 = ω = ∂u

∂z −
∂w
∂x .

First:

~∇×
(

∂~q
∂t

)
=

∂(~∇×~q)
∂t

=
∂~ω

∂t
(A10)

Then by using the identity:

(~q · ~∇)~q = (~∇×~q)×~q + ~∇
(

q2

2

)
= ~ω×~q + ~∇

(
q2

2

)
(A11)

we get
~∇× [(~q · ~∇)~q] = ~∇× (~ω×~q) (A12)

due to the identity:~∇× ~∇ f = 0
Then using the following identities:

~∇× (~ω×~q) = (~q · ~∇)~ω− (~ω · ~∇)~q + ~ω(~∇ ·~q)−~q(~∇ · ~ω) (A13)

~∇ · ~ω = ~∇ · (~∇×~q) = 0 (A14)

We get:

~∇× [LHS of equation (5)] =
∂~ω

∂t
+ (~q · ~∇)~ω− (~ω · ~∇)~q + ~ω(~∇ ·~q) (A15)

Now, in 2-D, since the vortex stretching term (~ω · ~∇)~q = 0, the above equation becomes:

~∇× [LHS of equation (5)]2D =
∂ω

∂t
+ (~q · ~∇)ω + ω(~∇ ·~q) = ∂ω

∂t
+ ~∇ · (ω~q) (A16)

We now take the ~∇× of each term on the RHS of Equation (5):

• The ~∇× of the 1st term on the RHS of (5):

~∇×
(
~∇p
ρ

)
= ~∇

(
1
ρ

)
× ~∇p +

(
1
ρ

)
~∇× ~∇p = ~∇

(
1
ρ

)
× ~∇p (A17)

The ~∇× of the last 3 terms of Equation (5) are treated in a similar manner as that of the first
term, and the corresponding resulting terms are the last 3 terms of Equation (8). Please note
the first and the last 3 terms in Equation (8) vanish in the case ρ = constant.

• The ~∇× of the 2nd term on the RHS of (5):

~∇× (ν∇2~q) = ~∇ν×∇2~q + ν∇2(~∇×~q) = ~∇ν×∇2~q + ν∇2ω (A18)

• The ~∇× of the 3rd term on the RHS of (5):
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~∇× [ν~∇(~∇ ·~q)] = ~∇ν× ~∇(~∇ ·~q) + ν~∇× [~∇(~∇ ·~q)] = ~∇ν× ~∇(~∇ ·~q) (A19)

• The ~∇× of the 4th term (divided by 2) on the RHS of (5):

We only handle this term in 2D. In that case:{
~∇×

[(
~∇µ

ρ
· ~∇
)
~q

]}
2D

=
∂

∂z

(
~∇µ

ρ
· ~∇u

)
− ∂

∂x

(
~∇µ

ρ
· ~∇w

)
= (A20)

=
∂

∂z

(
~∇µ

ρ

)
· ~∇u +

~∇µ

ρ
· ∂~∇u

∂z
− ∂

∂x

(
~∇µ

ρ

)
· ~∇w−

~∇µ

ρ
· ∂~∇w

∂x
= (A21)

=
∂

∂z

(
~∇µ

ρ

)
· ~∇u− ∂

∂x

(
~∇µ

ρ

)
· ~∇w +

~∇µ

ρ
· ~∇
(

∂u
∂z
− ∂w

∂x

)
= (A22)

=
∂

∂z

(
~∇µ

ρ

)
· ~∇u− ∂

∂x

(
~∇µ

ρ

)
· ~∇w +

~∇µ

ρ
· ~∇ω (A23)

• The ~∇× of the 5th term on the RHS of (5):

~∇×
(

1
ρ
~∇µ× ~ω

)
= ~∇

(
1
ρ

)
× (~∇µ× ~ω) +

1
ρ
~∇× (~∇µ× ~ω) (A24)

then
~∇× (~∇µ× ~ω) = (~ω · ~∇)~∇µ− (~∇µ · ~∇)~ω + ~∇µ(~∇ · ~ω)− ~ω(~∇ · ~∇µ) (A25)

with ~∇ · ~ω = 0, and since ~ω · ~∇ = 0 in 2D we get:

[~∇× (~∇µ× ~ω)]2D = −~∇µ · ~∇ω−ω∇2µ (A26)

In addition, in 2D:

(~∇µ× ~ω)2D =

(
∂µ

∂x
, 0,

∂µ

∂z

)
× (0, ω, 0) =

(
−ω

∂µ

∂z
, 0, ω

∂µ

∂x

)
(A27)

and [
~∇
(

1
ρ

)
× (~∇µ× ~ω)

]
2D

=

(
∂(1/ρ)

∂x
, 0,

∂(1/ρ)

∂z

)
×
(
−ω

∂µ

∂z
, 0, ω

∂µ

∂x

)
= (A28)

= −ω

[
∂(1/ρ)

∂x
∂µ

∂x
+

∂(1/ρ)

∂z
∂µ

∂z

]
= −ω~∇

(
1
ρ

)
· ~∇µ (A29)

Finally [
~∇×

(
1
ρ
~∇µ× ~ω

)]
2D

= −ω~∇
(

1
ρ

)
· ~∇µ−

~∇µ · ~∇ω

ρ
− ω∇2µ

ρ
= (A30)

= −ω~∇
(
~∇µ

ρ

)
−

~∇µ · ~∇ω

ρ
(A31)

The combination of the ~∇× of the 4th and the 5th terms will give us:

2
∂

∂z

(
~∇µ

ρ

)
· ~∇u− 2

∂

∂x

(
~∇µ

ρ

)
· ~∇w +

~∇µ · ~∇ω

ρ
−ω~∇

(
~∇µ

ρ

)
(A32)
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The last two terms above can also be rewritten by using µ = νρ and ~∇(νρ) = ν~∇ρ + ρ~∇ν, which
renders the RHS of Equation (8)

Appendix A.4. How to Get from Equation (8) to Equation (9)

In 2D v = 0 and ∂
∂y = 0, and ω = ∂u

∂z −
∂w
∂x

[~∇ν · ~∇ω]2D =
∂ν

∂x
∂ω

∂x
+

∂ν

∂z
∂ω

∂z
=

∂ν

∂x
∂

∂x

(
∂u
∂z
− ∂w

∂x

)
+

∂ν

∂z
∂

∂z

(
∂u
∂z
− ∂w

∂x

)
=

∂ν

∂x
∂2u

∂x∂z
− ∂ν

∂x
∂2w
∂x2 +

∂ν

∂z
∂2u
∂z2 −

∂ν

∂z
∂2w
∂x∂z

=

∂ν

∂x
∂

∂z

(
−∂w

∂z
+ ~∇ ·~q

)
− ∂ν

∂x
∂2w
∂x2 +

∂ν

∂z
∂2u
∂z2 −

∂ν

∂z
∂

∂z

(
−∂u

∂x
+ ~∇ ·~q

)
=

− ∂ν

∂x
∇2w +

∂ν

∂z
∇2u +

∂ν

∂x
∂(~∇ ·~q)

∂z
− ∂ν

∂z
∂(~∇ ·~q)

∂x
=[

~∇ν×∇2~q
]

2D
− [~∇ν× ~∇(~∇ ·~q)]2D (A33)

or [
~∇ν×∇2~q

]
2D

= [~∇ν · ~∇ω]2D + [~∇ν× ~∇(~∇ ·~q)]2D (A34)

where we have made use of ∂u
∂x + ∂w

∂z = ~∇ ·~q
We finally get to Equation (9) by considering the identity:

∇2(νω) = ν∇2ω + ω∇2ν + 2~∇ν · ~∇ω (A35)

Appendix A.5. How to Get from Equation (9) to Equation (14)

In that case we assume that the hydrofoil is placed along axis x, with the inflow also along x axis,
and that ∂

∂x << ∂
∂z , especially within the narrow region close to the hydrofoil and its wake where

ω 6= 0.
Then, since we ignore ∂

∂x then all ~∇F point in the z direction and thus ~∇F× ~∇G ≈ 0. In addition
the following approximations can be made:

−2ω∇2ν ≈ −2ω
∂2ν

∂z2 (A36)

−ω~∇
(

ν
∂~∇ρ

ρ

)
≈ −ω

∂

∂z

(
ν

ρ

∂ρ

∂z

)
(A37)

ν

ρ
~∇ρ · ~∇ω ≈ ν

ρ

∂ρ

∂z
∂ω

∂z
(A38)

2
∂

∂z

(
~∇µ

ρ

)
· ~∇u ≈ 2

∂

∂z

(
1
ρ

∂µ

∂z

)
∂u
∂z
≈ 2

∂

∂z

(
1
ρ

∂µ

∂z

)
ω = (A39)

2
∂

∂z

(
∂ν

∂z
+

ν

ρ

∂ρ

∂z

)
ω = 2ω

∂2ν

∂z2 + 2ω
∂

∂z

(
ν

ρ

∂ρ

∂z

)
(A40)

By adding the approximate expressions for all the terms shown above we get

ν

ρ

∂ρ

∂z
∂ω

∂z
+ ω

∂

∂z

(
ν

ρ

∂ρ

∂z

)
=

∂

∂z

(
ω

ν

ρ

∂ρ

∂z

)
(A41)

Finally we get to Equation (14) by making the following approximation:
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∂

∂z

(
ω

ν

ρ

∂ρ

∂z

)
≈ ~∇ ·

[
ν
~∇ρ

ρ
ω

]
(A42)
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