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Abstract: The application of flexible horizontal porous structure has a significant impact on the design
of breakwaters and wave energy absorption devices for coastal protection and wave energy extraction,
respectively. This type of structure is more economical compared to a rigid type structure. Therefore,
the hydroelastic response of the flexible porous structure can be investigated to widen the influence of
structural deformations in design parameters. This paper presents a generalized expansion formula
for the said problem based on Green’s function in the water of finite depth (FD) and infinite depth
(ID). The series form of the velocity potentials for the wave-maker problem is also derived using
Green’s second identity. The derived expansion formula is applied to a real physical problem and the
analytical solution is obtained utilizing a matched eigenfunction expansion method under velocity
potential decompositions. The convergence study of the series solution is checked. The present
results and the published experimental datasets, as well as analysis, are compared. The effect of
design parameters on the hydroelastic response of the submerged flexible porous plate is analyzed.
It is observed that the analysis of the results will be useful for gaining insight into how to design a
wave energy absorption device.

Keywords: oblique wave; flexible porous plate; Green’s function; series expansions; reflection and
dissipation coefficients; plate displacements

1. Introduction

Recently, there has been considerable interest in the development of different design methodologies
for the use of flexible porous structures, which are aimed at coastal protection from wave action and
wave energy devices to meet the demand of world requirements in terms of coastal protection [1,2] and
wave energy absorption devices [3,4]. Hydroelastic analysis of flexible structures plays a significant
role in the better design of flexible porous structures under the effect of incoming waves to model
an effective breakwater and wave energy absorption device. The advantage of this type of flexible
porous structure is that they are rapidly deployable, cost-efficient, and do not damage the marine
ecosystem compared to rigid or fixed type structures. One of the methods of the hydroelastic response
of a horizontal flexible porous structure is the utilization of Green’s function technique [5,6] which has
a vital role in the broad area of wave-structure interactions in coastal engineering applications.

There has been a small amount of work performed on the problems of interaction between ocean
waves and flexible-type submerged porous structures based on the analytical approach to model as
breakwaters. Some of the previous investigations based on the eigenfunction expansion method are
discussed below. The various analysis on the wave reflection from a vertical wall and porous-effect
parameter of a submerged porous plate was performed [7]. The analytical solution of the problem wave
interaction with a finite thickness horizontal porous plate and the analysis of wave energy reduction in
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short and long-waves were investigated in [8]. Under the velocity potential decomposition method,
a new analytical solution for wave interaction with a porous breakwater of a submerged plate with
finite thickness was provided in [9]. Utilizing the Wiener–Hopf technique, the analytical expression for
the reflection coefficients of the problem oblique wave interaction with a submerged structure of a
semi-infinite porous plate is provided [10] in FD. The hydrodynamic performance of a porous wall
breakwater with a submerged plate was investigated [11] by analyzing the reflection coefficients and
wave loads on the wall and as well as on the submerged porous plate. A new analytical solution was
associated with wave propagation over a submerged offshore breakwater of porous plate type where
the consideration of complex dispersion relation was not required [12]. A submerged breakwater of a
porous plate-type structure was proposed [13] under the oblique wave interaction through a theoretical
study using the matched eigenfunction expansion method (MEFEM). Under the two-dimensional
Laplace equation, the expansion formulae based on Green’s function for the interaction of waves and
an infinitely extended submerged porous plate in FD and ID were derived [14]. The derived expansion
formula was applied in a real physical problem to analyze the different design parameters for the
breakwater. In parallel, the expansion formulae of interaction between waves and submerged flexible
plates based on Green’s function technique and MEFEM were derived and the theoretical results are
discussed [5] in FD and ID. The reflection and transmission coefficients were determined in [15] for the
interaction of a submerged horizontal circular cylinder and a thin floating elastic plate in deep water
based on Green’s function approach. The added mass and damping coefficients of the floating elastic
plate of finite and semi-infinite lengths were studied in [16] based on Green’s function using MEFEM.
The hydrodynamic coefficients of an elliptic cylinder with a finite length of ice plate were investigated
in [17] using Green’s function based on the Wiener–Hopf method. Recently, the model developments
on the flexible porous plate, membrane, and net-type structures and their uses were reviewed in [18].

In coastal engineering, a substantial amount of work has been done on rigid-type porous structures
for application to breakwaters. Indicatively, the study of oblique wave reflection by a submerged
permeable structure using an eigenfunction expansion for 2D and 3D models based on a mild-slope
equation was carried out in [19]. The wave irregularity effect on submerged permeable structures
was later analyzed and the theoretical results were compared with experimental data for regular
waves [20]. The propagation of monochromatic waves over a submerged impermeable or porous step
was further experimentally investigated in [21]. Utilizing MEFEM, the wave phenomena, and the
wave loads acting on a submerged plate were studied in [22] to investigate the hydrodynamic behavior
of the submerged breakwater. Under linearized potential flow theory, a wave absorbing system
consisting of a submerged porous plate and a vertical wall was developed [23] by applying MEFEM
and the results were compared with numerical and full-scale experiment tests. The effect of wave
energy dissipation of a submerged porous structure with a rigid vertical wall under normal incident
waves was investigated [24] based on linearized wave theory. A novel theoretical solution for wave
interaction with a vertical porous breakwater was provided in [25] under velocity decompositions
based on MEFEM.

From the above literature, it is confirmed that until now there is no analytical model developed
related to the interaction of oblique waves and submerged horizontal flexible porous plate on
the hydroelastic response associated with Green’s function technique and velocity decomposition
method. Therefore, the present paper aims to provide a generalized formula in expansion form using
Green’s function technique and to apply the derived formula to a real problem in FD under velocity
decompositions. Utilizing the complex function theory, the expansion formulae for interaction between
oblique waves in two-different water depths and with an infinitely extended submerged horizontal
flexible porous structure (modeled based on Darcy’s law) are derived. Using the obtained Green’s
function and Green’s identity, the formulae in expansion form for the wavemaker problem is presented.

The expansion formula is applied to a real problem of oblique wave interaction with a submerged
flexible porous plate of finite length and connected with mooring lines in FD. The details of
the formulation and solution technique are discussed under the assumption of velocity potential
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decompositions. The convergence of the present analytical series solution is checked by computing the
numerical values of the reflection and the dissipation coefficients. Furthermore, the obtained results
are compared with experimental datasets [8] and as well as analytical results. Finally, the hydroelastic
response of submerged flexible porous plate is analyzed in different cases versus non-dimensional
wavelength and oblique wave angle on the reflection and dissipation coefficients as well as plate
displacements. In Appendix A, the theoretical results among the shallow water depth, the FD, and the
idealized cases [2,5,14] are compared.

2. Mathematical Model

The mathematical modeling of the referred problem is formulated in three-dimensions where
x − z is the horizontal plane and y-axis is in a downward positive direction. The undisturbed free
surface is considered at y = 0. An infinitely long flexible porous plate is horizontally submerged at
y = h which is balanced by neutral buoyance below the water surface. On the other hand, in the case
of FD, the fluid occupies the domain 0 < y < h, −∞ < x < ∞, z < ∞, h < y < H and −∞ < x < ∞,
z <∞, h < y < ∞ in case of ID. It is assumed that an oblique wave with angle θ incidents to the flexible
porous plate in the positive x-axis (see Figure 1). Furthermore, it is considered that the fluid is of
zero viscosity, constant density, curl of velocity function zero, and fluid motion is simple harmonic in
time. Therefore, the fluid motion is described by a velocity potential Φ (x, y, z, t) that is defined as
Φ(x, y, z, t) = Re

{
φ(x, y)ei(ϕz−ωt)

}
, where φ (x, y) is the spatial component of the velocity potential with

ϕ = k0 sinθ and is the z-component of the incident wave number k0 andω is the angular frequency.
Thus, Φ (x, y, z, t) satisfies the reduced wave equation(

Ũ2 +
∂2

∂y2

)
Φ = 0 (1)

where Ũ2 =
(
∂2/∂x2

)
−ϕ2. Combining the kinematic and dynamic boundary conditions (associated

with free surface elevation η(x, z, t) = Re
{
η(x)ei(ϕz−ωt)

}
) as done in [5], one can easily obtain the

condition on y = 0 as
∂2Φ
∂t2 − g

∂Φ
∂y

= 0 (2)
J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 4 of 25 

 

 
Figure 1. Submerged horizontal porous plate with oblique wave of angle θ. 

The relation between the submerged horizontal flexible porous plate displacement ( , , )x z tζ  
and hydrodynamic pressure is given by 

( ) ( )4 2 2
2 1( , , ) ( , , )c p H HEIU f U d P x y t P x y tρ ω ζ+ − = − −   (5) 

where ( )jH jP t gyρ= − ∂Φ ∂ −  is the hydrodynamic pressure for 1, 2j = , EI  = flexural rigidity, cf  

= compressive force acting on the submerged horizontal flexible porous plate, ρ  and pρ  are the 
densities of water and plate, respectively. 

Eliminating ζ  from Equations (4) and (5) and replacing 2
yyU = −Φ  (using Equation (1)), one 

can obtain the submerged plate boundary condition at y = h as 

5 3 4 2

2 2 1 15 3 4 2 ( ) 0,p pm K i m K
y y y y y

α β σ α β   ∂ ∂ ∂ ∂ ∂− − + Φ + − − Φ −Φ − Φ =   ∂ ∂ ∂ ∂ ∂   
 (6) 

with 
2/ ( )pEI g mα ρ ω= − , 

2/ ( )c pf g mβ ρ ω= − , 
2 2/ ( )pK g mρω ρ ω= − , p pm dρ= , and d  is the 

thickness of the flexible plate. 
Hence, the boundary condition (2) on 0y =  and (6) on y h=  in terms of ( , )x yφ  can be 

expressed as 

0K
y
φ φ∂ + =
∂

 (7) 

and 

5 3 4 2

2 2 1 15 3 4 2 ( ) 0p pm K i m K
y y y y y

α β φ σ α β φ φ φ   ∂ ∂ ∂ ∂ ∂− − + + − − − − =   ∂ ∂ ∂ ∂ ∂   
 (8) 

Finally, the far-field subjected to Sommerfeld radiation condition is given by 

lim ( , )   for FD,
( , )

lim ( , )   for ID,

n

n

II
ik x

n n nx n I
II

ik x
n n nx n I

A Y p y e
x y

B X p y e
φ

→∞ =

→∞ =


= 






 (9) 

Figure 1. Submerged horizontal porous plate with oblique wave of angle θ.
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As the bottom is considered rigid, the FD boundary condition at y = H yields

∂Φ
∂y

= 0 (3a)

The ID boundary condition as y→∞ gives

Φ, |∇Φ| → 0 (3b)

On the submerged porous plate, the velocity potential and porous plate displacement satisfies
(as in [2,5])

∂Φ2

∂y
=
∂Φ1

∂y
=
∂ζ
∂t

+ iσ(Φ2 −Φ1) (4)

where ζ(x, z, t) = Re
{
ζ(x)ei(ϕz−ωt)

}
is the displacement of the flexible porous plate, Φ1 and Φ2 are

the velocity potentials defined for 0 < y < h and h < y < H, respectively, and σ = porosity of the
flexible plate.

The relation between the submerged horizontal flexible porous plate displacement ζ(x, z, t) and
hydrodynamic pressure is given by(

EIŨ4 + fcŨ2
− ρpdω2

)
ζ = −(P2H(x, y, t) − P1H(x, y, t)) (5)

where P jH = −ρ
(
∂Φ j/∂t− gy

)
is the hydrodynamic pressure for j = 1, 2, EI = flexural rigidity,

fc = compressive force acting on the submerged horizontal flexible porous plate, ρ and ρp are the
densities of water and plate, respectively.

Eliminating ζ from Equations (4) and (5) and replacing Ũ2 = −Φyy (using Equation (1)), one can
obtain the submerged plate boundary condition at y = h as(

α
∂5

∂y5 − β
∂3

∂y3 −mp
∂
∂y

+ K
)
Φ2 + iσ

(
α
∂4

∂y4
− β

∂2

∂y2 −mp

)
(Φ2 −Φ1) −KΦ1 = 0, (6)

with α = EI/(ρg−mpω2), β = fc/(ρg−mpω2), K = ρω2/(ρg−mpω2), mp = ρpd, and d is the thickness
of the flexible plate.

Hence, the boundary condition (2) on y = 0 and (6) on y = h in terms ofφ(x, y) can be expressed as

∂φ

∂y
+ Kφ = 0 (7)

and (
α
∂5

∂y5 − β
∂3

∂y3 −mp
∂
∂y

+ K
)
φ2 + iσ

(
α
∂4

∂y4
− β

∂2

∂y2 −mp

)
(φ2 −φ1) −Kφ1 = 0 (8)

Finally, the far-field subjected to Sommerfeld radiation condition is given by

φ(x, y) =


lim
|x|→∞

II∑
n=I

AnYn(pn, y)eikn |x| for FD,

lim
|x|→∞

II∑
n=I

BnXn(pn, y)eikn |x| for ID,
(9)

where pn =
√

k2
n + ϕ2 with kns are the wavenumbers satisfy the gravity wave dispersion relation.

Yn(pn, y)s and Xn(pn, y)s are the eigenfunctions associated with FD and ID, respectively and Ans and
Bns are the wave amplitudes to be determined.
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3. Expansion Formulae in FD and ID

It may be noted that the expansion formulae for the velocity potentials in two-dimensions were
derived in [5] at FD and ID. The present paper derived the expansion formulae based on a reduced
wave equation for interaction between oblique waves and a submerged horizontal porous plate in FD
and ID.

3.1. Integral and Series form of Green’s Function Based on Reduced Wave Equation

In this subsection, the integral and the series form of Green’s function for interaction between
oblique waves and a submerged horizontal flexible porous structure will be obtained based on reduced
wave Equation in FD and ID. The fluid characteristics and porous plate response are being the same as
defined in the mathematical model Section. Let G(x, y; u, v) refer to the Green’s function with (u, v) and
(x, y) are the source point of unity strength and any point in the fluid domain, respectively. Therefore,
the Green’s function G(x, y; u, v) satisfies the reduced wave equation

Ũ2G +
∂2G
∂y2 = 0 excluding at (u, v), (10)

where Ũ2 being same as defined in Equation (1) along with the free surface condition (7), the submerged
porous plate conditions (4) and (8), the FD condition (3a), and ID condition (3b). Also, G(x, y; u, v)
satisfies the condition

G(x, y; u, v) ≈ K0(ϕε) near (u, v) as ε→ 0, (11)

with K0(ϕε) being the same as in [2] and ε = {(x− u)2 + (y− v)2
}
1/2

. The Green’s function G(x, y; u, v)
will be derived based on the position of the source point (u, v) about below and above the submerged
horizontal flexible plate in the water of FD and ID.

In case of FD, it is assumed that the source point (u, v) is in the between the free surface and
submerged horizontal plate, then the integral form of the G(x, y; u, v) can be expressed by satisfying
Equations (3a), (10) and (11) as

G(x, y; u, v) =


K0(ϕε) −K0(ϕε′) +

∞∫
0

{
Ã(k) cosh py + B̃(k)sinhpy

}
A(k, x)dk, y ∈ (0, h),

∞∫
0

C(k, y)A(k, x)dk, y ∈ (h, H),
(12)

where C(k, y) = C̃(k) cosh p(H − y), A(k, x) = cos k(x − u), ε′ =
{
(x− u)2 + (2h− y− v)2

}1/2
, and the

identities K0(ϕε) and K0(ϕε′) are being the same as in [2].
Substituting the values of K0(ϕε), K0(ϕε′), and applying the submerged boundary condition (7),

one can obtain the coefficients Ã(k), B̃(k), and
^
C(k) associated with Equation (12) as

Ã(k) = − 2
p cosh p(h− v)

{
e−phtanhp(h− v) − pM2

}
,

B̃(k) = − 2
p sinhp(h− v)

{
e−ph + KM2cothp(h− v)

}
,

C̃(k) = 2
p (1−M1M2) cosh p(h− v)cschph1,

M1 = psinhph−K cosh ph,
M2

=
[p(αp4

−βp2) cosh p(h−v)−{K+iσ(αp4
−βp2)} cosh p(H−v)cschph1]cschph

S(p)


(13)

where

S(p) = K2(1 + cothphcothph1) −K
{
pcothph1 + p(αp4

− βp2 + 1)cothph− iσ(αp4
− βp2)

×(1 + cothphcothph1)
}
+ p2(αp4

− βp2) − iσp(αp4
− βp2)(cothph + cothph1)

(14)
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with h1 = (H − h) and p =
√

k2 + ϕ2. It is worth mentioning that S(p) = 0 is the complex dispersion
relation for the interaction of oblique waves and a horizontal flexible plate with porosity σ in the case
of FD. In the context of the present problem, the root characteristics of relation (14) are similar to [5]
with p =

√
k2 + ϕ2.

Under other assumption, when the position of (u,v) in h < y < H, the integral form of Green’s
function G(x, y; u, v) can be expanded by satisfying Equations (3a), (10) and (11) as

G(x, y; u, v) =


∞∫
0

{
Ã(k) cosh py + B̃(k)sinhpy

}
A(k, x)dk, y ∈ (0, h),

K0(ϕε) −K0(ϕε′′ ) +
∞∫
0

C̃(k) cosh p(H − y)A(k, x)dk, y ∈ (h, H),
(15)

where A(k, x) being same as in Equation (12) and ε′′ =
{
(x− u)2 + (2H − y− v)2

}1/2
with the identity

K0(ϕε′′ ) is similar as in [2].
Proceeding similarly manner as in Equation (12), the unknowns associated with Equation (15) are

derived as
Ã(k) = −2pcschph1

S(p)

{
K + iσ(αp4

− βp2)
}
cschph cosh p(H − v),

B̃(k) = 2cschph1
pS(p)

{
K + iσ(αp4

− βp2)
}
Kcschph cosh p(H − v),

C̃(k) = 2cschph1
p

[
p cosh p(h− v) + {K+iσ(αp4

−βp2)}M1 cosh p(H−v)
S(p)

]
,

 (16)

where the expressions S(p) and M1 are in Equation (13).
Employing the Cauchy residue theorem, considering the roots leading to the boundedness in the

following expansion formula, and substituting the values of K0(ϕε) and K0(ϕε′), Equations (12) and
(15) yield to the expansion in series form as

G(x, y; u, v) =
III∑

n=0,I

AnYn(pn, y)eikn |x−u|+
∞∑

n=1

BnYn(µn, y)e−
√
µ2

n+ϕ
2 |x−u|, (17)

where

Yn(pn, y) =

 iΘ(pn,y)sinhpnh1
M1

for y ∈ (0, h),
cosh pn(H − y) for y ∈ (h, H),

An =


iπΘ(pn,v)sinhpnh1

pnΛn
for v ∈ (0, h),

−iπ cosh pn(H−v)
pnΛn

for v ∈ (h, H),

Λn =
S′(pn)sinh2pnh1

2
{
K + iσ(αp4

n − βp2
n)

}
M1

, Θ(pn, y) = sinhpny(pncothpny−K)

with p2
n = k2

n + ϕ2 and the unknown coefficients Bn in Equation (17) can be derived by substituting
kn = iµn in An. It may be noted that the terms for n = 0, I, II, III in Equation (17) are associated with the
complex roots of the series solution. Two complex roots pn, n = 0, I correspond to the wavenumbers
associated with the most progressive waves in surface and submerged flexural gravity modes whilst,
other two complex roots pn, n = II, III of the form a± ib are correspond to the wavenumbers associated
with the non-propagating wave modes. The expression S′(pn) is the partial derivative with respect to
the wavenumber pn. It should be noted that if one sets, α = 0 and fc = −T f in Equations (13)–(17),
then the reduced results will be the same as in [2].

Similarly, in case of ID, when the source (u, v) is in 0 < y < h, the integral form of Green’s function
G(x, y; u, v) satisfying the reduced wave Equation (10) along with relevant boundary conditions (3b)
and (11) is expressed as
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G(x, y; u, v) =


K0(ϕε) −K0(ϕε′) +

∞∫
0

{
Ã(k) cosh py + B̃(k)sinhpy

}
A(k, x)dk, y ∈ (0, h),

∞∫
0

C(k, y)A(k, x)dk, y ∈ (h,∞),
(18)

where C(k, y) = C̃(k)e−p(y−h). A(k, x), K0(ϕε), and K0(ϕε′) are being the same as in Equation (12).
Applying the boundary conditions (4), (7), and (8), one can derive the coefficients associated with
Equation (18) as

Ã(k) = − 2
p cosh p(h− v)

{
e−phtanhp(h− v) − pM̃2

}
,

B̃(k) = − 2
p sinhp(h− v)

{
e−ph + KM̃2cothp(h− v)

}
,

C̃(k) = 2
p (1−M1M̃2) cosh p(h− v),

M̃2 =
[p(αp4

−βp2) cosh p(h−v)−{K+iσ(αp4
−βp2)}sinhp(h−v)] csc hph

S̃(p)
,


(19)

where M1 being same as in Equation (13) with

S̃(p) = K2(1 + cothph) −K
{
p + p(αp4

− βp2 + 1)cothph− iσ(αp4
− βp2)(1 + cothph)

}
+p2(αp4

− βp2) − iσp(αp4
− βp2)(1 + cothph)

(20)

It may be mentioned that S̃(p) = 0 in Equation (20) is the ID dispersion relation.
Furthermore, when (u, v) is in h < y < ∞, the integral form of G(x, y; u, v) can be derived by

satisfying Equation (10), conditions (3b) and (11) as

G(x, y; u, v) =


∞∫
0

{
Ã(k) cosh py + B̃(k)sinhpy

}
A(k, x)dk, y ∈ (0, h),

K0(ϕε) −K0(ϕε′′ ) +
∞∫
0

C(k, y)A(k, x)dk, y ∈ (h,∞),
(21)

where A(k, x) and C(k, y) are the same as in Equation (18), the value of ε′′ and the identity K0(ϕε′′ ) are
being the same as in [26].

Again, using the free surface condition (7), submerged horizontal flexible porous plate condition
(8), and the value of K0(ϕε′′ ), one can obtain the coefficients in Equation (21) as

Ã(k) = −2p
S̃(p)

D(v)
{
K + iσ(αp4

− βp2)
}
cschph,

B̃(k) = 2K
pS̃(p)

{
K + iσ(αp4

− βp2)
}
D(v)cschph,

C̃(k) = 2D(v)
p

[
1 + 2{K+iσ(αp4

−βp2)}M1

S̃(p)

]
.


where D(v) = e−p(v−h), M1 and S̃(p) are being the same as defined in (19). Proceeding similarly as
in Equation (17) in case of FD, from Equations (18) and (21), in case of ID the series form of Green’s
function can be derived as

G(x, y; u, v) =
III∑

n=0

AnXn(y)eikn |x−u| +

∞∫
0

A(τ)Ω(τ, y)e−
√
τ2+ϕ2 |x−u|dτ (22)

where

Xn(y) =

 M′1(y)
M1pnsinhpnh for y ∈ (0, h),
D(y) for y ∈ (h,∞),

Ω(τ, y) =
{

Ω1(τ, y), y ∈ (0, h),
Ω2(τ, y), y ∈ (h,∞),
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Ω1(τ, y) = K(τ cos τy−K sin τy),
Ω2(τ, y) = Ω1(τ, y) −M(τ) cos τ(y− h),

M(τ)

= −
[
K2 cos τh + K

{
τ sin τh + iσ(ατ4

− βτ2) cos τh
}
+ iστ(ατ4

− βτ2) sin τh
]

An =


−iπM′1(v)

ΛnM1p2
nsinhpnh

for v ∈ (0, h),
−iπD(vn)epnh)

pnΛn
for v ∈ (h,∞),

A(τ) =


−K(τ cos τv−K sin τv)

π
√

τ2+l2∆(τ)
for v ∈ (0, h),

−{K(τ cos τv−K sin τv)−M(τ) cos τ(v−h)}
π
√

τ2+l2∆(τ)
for v ∈ (h,∞),

∆(τ) = M2(τ) + 2M(τ)Ω1(τ, h) + (τ2 + K2)K2

Λn =
S′(pn)

2
{
K + iσ(αp4

n − βp2
n)

}
M1

It should be mentioned that the behavior of the roots of the first summation in Equation (22) are
the same as defined below Equation (17).

3.2. Expansion Formulae for Wavemaker Problem Using Green’s Function under Oblique Waves

The present subsection will derive the expansion formulae for the wavemaker problem associated
with oblique wave interaction with a flexible porous plate in FD and ID by using the Green’s functions
obtained in the previous subsection. Here, it is assumed that the condition on the wavemaker is
given by

∂φ

∂x
=

{
w(y) on x = 0, y ∈ (0, H) in FD,
w(y) on x = 0, y ∈ (0.∞) in ID,

(23)

excluding at y = h with w(y) is the vertical oscillation of the wavemaker. Now, put

G(x, y; u, v) = G(x, y; u, v) + G(−x, y; u, v) (24)

and ∂G/∂x = 0 at x = 0. Utilizing the Green’s second identity to φ(x, y) and G(x, y; u, v), one can
derive the source potential as

φ(u, v) =


h∫

0

G1+

H(R)∫
h

G2


∣∣∣∣∣∣∣∣∣
x=0

w(y)dy +

∞∫
0

[ (
G1yφ1 −φ1yG1

)∣∣∣∣
y=0

+


∞∫

0

{
φ̃G2y −

(
G2 −G1

)
φ2y

∣∣∣
y=h

}dx (25)

where φ̃ = (φ2 − φ1), H(R) =

{
H in case of FD,
∞ in case of ID,

φ1, φ2, G1, and G2 correspond to the velocity

potential in region 1, velocity potential in region 2, source potential in region 1, and source potential in
region 2, respectively. The subscript ‘y’ in φ1, φ2 G1, and G2 is the partial derivative with respect to y.

Furthermore, the source potential G(x, y; u, v) satisfies the following conditions at b = 0, h as

∂G(0,b;u,v)
2∂y =

∂G(0,b;u,v)
∂y , ∂2G(0,b;u,v)

∂x∂y = 0,
∂3G(0,b;u,v)

2∂y3 =
∂3G(0,b;u,v)

∂y3 , ∂4G(0,b;u,v)
∂x3∂y = 0.

 (26)

.
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Using Equations (4), (7), (8) and (26), one can obtain

∞∫
0

(
G1yφ1 −φ1yG1

)∣∣∣∣
y=0

dx = 0 (27)

and

∞∫
0
φ̃G2y −

(
G2 −G1

)
φ2y

∣∣∣
y=hdx = − 2

K

[{
α(G2yyyφ2xy +G2yφ2xyyy) − βG2yφ2xy

}
+iσ

[
α
{
φ̃xG2yyy − φ̃xyyG2y

}
− βφ̃xG2y

]]∣∣∣∣ x = 0
y = h,

(28)

Proceeding similarly manner as in Equation (25) and using Equations (26)–(28), it can be derived as

φ(u, v) = −
[
2
∫
Γ

G|x=0w(y)dy + 2
K

{
α(G2yyyφ2xy +G2yφ2xyyy) − βG2yφ2xy

+iσ
[
α(φ̃xG2yyy − φ̃xyyG2y) − βφ̃xG2y

]}∣∣∣∣ x = 0
y = h

]
(29)

where Γ =

{
(0, h)∪ (h, H), in case of FD,
(0, h)∪ (h,∞), in case of ID.

In the case of FD, putting the expression of G from Equation (17) into the source potential (25),
the series form of velocity potential can be derived as

φ(x, y) =
III∑

n=0

Anδ2Yn(y)eiknx +
∞∑

n=1

Bnδ2Yn(y)e−
√
µ2

n+ϕ
2x (30)

where

An = 1
knΛn

[ h∫
0

Yn(y) +
H∫
h

Yn(y)

w(y)dy− pnsinhpnh1
K

{
α(p2

nφxy + φxyyy) − βφxy

+iσ
[
α(φ̃xp2

n − φ̃xyy) − βφ̃x
]}

x = 0
y = h

] (31)

where Bn are derived by putting pn = iµn into Equation (31). The terms for n = 0, I, II, III in Equation
(30) behaves a similar manner as in Equation (17). It may be noted that if ϕ = 0, then the obtained
results will be the same as in [5].

Proceeding as in Equation (30), in case of ID, using Equations (22) and (25), one can derive as

φ(x, y) =
III∑

n=0

aniXn(y)eiknx +

∞∫
0

a(τ)Ω(τ, y)e−τxdτ
τ∆(τ)

(32)

where an and a(τ) are given by

an = 1
knΛn

[ h∫
0

Xn(y) +
∞∫
h

Xn(y)

w(y)dy + pn
{
α(p2

nφxy + φxyyy) − βφxy

+iσ
[
α
{
φ̃xp2

n − φ̃xyy
}
− βφ̃x

]}
x = 0
y = h

] (33)
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a(τ) = 2
π

[ h∫
0

Ω1(τ, y) +
∞∫
h

Ω2(τ, y)

w(y)dy− τ(τ sin τh + K cos τh)

×

{
α(−τ2φxy + φxyyy) − βφxy + iσ

[
α
{
−τ2φ̃x − φ̃xyy

}
− βφ̃x

]}
x = 0
y = h

] (34)

with pn, Λn, Xn(y), ∆(τ), Ω1(τ, y), Ω2(τ, y), and Ω(τ, y) are equal as in Equation (22). Nevertheless,
an and a(τ) are expressed in terms of the two unknowns φy(0, 0) and φyyy(0, 0), which have to be
determined from appropriate edge conditions when dealing with a particular realistic boundary value
problem (BVP).

4. Usefulness of the Expansion Formula under the Action of Oblique Waves in FD

The usefulness of the derived formula is illustrated by analyzing a moored flexible horizontal
submerged plate of finite dimension under oblique waves in FD. Under consideration of symmetrical
geometric of the considered problem, the mathematical formulation and solution technique will be
discussed to investigate the effect of design parameters on the hydroelastic response of a finite flexible
porous plate connected with mooring lines.

4.1. Governing Equation and Boundary Conditions

It may be mentioned that the BVP is formulated based on the framework of axis-arrangement,
characteristics of the fluid, response of flexible porous plate, and angle θ of incident waves defined in
Section 2. In the context of the present Section, the submerged flexible plate is considered to be of a
finite dimension of length 2a which cover −a < x < a, y = h and ends are connected by mooring lines
and it is stretched in the z-direction at z < ∞ as shown in Figure 2. Hence, the fluid domain is split into
two sub-regions, namely

R1 ≡ −∞ < x < −a, a < x < ∞, 0 < y < H, z < ∞

R2 ≡ −a < x < a, 0 < y < h, h < y < H, z < ∞

Therefore, the boundary conditions in R1 on y = 0 and R2 at y = h are given by

φ1y + Kφ1 = 0 on y = 0, −∞ < x < −a, a < x < ∞, (35)

φ2y = φ1y = −iωζ+ iσ(φ2 −φ1) ony = h for − a < x < a, (36)

where ζ being same as defined in Equation (4).
The moored edge conditions yield

EI
(
∂2

∂x2 − υϕ
2
)
∂φ(x, y)
∂y

= 0 x = ±a, y = h, (37a)

[
EI

(
∂2

∂x2 − (2− υ)ϕ
2
)
∂
∂x

+ fc
∂
∂x

]
∂φ(x, y)
∂y

= q j
∂φ(x, y)
∂y

at x = ±a, y = h, (37b)

where q j is the stiffness of the mooring lines for j = 1, 2. It may be mentioned that if one set q j = 0 in
Equation (37a,b), then the reduced boundary condition will be a flexible plate with a free edge [27].

Also, the following continuity conditions at x = 0 and y = h are necessary to solve the BVP

φy
∣∣∣
(0+ ,h) = φy

∣∣∣
(0−,h) (38a)

φxy
∣∣∣
(0+ ,h) = φxy

∣∣∣
(0−,h) (38b)
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EI
(
∂xx − υϕ

2
)
φy(x, y)

∣∣∣
(0+ ,h) = EI

(
∂xx − υϕ

2
)
φy(x, y)

∣∣∣
(0−,h) (39a)[

EI
{
∂xx − (2− υ)ϕ2

}
+ fc

]
φxy(x, y)

∣∣∣
(0+ ,h) =

[
EI

{
∂xx − (2− υ)ϕ2

}
+ fc

]
φxy(x, y)

∣∣∣
(0−,h), (39b)

where Equation (38a,b) are the continuity condition of deflection and slope of deflection, Equations
(39a,b) are the shear force and bending moments acting on the submerged plate. It should be noted
that if ϕ = 0 in Equations (38) and (39), the obtained edge condition will be the same as in [5].

Furthermore, the pressure and the velocity are continuous at x = 0, a± giving

φ(0+, y) = φ(0−, y),φ(a+, y) = φ(a−, y) (40)

φx(0+, y) = φx(0−, y),φx(a+, y) = φx(a−, y). (41)

Finally, the radiation conditions at the far-field are given by

φ(x, y) ≈

 (I0e−iµ0x + R0eiµ0x)
coshγ0(H−y)

coshγ0H as x→∞,

T0e−iµ0x coshγ0(H−y)
coshγ0H as x→ −∞,

(42)

where γ2
0 = µ2

0 +ϕ
2 and satisfying the gravity wave dispersion relation as ω2

− gγ0tanhγ0H = 0, I0, R0,
and T0 are the amplitudes associated with the incident, reflected, and transmitted waves, respectively.
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4.2. Solution Technique

To simplify the solution of the BVP, the velocity potentials of the original BVP are split into a
symmetric and an anti-symmetric part. It is only necessary to solve this problem in the right half-plane
about x = 0 then extend the solution to the left half-plane by the symmetric relations. Hence, the split
velocity potentials Ψ(x, y) and Z(x, y) can be expressed as (see [28,29])

Ψ(x, y) = φS(x, y) −φA(−x, y), Z(x, y) = φS(x, y) + φA(−x, y) (43)

where φS(x, y) and φA(x, y) are represented to the symmetric potential for x > 0 and anti-symmetric
potential for x < 0, respectively.

The split velocity potentials Ψ(x, y) and Z(x, y) satisfying the Equations (1), (3a), (8), (35) and (36)
are obtained as

Ψ(x, y) =


∞∑

n=0,I,III,1
Cn f A

n (x)Yn(pn, y) for x ∈ (0, a),

I0e−iµ0(x−a)g0(y) +
∞∑

n=0,1
Dneiµn(x−a)gn(y) for x ∈ (a,∞),

(44)
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Z(x, y) =


∞∑

n=0,I,II,III,1

_
Cn f S

n (x)Yn(pn, y) for x ∈ (0, a),

I0e−iµ0(x−a)g0(y) +
∞∑

n=0,1
D̃neiµn(x−a)gn(y) for x ∈ (a,∞),

(45)

where f A
n (x) = (sinhknx)/(sinhkna), f S

n (x) = (cosh knx)/(cosh kna), and Yn(pn, y) are being the same
as in Equation (17) and pns are being the same as defined in Section 3.1.

The normalized vertical eigenfunctions gn(y) in R1 are obtained as

gn(y) =
coshγn(H − y)

√
χn

(46)

and satisfy the orthogonal condition as 〈
gm, gn

〉
= δmn (47)

where δmn are the Kronecker delta and χn = (γnH csc hγnH + sinhγnH)/(2γn csc hγnH) with γns are
satisfy the relation as mentioned below Equation (42) and the root characteristics are same as in [29].

4.3. Determination of Unknown Coefficients

To obtain the unknown coefficients associated with the split velocity potentials (44) and (45), the
boundary conditions (37)–(39) and (42) need to recast into the split potentials Ψ(x, y) and Z(x, y).

Hence, the moored edges conditions (37a,b) in terms of Ψ(x, y) and Z(x, y) at x = a, y = h yield

EI
(
∂2

∂x2 − υϕ
2
)
Ψy = 0 (48a)

[
EI

(
∂3

∂x3 − (2− υ)ϕ
2 ∂
∂x

)
+ fc

∂
∂x

]
Ψy − qΨy = 0 (48b)

Furthermore, Equations (38a,b) and (39a,b) at x = 0, y = h give

∂Ψ(0, h)
∂y

= 0,
∂2Ψ(0, h)
∂x∂y

= 0 (49)

EI
(
∂2

∂x2 − υϕ
2
)

Z(0, h)
∂y

= 0,
[
EI

(
∂3

∂x3 − (2− υ)ϕ
2 ∂
∂x

)
+ fc

∂
∂x

]
∂Z(0, h)
∂y

= 0 (50)

Similarly, the condition of infinity (42) as x→∞ yield

Ψ(x, y) ≈ (I0e−iµ0x + D0eiµ0x)g0(y) (51a)

Z(x, y) ≈ (I0e−iµ0x + D̃0eiµ0x)g0(y) (51b)

where D0 and D̃0 are the difference and sum of the reflected and transmitted wave amplitudes R0 and
T0 associated with Equation (42), respectively.

Applying the continuity conditions (40), (41) of pressure and velocity at the interface x = a and
utilizing the orthogonal condition (47), one can get

N∑
n=0,I,...,III,1

CnXmn −Dm − I0δm0 = 0 (52a)

N∑
n=0,I,...,III,1

iCnknXmncothkna + µmDm − µ0I0δm0 = 0 (52b)
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with

Xmn =
1
√
χm

[
iLmnsinhpnh1

M1
− L̃mn

]
,for m = 0, 1, 2, . . . , N

Lmn =
[pnM1(γm,H)+{γm(Ktanhpnh−pn) −pncothγmh1(K+pn tan hpnh)}sinhγmh1 cosh pnh]

(µ2
m−p2

n)
,

L̃mn =
(γm − pntanhpnh1cothγmh1)sinhγmh1 cosh pnh1

(µ2
m − p2

n)

The boundary condition (48a) and continuity condition (49) yield two systems of linear equations

N∑
n=0,I,...,III,1

EICnpn(k2
n − υϕ

2)sinhpnh1 = 0 (53)

N∑
n=0,I,...,III,1

Cnknsinhpnh1 csc h(kna) = 0 (54)

Similarly, conditions (40) and (41) give two systems of linear equations associated with Z(x, y) as

N∑
n=0,I,...,III,1

_
CnXmn − D̃m − I0δm0 = 0 (55a)

N∑
n=0,I,...,III,1

i
_
CnknXmntanhkna + µmD̃m − k0I0δm0 = 0 (55b)

The mooring condition (48b) and condition (50) give the following system of linear equations

N∑
n=0,I,...,III,1

_
Cnpn

[{
EIk3

n − (2− υ)ϕ
2kn + fckn

}
tanhpna− q

]
sinhpnh1 = 0 (56)

N∑
n=0,I,...,III,1

_
CnEI(k2

n − υϕ
2)sech(pna)sinhpnh1 = 0 (57)

To solve the systems of linear equations, the infinite series (52)–(57) is truncated after N-terms.
The system of Equations (52)–(57) can be solved numerically to obtain the unknown coefficients

Dn, D̃n, Cn, and
_
Cn for n = 0, I, II, III, 1, . . . , associated with Equations (44) and (45). Then, the reflection

coefficient Kr and the transmission coefficient Kt are computed by Kr =
∣∣∣(D0 + D̃0)/2I0

∣∣∣ and
Kt =

∣∣∣(D0 − D̃0)/2I0
∣∣∣, respectively. Furthermore, the wave energy dissipation coefficient can be

computed by the formula
Ke = 1−K2

r −K2
t (58)

4.4. Comparison Results and Hydroelastic Response

4.4.1. Comparison with Experimental and Analytical Results

In the present subsection, the convergence of the analytical solution is checked by studying the
values of Kr and Ke based on different design parameters with increasing the values of N. Table 1 shows
the values of Kr and Ke converged to N ≥ 5. Therefore, for the correctness of the numerical computation,
N = 5 is confined for the numerical results of the reflection and the dissipation coefficients. It should
be noted that hereafter, the results for Kt is suspended owing to the opposite pattern to that of Kr.
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Table 1. Convergence study of Kr and Ke for various values of the stiffness of mooring lines q,
porous-effect parameter σ, and oblique angle θ, with h/H = 0.6, θ = 60◦, q = 102 Nm−1, and wave
period T = 5 s.

Parameters N Kr (Reflection Coefficient) Ke (Dissipation Coefficient)

q = 102 Nm−1 3 0.3726 0.8588
5 0.3467 0.8774
8 0.3467 0.8774

q = 103 Nm−1 3 0.3737 0.8569
5 0.3470 0.8761
8 0.3470 0.8761

q = 104 Nm−1 3 0.4310 0.8013
5 0.4028 0.8245
8 0.4028 0.8245

1 + 0.6i 3 0.3519 0.8738
5 0.3259 0.8915
8 0.3259 0.8915

1 + 0.8i 3 0.3128 0.8998
5 0.2873 0.9153
8 0.2873 0.9153

30◦ 3 0.4089 0.8301
5 0.3839 0.8498
8 0.3839 0.8498

45◦ 3 0.3910 0.8446
5 0.3653 0.8639
8 0.3653 0.8639

Figures 3 and 4 show the comparisons of reflection coefficient Kr between the present and
experimental data as well as analytical results [8] with σ = 0.49, θ = 60

◦

, h/a = 0.6, and h/H = 0.25 with
flexural rigidity E = 5× 108 GPa, compressive force fc =

√
EIρg, and mooring stiffness q = 105 Nm−1

versus non-dimensional wavenumber kh. Comparison results indicated that some of the experimental
data points and analytical points are agreed well with the present model and others are only agreed in
trend, not their values. It is again observed that the trough of the reflection coefficients is almost the same
between models, but the crests of Kr in the present result are little far for some non-dimensional wave
number. These differences can be explained by the present solution associated with the flexible structure
with multi-mode motions and in the presence of compressive force, while these parameters were not
included in the model [8]. It is also suspected that the complex wavenumber effects considered in the
present model associated with the structural deformations due to the additional features of flexibility
with compressive force can play a vital part in the characteristics of the wave phenomena, while these
effects were not considered in the model [8]. Therefore, the present model reproduces a higher crest of
the reflected wave (which leads to reflection coefficients) that the model [8] cannot reproduce.
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and h/H = 0.25 with flexural rigidity E = 5× 108 GPa, compressive force fc =

√
EIρg, and mooring

stiffness q = 105 Nm−1.

From Figures 3 and 4, it is may be concluded that the present reflection coefficient results based
on the developed analytical solution are supported by the analytical and experimental dataset [8] in
the submerged porous plate model without assuming the flexural rigidity and compressive force.

4.4.2. Effect of Design Parameters on the Hydroelastic Response of a Moored Submerged Horizontal
Flexible Plate

Figure 5 illustrates the variations of Kr and Ke with various values of mooring stiffness q forθ = 60
◦

,
E = 5 × 108 GPa, fc =

√
EIρg, h/H = 0.25, and σ = 1.0 + 0.5i against non-dimensional wavelength

λ/a. The reflection coefficient Kr to be higher as the value of mooring stiffness q increases. Furthermore,
the general observations in Kr and the reasons are close to [5] in the case of a two-dimensional moored
finite submerged porous plate. The dissipation coefficient Ke was found to be lower with higher values



J. Mar. Sci. Eng. 2020, 8, 698 16 of 23

of mooring stiffness, which is attributed to the structural stiffness. It may be noted that the values
of the dissipation coefficients are more than those of reflection coefficients for all values of mooring
stiffness. This suggests that the flexible plate dissipates more energy by keeping balance with the
mooring lines for a certain value of angle of incidence θ and porous-effect parameter.

J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 17 of 25 

 

From Figures 3 and 4, it is may be concluded that the present reflection coefficient results based 
on the developed analytical solution are supported by the analytical and experimental dataset [8] in 
the submerged porous plate model without assuming the flexural rigidity and compressive force. 

4.4.2. Effect of Design Parameters on the Hydroelastic Response of a Moored Submerged Horizontal 
Flexible Plate 

Figure 5 illustrates the variations of rK  and eK  with various values of mooring stiffness q for 

60oθ = , 85 10 GPaE = × , cf EI gρ= , / 0.25h H = , and 1.0 0.5iσ = +  against non-dimensional 
wavelength aλ . The reflection coefficient rK  to be higher as the value of mooring stiffness q 
increases. Furthermore, the general observations in rK  and the reasons are close to [5] in the case of 
a two-dimensional moored finite submerged porous plate. The dissipation coefficient eK  was found 
to be lower with higher values of mooring stiffness, which is attributed to the structural stiffness. It 
may be noted that the values of the dissipation coefficients are more than those of reflection 
coefficients for all values of mooring stiffness. This suggests that the flexible plate dissipates more 
energy by keeping balance with the mooring lines for a certain value of angle of incidence θ and 
porous-effect parameter. 

 
Figure 5. Variations of the reflection coefficient rK  and the dissipation coefficient eK  for different 

q with 60oθ = , 85 10 GPaE = × , cf EI gρ= , / 0.25h H = , and 1.0 0.5iσ = + . 

In Figure 6, the variations of rK  and eK  for various values of σ  with 60oθ = , 85 10 GPaE = ×

, cf EI gρ= , and / 0.25h H =  against aλ  are plotted. For higher values of the porous-effect 
parameter, the reflection coefficient rK  becomes lower and the dissipation coefficient eK  
increases. This is because the pores over the plate increase, which leads to more wave energy 
dissipation. Furthermore, for smaller wavelengths, the overall trend of rK  and eK  are alike as in 
Figure 5. 

Figure 7 depicts the variations of rK  and eK  versus non-dimensional wavelength aλ  for 

various values of submergence depth h H  with 60oθ = , 85 10 GPaE = × , cf EI gρ= , 
5 110 Nmq −= , and 1.0 0.5iσ = + . The results of Figure 7 showed that as h H  increases the values of 

rK  become lower whilst the results in the dissipation coefficients eK  are almost alike as in reflection 
coefficients. This suggests that as the porous plate away from the water surface, the effect of wave 
energy dissipation lessens. 

Figure 5. Variations of the reflection coefficient Kr and the dissipation coefficient Ke for different q with
θ = 60

◦
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In Figure 6, the variations of Kr and Ke for various values of σ with θ = 60
◦

, E = 5 × 108 GPa,
fc =

√
EIρg, and h/H = 0.25 against λ/a are plotted. For higher values of the porous-effect parameter,

the reflection coefficient Kr becomes lower and the dissipation coefficient Ke increases. This is because
the pores over the plate increase, which leads to more wave energy dissipation. Furthermore, for smaller
wavelengths, the overall trend of Kr and Ke are alike as in Figure 5.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 18 of 25 
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Figure 7 depicts the variations of Kr and Ke versus non-dimensional wavelength λ/a for various
values of submergence depth h/H with θ = 60

◦

, E = 5 × 108 GPa, fc =
√

EIρg, q = 105 Nm−1,
and σ = 1.0 + 0.5i. The results of Figure 7 showed that as h/H increases the values of Kr become
lower whilst the results in the dissipation coefficients Ke are almost alike as in reflection coefficients.
This suggests that as the porous plate away from the water surface, the effect of wave energy
dissipation lessens.
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◦
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√
EIρg, q = 105 Nm−1, and σ = 1.0 + 0.5i.

Figure 8 gives the effect of Kr and Ke on different mooring stiffness q with E = 5 × 108 GPa,
fc =

√
EIρg, h/H = 0.25, a/H = 2.5, and σ = 1.0 + 0.5i against oblique angle θ. In Figure 8,

the reflection coefficients Kr are to be higher as the values of mooring stiffness increases and the reasons
are similar as in Figure 5 whilst the dissipation coefficient Kr decreases as the value of q increases
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In Figure 9, the effect of Kr and Ke on different σ are plotted for E = 5 × 108 GPa, fc =
√

EIρg,
h/H = 0.25, a/H = 2.5, and q = 105 Nm−1 against oblique angle θ. For higher values of q, the Kr to
be lower and the dissipation coefficients Ke become higher. However, the variations of Kr and Ke for
various values of q are negligible for a higher angle of incidence. These observations are similar to [5].
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Figure 9. Effects of the reflection coefficient Kr and the dissipation coefficient Ke on different porous-effect
parameter σ with E = 5× 108 GPa, fc =

√
EIρg, h/H = 0.25, a/H = 2.5, and q = 105 Nm−1.

In Figure 10, the variations of Kr and Ke for various values of h/H against oblique angle are plotted
with E = 5 × 108 GPa, fc =

√
EIρg, a/H = 2.5, q = 105 Nm−1, and σ = 1.0 + 0.5i. It is seen that as

the submergence depth h/H increases, the value of Kr becomes higher and the dissipation coefficient
decreases. The reasons are similar as in Figure 7 and the general observations are the same as in [5].
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Figure 10. Variations of Kr and Ke on different submergence depth h/H with E = 5 × 108 GPa,
fc =

√
EIρg, a/H = 2.5, q = 105 Nm−1, and σ = 1.0 + 0.5i.

Figure 11 gives that variations Kr and Ke on different values of non-dimensional structural length
a/H for E = 5× 108 GPa, fc =

√
EIρg, h/H = 0.25, σ = 1.0 + 0.5i, and q = 105 Nm−1 against oblique

angle θ. For longer structure, Kr becomes lower and higher in dissipation coefficients which is due to
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the largeness of the structural flexibility and pores of the structure that leads a large amount of wave
energy dissipated over the flexible plate.
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In Figure 12, flexible plate displacements ζ for different oblique angles (a) θ = 45
◦

, (b) θ = 60
◦

,
(c) θ = 75

◦

, and (d) θ = 89
◦

versus γ0H with q = 102 Nm−1, fc =
√

EIρg, E = 5 × 105 GPa,
and h/H = 0.25 are plotted. Figure 12a–d illustrates that the plate deflections are to be lower with
higher values of oblique angle θ. A comparison between Figures 12a–c and 12d explains that the
number of crests or optima in the plate displacement increases especially in Figure 12d at θ = 89◦.
This is attributed to the fact that the interaction of waves at the surface mode and waves at the
submerged flexural mode which leads to the change of phase which decreases the wave crests and
increases the number of the crests in the plate displacements.

Figure 13 shows the displacement ζ of the moored submerged flexible porous plate for different
porous-effect parameters (a) σ = 0.2i, (b) σ = 0.3i, (c) σ = 0.5i, and (d) σ = 0.55i versus γ0H and plate
length with q = 105 Nm−1, fc =

√
EIρg, E = 5× 105 GPa, θ = 60

◦

, and h/H = 0.25. From Figure 13a–d,
it is observed that as the values of σ increases the displacements become higher which is seen from
their color bars. This is due to the greater amount of wave energy concentrated over the horizontal
plate as the pores of the plate increase that leads to a higher wave crest. On the other hand, the number
of crests in the plate displacement decreases as the porosity of the plate increases. This indicates that
the wave absorption capacity of the flexible porous plate increases when the values of porosity of the
plate increase.
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EIρg, E = 5× 105 GPa, σ = 0.5i, and h/H = 0.25.J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 22 of 25 

 

  

  
Figure 13. Displacement of submerged flexible porous plate ζ  for (a) 0.2iσ = , (b) 0.3iσ = , (c) 

0.5iσ = , and (d) 0.55iσ =  with 5 110 Nmq −= , 5, 5 10 GPacf EI g Eρ= = × , 60oθ = , and 
0.25h H = . 

5. Conclusions 

In this paper, generalized expansion formulae associated with velocity potentials for the 
aforementioned problem are developed using Green’s function in FD and ID. By utilizing the integral 
form of Green’s function and identity, the series form of the velocity potentials for the wavemaker 
problem is derived in FD and ID. The application of the derived expansion formula is illustrated by 
studying a real problem of a moored flexible plate of finite dimension oblique waves in FD. It has 
been concluded that: 

1. Under oblique waves, the Green’s functions, expansion formulae, and expansion form for the 
wavemaker problem is derived here in FD and ID which are communicated for the first time. 

2. The derived Green’s function can facilitate the analysis of the thin and thick flexible plate, and 
applications to wavemaker problems over boundary integral equation formulations associated 
with real physical problems in BEM analysis. 

3. The basic limitations of the present approach are (i) relevant boundary conditions must be linear 
(maybe of higher-order), (ii) structural boundaries must be at constant of co-ordinates (ends of 
the structure must be at fixed locations), (iii) the coefficients associated with the equations must 
uncomplicated, and (iv) after all, the solution must be a series of solutions. Therefore, the 
MEFEM approach can be used for the rectangular and circular shaped flexible plate and 
membrane type structures. 

4. For numerical correctness and convergence of the series solution, in the computation 5N =  is 
confined. 

5. Comparison results show that the present results based on the analytical solution are supported 
by the published experimental data and as well as analytical results. 

Figure 13. Displacement of submerged flexible porous plate ζ for (a) σ = 0.2i, (b) σ = 0.3i, (c) σ = 0.5i,
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It may be mentioned that the numerical computations of the analytical expression were carried
out in a desktop machine with Intel® core i7-4790 CPU with a 3.60 GHz processor and 16 GB of RAM.
On average, each case was run for roughly 5–7 min (computational time) for different values of N.

5. Conclusions

In this paper, generalized expansion formulae associated with velocity potentials for the
aforementioned problem are developed using Green’s function in FD and ID. By utilizing the integral
form of Green’s function and identity, the series form of the velocity potentials for the wavemaker
problem is derived in FD and ID. The application of the derived expansion formula is illustrated by
studying a real problem of a moored flexible plate of finite dimension oblique waves in FD. It has been
concluded that:

1. Under oblique waves, the Green’s functions, expansion formulae, and expansion form for the
wavemaker problem is derived here in FD and ID which are communicated for the first time.

2. The derived Green’s function can facilitate the analysis of the thin and thick flexible plate,
and applications to wavemaker problems over boundary integral equation formulations associated
with real physical problems in BEM analysis.

3. The basic limitations of the present approach are (i) relevant boundary conditions must be linear
(maybe of higher-order), (ii) structural boundaries must be at constant of co-ordinates (ends
of the structure must be at fixed locations), (iii) the coefficients associated with the equations
must uncomplicated, and (iv) after all, the solution must be a series of solutions. Therefore,
the MEFEM approach can be used for the rectangular and circular shaped flexible plate and
membrane type structures.

4. For numerical correctness and convergence of the series solution, in the computation N = 5
is confined.

5. Comparison results show that the present results based on the analytical solution are supported
by the published experimental data and as well as analytical results.

6. The analysis of the reflection and the dissipation coefficients indicated that the absorption of
wave energy over a flexible plate is remarkable for the suitable value of the oblique angle of the
incident wave and mooring stiffness.

7. The study demonstrates that plate displacement reduces with an increase in oblique angle,
suitable positing, and appropriate choice of porous-effect parameter.

8. As a result, the present formulation can be further generalized to develop a wave energy converter
(WEC)-type attachment for wave energy extraction.

Author Contributions: Conceptualization, S.C.M. and C.G.S.; Methodology, S.C.M.; Writing—original manuscript,
S.C.M. and C.G.S. All authors have read and agreed to the published version of the manuscript.

Funding: This work was performed within the project HYDROELASTWEB—Hydroelastic behavior of horizontal
flexible floating structures for applications to Floating Breakwaters and Wave Energy Converters, which is funded
by the Portuguese Foundation for Science and Technology (Fundação para a Ciência e a Tecnologia—FCT) under
contract 031488_770 (PTDC/ECI-EGC/31488/2017). The first author has been contracted as a Researcher by the
Portuguese Foundation for Science and Technology (Fundação para a Ciência e Tecnologia-FCT), through scientific
employment stimulus, individual support under the contract no. CEECIND/04879/2017. This work contributes to
the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering (CENTEC), which is
financed by the Portuguese Foundation for Science and Technology (Fundação para a Ciência e Tecnologia—FCT)
under contract UIDB/UIDP/00134/2020.

Conflicts of Interest: The authors declare no conflict of interest.



J. Mar. Sci. Eng. 2020, 8, 698 22 of 23

Abbreviations List

BVP Boundary Value Problem
FD Finite Depth
ID Infinite Depth
MEFEM Matched eigenfunction expansion method
WEC Wave Energy Converter
BEM Boundary Element Method

Appendix A. Shallow Water Equations

This appendix presents the linearized shallow water equations in a straightforward way based on the
assumption of shallow water approximation. The equation of motion takes of the form

(1/h)
{
(∂η/∂t) − (∂ζ/∂t)

}
= Ũ2Φ (A1)

and (
∂2η/∂t2

)
−

(
∂2ζ/∂t2

)
= ghŨ2η (A2)

where Ũ2 being the same as in Equation (1), η(x, z, t) and ζ(x, z, t) are the wave surface elevation and plate
displacement, respectively. Now, the equation of continuity at y = h is given by

(∂ζ/∂t) + iσ(Φ2 −Φ1) = h1Ũ2Φ (A3)

Using Equations (4), (A1) and (A2), the shallow water equation in terms of η(x, z, t) and ζ(x, z, t) is derived as{
Ũ2(EIŨ2 + fc)

}
[Ũ2(∂ζ/∂t) − iσ(∂/∂t)

{
(ζ/h1) −ξ/h}]

= ρ
(
∂3/∂t3

){
(ζ/h1) − ξ/h

} (A4)

where ξ = (η− ζ). Substituting the expressions of η(x, z, t) and ζ(x, z, t) into Equations (A2) and (A4), one can
derive two Equations in terms of sinusoidal wave amplitudes η0 and ζ0 as

(ω2
− ghp2)η0 −ω

2ζ0 = 0 (A5){
ρω2
− iσ(EIp4

− fcp2)
}
h1η0 − [

{
ρω2
− iσ(EIp4

− fcp2)
}
H − p2(EIp4

− fcp2)hh1]ζ0 = 0 (A6)

where p2 = k2 + ϕ2. Substituting the value η0/ζ0 from Equation (A5) into Equation (A6), the obtained equation
will be the shallow water dispersion relation which will be the same as in Equation (14) when ph, ph1 � 1. It should
be mentioned that if EI = 0 and fc = −T f , then the lessens result will be the same as in [2]. Furthermore, if ϕ = 0
and both σ = 0, ϕ = 0, then the reduced expression will be the same as in [5,14], respectively.
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