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Abstract: Cylindrical shells are principal structural elements that are used for many purposes, such
as offshore, sub-marine, and airborne structures. The nonlinear mechanics model of internal blast
loading was established to predict the dynamic blast pressure of cylindrical shells. However, due to
the complexity of the nonlinear mechanical model, the solution process is time-consuming. In this
study, the nonlinear mechanics model of internal blast loading is linearized, and the dynamic blast
pressure of cylindrical shells is solved. First, a mechanical model of cylindrical shells subjected to
internal blast loading is proposed. To simplify the calculation, the internal blast loading is reduced
to linearly uniform variations. Second, according to the stress function method, the dynamic blast
pressure equation of cylindrical shells subjected to blast loading is derived. Third, the calculated
results are compared with those of the finite element method (FEM) under different durations of
dynamic pressure pulse. Finally, to reduce the errors, the dynamic blast pressure equation is further
optimized. The results demonstrate that the optimized equation is in good agreement with the FEM,
and is feasible to linearize the internal blast loading of cylindrical shells.

Keywords: internal blast loading; linearization; dynamic blast pressure; cylindrical shells;
analytical solution

1. Introduction

Cylindrical shells are special pressure vessels that are widely used in offshore and sub-
marine structures, among others. In offshore applications, the cylindrical shell structures
are utilized to transport oil and gas [1]. In sub-marine applications, the pressure shell is
the primary element for withstanding diving pressure [2]. To solve explosion problems
of cylindrical shells, scholars often simplify the blast loadings into nonlinear loads via
theoretical analysis [3] and finite element simulation [4]; however, the nonlinear load model
of the internal blast loading is complicated, and its solution is difficult and time-consuming.
Therefore, it is necessary to establish a more effective model to solve the problem.

The interaction between explosion products and containers is one of the topics in the
research of cylindrical shells. Scholars have carried out research by means of theoretical
analysis, blasting tests, and numerical simulations [5,6]. In 1958, Baker and Allen [7] first
established a general response theory for spherical shells of arbitrary thickness, showing
that even “thin-shell” equations of motion can accurately describe relatively thick shells.
In 1960, Baker [8] proposed a theory for predicting the elastic–plastic response of thin
spherical shells subjected to transient loads. Duffey et al. [9] studied the approximate
expression of the ultimate circumferential strain (or radial displacement) versus the axial
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coordinates of a cylindrical shell, when a spherical explosive charge was loaded at the
center. Ko et al. [10] analyzed the dynamic response of a multilayer spherical container
made of the same material and thickness subjected to intermittent internal explosive loads.
Karpp et al. [11] discussed the response of steel containment to the explosive load of
high explosives. Ruiz et al. [12] calculated the strength of thin-walled cylindrical shells
subjected to explosive loads. Ma et al. [13] conducted a finite element analysis of cylindrical
containment shells with different crack sizes, and calculated the propagation of the cracks
and the final fracture profile. Zheng et al. [14,15] examined the delamination failure of
composite containers subjected to internal explosive loads. Du et al. [16,17] researched the
progressive propagation of pipe cracks subjected to internal explosive loads. Chen et al. [18]
simplified the blast loading as a parabolic load, and solved the dynamic blast pressure
problem of cylinder shells subjected to blast loading.

Blast pressure refers to the maximum pressure that a container can withstand in bursts,
and is an important parameter to evaluate the anti-explosive performance of cylindrical
shells. Because an explosion is an extremely rapid physical or chemical energy-release
process, the blasting of a container is classified as a dynamic mechanical behavior. However,
at present, few scholars have studied the dynamic blast pressure of cylindrical shells. Our
study will focus on this issue.

In this study, to simplify the calculation, the internal blast loadings are simplified
to linearly varying loads. It is of great significance to simplify nonlinear load into linear
load in theoretical analysis. Based on the stress function method, a dynamic blast pressure
prediction formula of cylindrical shells is derived. First, a simplified model of a cylindrical
shell subjected to internal explosive load is established in Section 2. Second, the components
of stress and strain of cylindrical shells are obtained in Section 3, according to the stress
function and boundary conditions of the cylindrical shells. Third, a dynamic blast pressure
prediction equation for cylindrical shells is proposed in Section 4. Finally, the prediction
equation is compared with the results of the finite element method (FEM) analysis, and
the prediction equation is optimized. This study will provide an in-depth understanding
of dynamic blast pressure, and will be helpful in the safety assessment and optimization
design of cylindrical shells.

2. Research Model

The mechanical model describing the cylindrical shell is composed of a cylindrical
surface and two hemispherical heads, as shown in Figure 1. Pi is the internal pressure
on the pipeline. To simplify the calculation, it is regarded as a closed structure, ignoring
openings and connectors, i.e., the model of the cylindrical shell is assumed to be an ideal
cylindrical shell. The material of the cylindrical shell is also assumed to be homogeneous
and isotropic.
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The method of center initiation [19] is usually used in experiments of explosive loading
for cylindrical shells, in which trinitrotoluene (TNT) is installed in the geometric center
of the cylindrical shell [20]. According to the theory of explosion dynamics, the strength
of a shockwave decreases with the increase in the distance from the explosion point. In
addition, deformation occurs in a limited range from the charge center along the axial
direction of the shell [21]. In our mechanical model, the explosive load is approximately
regarded as a spindle-shaped load. The load at the initiation point is the largest, and the
load on both sides of the axial direction is inversely proportional to the distance from the
initiation point. The spindle-shaped load acting on both ends of the vessel is ignored.

There is a fluid–solid coupling between the shell of the explosion vessel and the
explosion flow field. The external bulging deformation of the shell reduces the wall
explosion load, while the inward contraction deformation increases the wall explosion
load [22]. In the theoretical model of this paper, the fluid–solid coupling, shell damage,
and spindle-shaped load are not considered. The main aim of this work is to study the
influence of internal spindle-shaped explosion loads on cylindrical shells. Through the
analysis and calculation of the theoretical model, the dynamic blast pressure prediction
equation for cylindrical shells can be obtained, which will be helpful for further study of
the dynamic response of cylindrical shells subjected to internal explosion loads.

3. Theoretical Analysis
3.1. Stress Function

Although the propagation process of explosion shockwaves in cylindrical shells is
complex, it is generally believed that the first shockwave plays a crucial role in the process
of the cylindrical shell’s deformation [8,23]. The explosion load on the inner wall of the
cylindrical shell decreases with the increase in the radius of the cylindrical shell; if the
explosion is at the axis, the load can be simplified as a spindle-shaped load. From the
geometric characteristics of the cylindrical shell and the location of the initiation point, the
boundary conditions of the cylindrical shell are axisymmetric about the z-axis, as shown
in Figure 2. Therefore, the stress and strain of the cylindrical shell are also axisymmetric
about the z-axis, i.e., they are the functions of r and z.
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The following stress function with eight undetermined coefficients is used to obtain
the analytical solution [24]:

φ = γ1z4 + γ2r4 + γ3z3 + γ4z2r2 + γ5z2 ln r + γ6zr2 + γ7r2 ln r + γ8z ln r (1)

where γ1–γ8 are uncertainty coefficients that can be obtained from the stress/strain com-
ponents of the cylindrical shell and the boundary conditions.
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3.2. Stress and Displacement Component

The stress and displacement of cylindrical shells subjected to linear implosion loads
can be calculated by A.E.H. Love’s method. The stress components can be expressed as [24]:

σr =
∂
∂z

(
µ∇2φ− ∂2φ

∂r2

)
σθ = ∂

∂z

(
µ∇2φ− 1

r
∂φ
∂r

)
σz =

∂
∂z

(
(2− µ)∇2φ− ∂2φ

∂z2

)
τrz =

∂
∂z

(
(1− µ)∇2φ− ∂2φ

∂z2

)
(2)

The displacement components can be determined by:
ur = − 1

2G
∂2φ
∂r∂z

w = 1
2G

[
2(1− µ)∇2 − ∂2

∂z2

]
φ

(3)

In the above equation, the stress function φ satisfies the following biharmonic equation:

∇2∇2φ = 0 (4)

where∇2 is the three-dimensional Laplace operator. In the axisymmetric theoretical model,
the Laplace operator can be expressed as:

∇2 =
∂2

∂r2 +
1
r

∂

∂r
+

∂2

∂z2 (5)

3.3. Boundary Conditions

The boundary condition of stress and the continuity conditions of stress and strain
are applied for conducting the stress and displacement of cylindrical shell. In the model
shown in Figure 2, the inner radius and outer radius of the cylindrical shell are r1 and r2,
respectively. The z-axis is along the central axis. In the cylindrical coordinate system, p1
and p2 are assumed to be the internal and external radial constant pressures. The action
position of the explosive load inside the cylindrical shell is from 0 to 2h. Because the
internal explosion load is symmetrical about the r-axis, in order to simplify the calculation,
the linear load of the cylindrical shell in this paper is from 0 to h on the z-axis. k1 and k2 are
the gradients of pressure along the axis for the internal and the external walls, respectively.
The load boundary conditions of the cylindrical shell are as follows:

r = r1 : σr = k1z + p1, τrz = 0

r = r2 : σr = k2z + p2, τrz = 0

z = 0, h : σz = q, τrz = 0

(6)

3.4. Solving the Stress Function

The uncertainty coefficients can be determined from the stress/strain components
and the boundary conditions of the cylindrical shell. Afterwards, the stress and strain
components of the cylindrical shell can be obtained.
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Substituting Equation (1) into Equation (2) yields:

σr = [24µγ1 + 4(2µ− 1)γ4]z + 2γ5z/r2 + γ8/r2 + 6µγ3 + 2(2µ− 1)γ6

σθ = [24µγ1 + 4(2µ− 1)γ4]z− 2γ5z/r2 − γ8/r2 + 6µγ3 + 2(2µ− 1)γ6

σz = [24(1− µ)γ1 + 8(2− µ)γ4]z + 6(1− µ)γ3 + 4(2− µ)γ6

τrz = [32(1− µ)γ2 − 4µγ4]r + [4(1− µ)γ7 − 2µγ5]/r

(7)

By substituting Equation (7) into Equation (6):

γ1 =
2− µ

12(1 + µ)

k2r2
2 − k1r1

2

(r22 − r1
2)

(8)

γ2 = − µ

32(1 + µ)

k2r2
2 − k1r1

2

(r22 − r1
2)

(9)

γ3 = − 2− µ

3(1 + µ)

p2r2
2 − p1r1

2

r22 − r1
2 +

1− 2µ

6(1 + µ)
q (10)

γ4 = − 1− µ

4(1 + µ)

k2r2
2 − k1r1

2

(r22 − r1
2)

(11)

γ5 = − r1
2r2

2(k2 − k1)

2(r22 − r1
2)

(12)

γ6 =
1− µ

2(1 + µ)

p2r2
2 − p1r1

2

r22 − r1
2 +

µ

2(1 + µ)
q (13)

γ7 = − µ

1− µ

r1
2r2

2(k2 − k1)

4(r22 − r1
2)

(14)

γ8 =
r1

2r2
2(p2 − p1)

r22 − r1
2 (15)

By substituting the coefficients ( γ1 ∼ γ8) into Equation (7):

σr =
(p2+k2z)r2

2(−r2+r2
1)+(p1+k1z)r2

1(r
2−r2

2)

r2(r2
1−r2

2)

σθ =
−(p2+k2z)r2

2(r
2+r2

1)+(p1+k1z)r2
1(r

2+r2
2)

r2(r2
1−r2

2)

σz = q

τrz = 0

(16)

By substituting the undetermined coefficient(s) ( γ1 ∼ γ8) and Equation (1) into
Equation (3), the displacement components of cylindrical shells can be obtained:

ur =
1

2G

[(
1−µ
1+µ ∆1r + ∆3

1
r

)
z−

(
1−µ
1+µ ∆2r + ∆4

1
r

)]
− µrq

E

w = − 1
2G

[
− µ

1+µ ∆1z2 + µ−1
2(1+µ)

∆1r2 + 2µ
1+µ ∆2z− ∆3 ln r− 2µ∆3

]
+ qz

E

(17)

where ∆1 = k2r2
2−k1r1

2

r2
2−r1

2 , ∆2 = p2r2
2−p1r1

2

r2
2−r1

2 , ∆3 = r1
2r2

2(k2−k1)
r2

2−r1
2 and ∆4 = r1

2r2
2(p2−p1)

r2
2−r1

2 .
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4. Dynamic Blast Pressure

Barsom and Rolfe [25] classified loads into two types: static and quasi-static loads,
and dynamic loads. A load with a strain rate of less than 10−5 is regarded as a static or
quasi-static load; steady-state, creep, and relaxation loads are generally in this type. A
load with a strain rate from 10−2 to 106 is regarded as a dynamic load. For traffic and
machinery, the strain rate is usually between 10−2 and 10−1; for earthquakes and cranes,
the strain rate is usually between 10−1 and 101; and for explosions and blast loads, the
strain rate is usually between 101 and 106. Since the 1940s, many scholars have studied
the bearing capacity of cylindrical shells subjected to static and quasi-static loads. The
equations for blast pressure prediction are shown in Table 1. Additionally, previous studies
on pipelines with corrosion and wear defects by the author of this paper revealed several
static blasting pressure equations [26–29]. However, because the blast pressure is a typical
high-strain-rate load [30], these static blast pressure prediction equations cannot accurately
predict the blast pressure of a cylindrical shell subjected to an internal explosive load. In
this paper, the explosive load undertaken by the cylindrical shell changes with time.

Table 1. Representative predictive formulae for blast pressure (Pb), reproduced from [26], with permission from Else-
vier, 2021.

Contributor Equation Contributor Equation

Faupel Pb = 2√
3

σb(2−
σy
σb
) ln(k) Turner Pb = σb ln(k)

API Pb = 0.875( 2σyT
D ) ASME Pb = σb(

k−1
0.6k+0.4 )

Nadai (1) Pb = 2√
3

σb ln(k) Maximum shear stress Pb = 2σb(
k−1
k+1 )

Nadai (2) Pb = σb√
3n
(1− 1

k2n ) Baily–Nadai Pb = 2σbt
D−t

[(
1
2

)1+n
+
(

1√
3

)1+n
]

Soderberg Pb = 4√
3

σb(
k−1
k+1 ) Klever Pb =

(
2+
√

3
4
√

3

)n 4Tσb
Dm

Maximum stress Pb = σb(k− 1) Zhu–Leis Pb = 2√
3

σb(2−
σy
σb
) ln(k)

In our model, the explosion load inside the cylindrical shell is simplified to a spindle-
shaped load, as shown in Equation (6). It can be seen from Figure 2 that the explosive load
of the cylindrical shell is the greatest when z = h and r = r1, and the stress of the cylindrical
shell is the greatest at the same point. Therefore, by substituting p2 = 0, z = h, and r = r1
into Equation (16), the stress component can be obtained as follows:

σr = pi

σθ = pi(r1
2+r2

2)
r2

2−r1
2

σz = q

τrz = 0

(18)

Once the hoop stress reaches the ultimate tensile strength, the cylindrical shell
will burst:

σθ =
pi(r1

2 + r2
2)

r22 − r1
2 = σb (19)

From Figure 2, pi is the maximum explosive load inside the cylindrical shell. Therefore,
according to Equation (19), the static blast pressure can be expressed as follows:

pi = ps
b

= r2
2−r1

2

r1
2+r2

2 σb

(20)
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The dynamic explosion pressure of the cylindrical shell changes with time [31]; there-
fore, the inertial effect produced cannot be ignored. Unlike static ultimate tensile strength,
dynamic ultimate tensile strength is also related to time. In 1980, Baker et al. discussed
the relationship between dynamic and static ultimate tensile strength [32]. The dynamic
ultimate tensile strength can be derived from the static ultimate tensile strength and strain
rate as follows:

σd
b = σb

[
1.1 + 0.1 log

( .
ε · s
)]

(21)

where σd
b is the dynamic ultimate tensile strength, σb is the static ultimate tensile strength,

.
ε

is the strain rate,
.
ε = ε/tb, (tb is the burst time), and s is the time in seconds.

Substituting Equation (21) into Equation (20), the dynamic blast pressure prediction
equation can be taken as:

pd
b =

r2
2 − r1

2

r1
2 + r22 σb

[
1.1 + 0.1 log

( .
ε · s
)]

(22)

5. Finite Element Analysis

With the development of modern numerical simulation and high-speed computer
technologies, the dynamic response of vessel structures subjected to explosion loads can
be accurately simulated by numerical simulation technology, which is now an important
means of studying the above problems. In this paper, finite element analysis results from
the literature [33] are used to verify the accuracy of the dynamic blast pressure prediction
Equation (22). In the literature [33], the blast pressure of a cylindrical metal shell subjected
to short-term dynamic loading was analyzed by using the general explicit dynamic analysis
program LS-DYNA. The details are as follows:

5.1. Geometry and Material Data

Figure 3 demonstrates the shape and dimensions of the cylindrical shell, which consists
of a cylindrical shell and two hemispherical covers at the ends; r1 and r2 are the inner
and outer radius of the cylindrical shell, respectively. In addition, any defect is ignored in
the geometric model. The material of the cylindrical shell analyzed in the literature was
ASTM A-106 B steel; this type of steel also contains other elements, including C (0.17%),
Mn (0.77%), P (0.010%), S (0.025%), and Si (0.25%). ASTM A-106 B steel corresponds to
“MAT Type 24, piecewise linear isotropic plasticity model” in LS-DYNA. This material
model can reflect the elastic–plastic properties of materials.
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5.2. Loading and Boundary Conditions

The loading and boundary conditions of cylindrical shells are symmetrical. In the
literature, a series of pressure–time history curves similar to those of water hammer were
defined and input into the finite element model to define the load on the cylindrical shell.
The duration of half of the pressure pulse period is from 3.9 ms to 390 ms. During the trial
process, the minimum dynamic blast pressure caused by one loading step is determined by
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the highest peak pressure. The boundary conditions are shown in Figure 4. The gravity of
the cylindrical shell acts on the negative direction of the y-axis, and the end of the sealing
cap is fixed along the y-axis; however, there is no rotation constraint.
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5.3. Finite Element Analysis Results

The geometric structure and the load of the cylindrical shell are axisymmetric. To
reduce computational cost, 1/4 models shown in Figure 5 are established for the finite
element analysis. Through mesh sensitivity analysis, the size and number of elements of the
model are determined, and the influence of different modeling parameters on the prediction
of burst pressure is minimized. In this finite element model, the length (excluding the
caps) is double the outer diameter of the cylindrical shell. The element type adopts eight
node hexahedral elements, the aspect ratio is 1.35, the inner layer has 35 elements along
the half-circumference, and the span of each element is ~5.1◦. The blast failure criterion
of the finite element analysis is based on the maximum plastic strain at different strain
rates. Under the action of load, when the plastic strain of the element reaches the preset
maximum value, the element is considered to be invalid, and is subsequently deleted.
When the element is deleted, it means that the cylindrical shell has burst. In the output file
of the finite element analysis, the time and pressure of the blast are recorded. The results
are listed in Appendix A.
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6. Results and Discussion
6.1. Advantages and Disadvantages of the Proposed Model

In this paper, the explosive load was simplified to be a linear load. Then, the dynamic
blast pressure prediction equation of the cylindrical shell was obtained based on the stress
function and the explosive load boundary conditions. The ultimate bearing capacity of
cylindrical shells—an important parameter of pressure vessels—was studied. There are
two main advantages of this research: The first lies in the simplification of the explosive
load, whereby the explosive load is treated as spindle-shaped load—a linear load. The
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second advantage is due to the inherent characteristics of the developed dynamic blast
pressure equation for the cylindrical shell subjected to a spindle-shaped explosive load. The
equation is novel, but has shortcomings. First, to simplify the calculation, the fluid–solid
coupling behavior during the explosion is ignored. Second, the effect of the heat and solid
products from the explosion on the cylindrical shell is not considered. This paper focuses
only on the dynamic blast pressure prediction equation of the cylindrical shell subjected to
an internal explosive load.

6.2. Comparison with the FEM Results

When the cylindrical shell is subjected to explosive load until burst, the spike duration
of dynamic pressure pulse td will be shorter than the dynamic burst time tb. The latter is
recorded in the solution output file, and can be obtained by post-processing, as shown in
Appendix A. The maximum dynamic strain ε of ASTM A-106B steel is 0.262, and its static
ultimate tensile strength σb is 413.7 MPa. Substituting these parameters into Equation (22),
the dynamic blast pressure of the cylindrical shell can be calculated.

Figures 6–8 show the comparison between the FEM analysis results and the predicted
values of dynamic blast pressure obtained by Equation (22) when td is 3.9 ms, 39 ms, and
390 ms, respectively. Figures 6–8 contain 16 cases for comparison. The parameters that
determine the comparison results are in Tables A1–A3 of Appendix A, while Figures 6–8
only show the comparison results. In Figure 6, compared with the results of FEM analysis,
the maximum and minimum errors of Equation (22) are 26.48% and 18.37%, respectively.
In Figure 7, compared with the results of FEM analysis, the maximum and minimum
errors of Equation (22) are 16.66% and 13.24%, respectively. In Figure 8, compared with
FEM analysis results, the maximum and minimum errors of Equation (22) are −3.99% and
−2.09%, respectively. When the timestep of the finite element analysis is determined, if the
dynamic pressure pulse duration td is smaller, the accuracy of the finite element analysis
is also lower. The results show that there is a gap between the dynamic blast pressure
calculated from Equation (22) and the FEM results, which cannot meet the engineering
requirements well.
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6.3. Optimization of the Prediction Equation

The optimization of dynamic blast pressure equation starts from the dynamic pressure
pulse duration. According to Figures 6–8, when the dynamic pressure pulse duration td is
shorter, the error of the predictive equation becomes larger. Therefore, a modified function
is proposed to make the prediction of the dynamic blast pressure pd more consistent with
the FEM. The expression of the modified function is as follows:

f (tb) = atb
2 + btb + c (23)
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According to the regression analysis, the undetermined coefficients can be determined
as a = −0.0000029, b = 0.0018, and c = 0.8. Therefore, the optimized dynamic blast pressure
equation can be expressed as:

pd
b = f (tb)

r2
2−r1

2

r1
2+r2

2 σb
[
1.1 + 0.1 log

( .
ε · s
)]

=
(
−0.0000029tb

2 + 0.0018tb + 0.8
) r2

2−r1
2

r1
2+r2

2 σb
[
1.1 + 0.1 log

( .
ε · s
)] (24)

At the same time, the results obtained via the optimized dynamic blast pressure
Equation (24), compared with the model proposed by Chen et al. [18], are shown in
Figures 9–11 when td = 3.9 ms, 39 ms, and 390 ms, respectively. Figures 9–11 contain
16 cases for comparison. The parameters that determine the comparison results are listed
in Tables A4–A6 of Appendix A, while Figures 9–11 only show the comparison results.
The errors between Equation (24) and the FEM are greatly reduced, and most of the errors
are less than 5%. Compared to the calculation by Equation (22), the accuracy is greatly
improved. In addition, while ensuring the accuracy close to that of the prediction method
in Chen et al. [18], the structure of Equation (24) is more concise. Equation (24) is a
semi-empirical equation for the dynamic blast pressure of cylindrical shells subjected to
explosive loads, and is able to meet the engineering requirements.

The main innovations and research significance of this paper are in three aspects: First,
the explosive load in vessels is simplified as a spindle-shaped load for the dynamic blast
pressure; this means of simplification has not been used in previous research in the field.
Second, compared with the nonlinear load, the linear load can only be used to calculate
the dynamic blast pressure with low accuracy, while in this paper the calculation accuracy
after optimization is significantly higher. Third, the equations in this paper can be used
as evaluation criteria to verify the accuracy of numerical calculation results. This paper
provides a new method of solving the dynamic blast pressure of cylindrical shells, and
could be applied in many circumstances, such as the aerospace, marine, energy, chemical,
military, and security industries.
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7. Conclusions

In this paper, the dynamic blast pressure of cylindrical shells subjected to non-uniform
explosion loading is discussed.

(1) In terms of theory, a method to analyze the bearing capacity of pressure pipes or
cylindrical shells subjected to non-uniform implosion loads is proposed. Our method
expands the application of the Lame equation, which is suitable for plane problems
with uniform loads. Equation (16) in this paper is used to calculate the stress distribu-
tions of cylindrical shells subjected to non-uniform implosion loads, and is able to be
transformed into a Lame equation;
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(2) In terms of application, a new mechanical model of cylindrical shells subjected to
explosive loads is established. Unlike the previous models, this model assumes
that the load is a simplified explosive load. In addition, the modified dynamic blast
pressure equation of the cylindrical shell subjected to the simplified blast load is given;

(3) The accuracy of the dynamic blasting pressure equation is verified by comparing its
calculation with the finite element simulation results.

This paper provides a reference benchmark for numerical calculation and approximate
solution, leads to a better understanding of the failure of cylindrical shells subjected to
explosive loads, and provides insights for the design and optimization of cylindrical shells.
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Appendix A

Table A1. Comparisons between the FEM results and the predictions, when td = 3.9 ms.

D (mm.) T (mm.) tb (ms) FEM (MPa) Equation (22) (MPa) Errors (%)

355.6 4.191 5.011 12.4106 14.7569 18.91
355.6 4.7752 5.236 14.0654 16.7917 19.38
355.6 5.5372 4.916 16.5475 19.5949 18.42
355.6 6.35 4.9046 19.0296 22.5252 18.37
355.6 7.9248 5.002 23.7181 28.1963 18.88
355.6 9.525 4.965 28.6824 34.0553 18.73
355.6 11.1252 4.968 33.6466 39.9484 18.73
266.7 3.14452 4.724 12.1348 14.8211 22.14
266.7 3.5814 4.79 13.7896 16.892 22.5
266.7 4.1529 4.825 15.9959 19.6193 22.65
266.7 4.7625 4.738 18.4781 22.5771 22.18
266.7 5.9436 4.738 23.1665 28.2986 22.15
266.7 7.1501 4.657 28.1308 34.2323 21.69
266.7 8.3439 4.748 32.8192 40.0693 22.09
177.8 5.5626 4.67 31.7161 40.1135 26.48
177.8 2.0955 4.426 11.8591 14.8794 25.47
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Table A2. Comparisons between the FEM results and the predictions, when td = 39 ms.

D (mm.) T (mm.) tb (ms) FEM (MPa) Equation (22) (MPa) Errors (%)

355.6 4.191 40.461 11.0317 12.6961 15.09
355.6 4.7752 40.064 12.6864 14.5004 14.3
355.6 5.5372 39.626 14.8928 16.8642 13.24
355.6 6.35 40.522 16.8233 19.3495 15.02
355.6 7.9248 41.239 20.9602 24.2199 15.55
355.6 9.525 41.17 25.3729 29.2419 15.25
355.6 11.1252 40.438 30.0613 34.3513 14.27
266.7 3.1445 40.635 10.8938 12.697 16.55
266.7 3.5814 40.876 12.4106 14.4778 16.66
266.7 4.1529 39.905 14.617 16.855 15.31
266.7 4.7625 39.863 16.8233 19.3742 15.16
266.7 5.9436 40.297 20.9602 24.2635 15.76
266.7 7.1501 40.769 25.235 29.2909 16.07
266.7 8.3439 40.384 29.7855 34.3549 15.34
177.8 2.0955 40.396 10.8938 12.6977 16.56
177.8 5.5626 39.783 29.5097 34.3949 16.55

Table A3. Comparisons between the FEM results and the predictions, when td = 390 ms.

D (mm.) T (mm.) tb (ms) FEM (MPa) Equation (22) (MPa) Errors (%)

355.6 4.191 391.456 10.7007 10.4569 −2.28
355.6 4.7752 398.019 12.4106 11.9151 −3.99
355.6 5.5372 387.939 14.3412 13.8792 −3.22
355.6 6.35 395.383 16.2717 15.9237 −2.14
355.6 7.9248 388.973 20.6844 19.9898 −3.36
355.6 9.525 393.792 24.8213 24.1035 −2.89
355.6 11.1252 391.481 29.3718 28.2914 −3.68
266.7 3.1445 388.724 10.7559 10.468 −2.68
266.7 3.5814 388.998 12.2727 11.9409 −2.7
266.7 4.1529 387.14 14.3412 13.8819 −3.2
266.7 4.7625 393.439 16.2717 15.9311 −2.09
266.7 5.9436 390.747 20.5465 19.9812 −2.75
266.7 7.1501 392.35 24.8213 24.1339 −2.77
266.7 8.3439 401.02 29.234 28.2271 −3.44
177.8 2.0955 392.02 10.7559 10.4555 −2.79
177.8 5.5626 387.844 29.234 28.3163 −3.14

Table A4. Comparisons between the FEM results and the predictions, when td = 3.9 ms.

D (mm.) T (mm.) tb (ms) FEM (MPa) Equation (24) (MPa) Errors (%)

355.6 4.191 5.011 12.4106 11.9085 −4.05
355.6 4.7752 5.236 14.0654 13.5505 −3.66
355.6 5.5372 4.916 16.5475 15.8126 −4.44
355.6 6.35 4.9046 19.0296 18.1773 −4.48
355.6 7.9248 5.002 23.7181 22.7537 −4.07
355.6 9.525 4.965 28.6824 27.4818 −4.19
355.6 11.1252 4.968 33.6466 32.2374 −4.19
266.7 3.14452 4.724 12.1348 11.9603 −1.44
266.7 3.5814 4.79 13.7896 13.6314 −1.15
266.7 4.1529 4.825 15.9959 15.8323 −1.02
266.7 4.7625 4.738 18.4781 18.2192 −1.4
266.7 5.9436 4.738 23.1665 22.8363 −1.43
266.7 7.1501 4.657 28.1308 27.6246 −1.8
266.7 8.3439 4.748 32.8192 32.335 −1.48
177.8 5.5626 4.67 31.7161 11.9645 0.89
177.8 2.0955 4.426 11.8591 32.4863 2.43



J. Mar. Sci. Eng. 2021, 9, 1297 15 of 16

Table A5. Comparisons between the FEM results and the predictions, when td = 39 ms.

D (mm.) T (mm.) tb (ms) FEM (MPa) Equation (24) (MPa) Errors (%)

355.6 4.191 40.461 11.0317 10.9921 −0.36
355.6 4.7752 40.064 12.6864 12.5543 −1.04
355.6 5.5372 39.626 14.8928 14.6008 −1.96
355.6 6.35 40.522 16.8233 16.7526 −0.42
355.6 7.9248 41.239 20.9602 20.9693 0.04
355.6 9.525 41.17 25.3729 25.3173 −0.22
355.6 11.1252 40.438 30.0613 29.741 −1.07
266.7 3.1445 40.635 10.8938 10.9929 0.91
266.7 3.5814 40.876 12.4106 12.5347 1
266.7 4.1529 39.905 14.617 14.5929 −0.16
266.7 4.7625 39.863 16.8233 16.774 −0.29
266.7 5.9436 40.297 20.9602 21.0071 0.22
266.7 7.1501 40.769 25.235 25.3597 0.49
266.7 8.3439 40.384 29.7855 29.7441 −0.14
177.8 2.0955 40.396 10.8938 11.0066 1.04
177.8 5.5626 39.783 29.5097 29.7434 0.79

Table A6. Comparisons between the FEM results and the predictions, when td = 390 ms.

D (mm.) T (mm.) tb (ms) FEM (MPa) Equation (24) (MPa) Errors (%)

355.6 4.191 391.456 10.7007 11.0938 3.67
355.6 4.7752 398.019 12.4106 12.6408 1.85
355.6 5.5372 387.939 14.3412 14.7246 2.67
355.6 6.35 395.383 16.2717 16.8936 3.82
355.6 7.9248 388.973 20.6844 21.2074 2.53
355.6 9.525 393.792 24.8213 25.5716 3.02
355.6 11.1252 391.481 29.3718 30.0146 2.19
266.7 3.1445 388.724 10.7559 11.1056 3.25
266.7 3.5814 388.998 12.2727 12.6682 3.22
266.7 4.1529 387.14 14.3412 14.7274 2.69
266.7 4.7625 393.439 16.2717 16.9015 3.87
266.7 5.9436 390.747 20.5465 21.1983 3.17
266.7 7.1501 392.35 24.8213 25.6039 3.15
266.7 8.3439 401.02 29.234 29.9464 2.44
177.8 2.0955 392.02 10.7559 11.0923 3.13
177.8 5.5626 387.844 29.234 30.041 2.76
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