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Abstract: A numerical model associated with wave–current interactions with a moored flexible
cylindrical cage was developed based on the finite element method. An analytical model was
formulated under the linearised wave theory and small structural response, and a semi-analytical
solution was obtained using the Fourier Bessel series solution and least squares approximation
method, along with a matching technique. The numerical results from the finite element analysis of
the horizontal displacements for different design parameters under a uniform current were compared
with the analytical model solutions. It was seen that they had a good level of agreement with their
results. The effects of different current speeds and time on the cage shapes were analysed from the
finite element results. Further, the mooring forces on the flexible cage for different values of the
cage height and cage radius were also presented. The comparison of the results indicated that the
numerical model results could be used with confidence in the design of a flexible cylindrical net cage
for applications to offshore aquacultures.

Keywords: cylindrical net cage; current; mooring lines; least squares approximation method; finite
element analysis

1. Introduction

Due to the decreasing of fish stocks and the increased need of aquacultures, there is a
need to further develop aquacultures offshore. Therefore, models that allow the analysis of
floating flexible net-type fish cages with a mooring system under the effects of waves and
the current are very important. These floating flexible net-type fish cages are economically
important, as they are meant not to suffer structural failures during storm events. In order
to model a floating flexible net-type fish cage, the dynamic response and structural analysis
are of great importance to ensure the safety of the flexible marine cages. Particularly,
designing floating net cages and mooring systems [1,2] is of great concern to the marine
aquaculture industry. The consideration of current loading on the dynamic response of
aquaculture cages is necessary when designing fish farms, enabling the estimation of
operational limits of a particular design system component [3].

In recent years, there has been significant progress in the study of various aspects of
wave propagation through net cages and hydrodynamic loading of the cages, based on dif-
ferent software and numerical methods. Some of the previous studies are discussed below.

In order to get enough aquaculture space and keep away from the pollution in the
inshore area, fish farms are moving to offshore regions where high-velocity currents can
provide enough oxygen and take away waste production [4,5]. A mass-spring model was
used in [6] to build a computation model of a fish cage and a pound net. A strength analysis
of aquaculture net cages under currents from 0.1 to 0.5 m/s was performed in [7], and it
was identified that the forces on the bottom panels could reach the design capacity.

Based on both experimental and numerical models, the deformation of the cage
with different solidities was studied in [8]. Pressure sensors were used to measure the
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instantaneous position of several points on the cages at two Atlantic salmon farms in
Norway and the Faroe Islands, and the volume of the cage was estimated using the
geometry formed by the measured points in [9]. Further, the acoustic sensors were used to
measure both the vertical and horizontal position of the net and calculate the deformation
of a small-scale gravity cage in [10]. The drag forces and deformation of the fish cages were
measured and calculated based on full towing tests in the field at different speeds, and they
indicated that there was a need for a better description of the flow past net cages in [11].

Shell elements were used to simulate the high-density polyethylene (HDPE) floating
collar and find the stress concentration locations on the collar in [12], and further, they used
the finite element analysis (FEA) results to derive the fatigue life. A numerical model of a
10-cage fish farm was developed to compute the mooring forces in [13].

To obtain the added mass and drag coefficients in the Morison Equation, forced
oscillation tests were conducted to simulate the water particle motions around a hollow
cylinder in waves and the results were applied in their FEA model in [14]. In order to
apply the buoyant load correctly, a “Buoyancy Distribution” method was developed using
parallel beam elements to model the collar [15]. The comparison of different models of
the net with the experimental results was made in [16] and concluded that these models
can calculate the hydrodynamic load under currents slower than 0.5 m/s accurately but
overestimate the drag forces under large currents. A FEA model was developed in [17]
to study the arrangement of the cross ropes and bottom ropes on the net and decrease
the stress concentration during lifting. The wake effect on flexible aquaculture nets with
porous natures and in their FEA model by FhSim was studied in [18].

An interesting feature of these problems is the study of mooring lines and deformation
of the fish cage under the actions of waves and currents. For instance, the influence on the
fish farm mooring behaviour in different sea states using numerical computational fluid
dynamics (CFD) model simulations were studied in [19]. In two-dimensional Cartesian
coordinates, under steady currents and floater oscillations, the hydroelastic response of
full-scale floater-and-net systems was investigated in [20]. Recently, a numerical framework
for modelling open sea aquacultures in waves and currents based on CFD was developed
to study the structural dynamics of the net [21]. Solidity was defined as the ratio of the
projected area to the circumscribed area of the net, which is an essential parameter and
determines the projected area. The hydrodynamic loads acting on high solidity net cage
models under high uniform flow velocities and deformation of the net cage based on model
tests and standard Morison-type numerical analyses was investigated in [8].

Further, the analysis of net cages under the combined effect of waves and currents was
performed based on numerical and experimental studies. The nonlinear wave-induced
motions of floating cylindrical-shaped floaters of fish farms based on the model test and
numerical simulations based on a CIP (Carbon-in-Pulp)-based numerical wave tank (NWT)
was addressed in [22]. The influence of fish on the mooring loads of a floating net cage
based on numerical and experimental methodologies was studied in [1]. The mooring loads
of a circular net cage with an elastic floater in the waves and currents were investigated
in [23]. An improved screen type force model and the truss model were used to calculate
viscous current and wave loads on aquaculture nets in [24]. The mooring loads on an
aquaculture net cage in currents and waves were investigated based on a model test and
numerical simulations where the model tests were performed to provide benchmark data
in [25]. A realistic aquaculture fish farm in both regular and irregular waves based on
numerical simulations and experimental tests and the mooring loads in the front two
anchor lines and bridle lines were analysed in [2].

The behaviour of traditional-type fish farms with net cages and closed fish farms
in waves and currents was discussed in [3]. The effects of waves and currents on the
behaviour of a gravity-type cage system were investigated in [26], which used a tube-sinker
to replace the common weights at the bottom of net cages to overcome the deformation.
The hydrodynamic behaviour of a submergible net cage and mooring system under the
actions of waves and currents was analysed in [27]. The results were compared between
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numerical simulations and physical models in different cases. Then, the hydrodynamic
behaviours of multiple net cages and submerged mooring grid systems under waves and
current flow were analysed in [28] by performing numerical simulations and a series of
experiments. A 3D series of measurements of a large sea cage volume deformation and
current flow around and within the cage based on experiments and numerical simulations
was analysed in [29]. A numerical model was developed to investigate the deformations
and stress distribution of the floating collar of a fish cage subjected to the flow in a steady
current, and the modelling approach was based on the combination of the finite element
method using the shell element to simulate the floating pipes [30].

The eigenfunction matching technique has been widely used in the problems of sur-
face wave interactions with floating and submerged flexible structures. The technique has
gained wide popularity due to its considerable accuracy and less use of computer memory
and processing time. Some of the previous works associated with floating and submerged
flexible structures using the eigenfunction matching technique are discussed below, which
are the mathematical basis for the current work. The effects of submerged flexible and hori-
zontal flexible membranes on a moored floating elastic plate were based on a hydroelastic
analysis using the eigenfunction expansion method [31]. Under three-dimensional Carte-
sian coordinates, the hydroelastic analysis of floating and submerged flexible plates based
on the eigenfunction expansion method was investigated in [32]. Recently, the hydroelastic
response of a submerged flexible porous plate was analysed based on the eigenfunction
expansion method in [33]. An oblique wave interaction with a horizontal flexible porous
membrane was investigated by applying the eigenfunction expansion method to analyse
the wave energy dissipation of a porous membrane application to breakwater [34]. Further,
a new composite breakwater of a submerged horizontal flexible porous membrane with a
lower rubble mound was developed under the eigenfunction matching technique in [35].

On the other hand, the hydrodynamic response of a flexible fishnet cylinder was
studied analytically under regular waves where the net was modelled as a porous flexible
cylinder in finite water depth that deformed like a one-dimensional beam under the
linearised water wave theory in [36]. Recently, a more extensive and detailed review
of fish cage models based on analytical, numerical, and experimental methodologies
was presented [37].

From the above literature, it was found that, until now, there was no comparison
reported between the numerical finite element model (FEM) and analytical model results of
a moored floating flexible cylindrical cage model exposed to a uniform current. Therefore,
in the present paper, a FEA numerical model was developed to simulate a moored floating
flexible cylindrical net cage under waves and a current. On the other hand, a mathemat-
ical model associated with the surface wave interaction with a moored floating flexible
cylindrical net cage was formulated, subjected to a uniform current based on linearised
potential flow theory, and a flexible cylindrical cage was modelled as a surface-piercing
flexible porous cylinder having a flexible porous membrane-type bed.

Numerical simulations were performed based on the FEA model, whilst an analytical
solution was obtained using the matched eigenfunction expansion and least squares ap-
proximation method. The FEA was able to simulate the dynamic behaviour of a net cage,
whilst the numerical results of the analytical expressions were computed by developing
a MATLAB code incorporating a numerical perturbation scheme and associated Bessel
functions. The cage shapes for different current speeds and different times in a wave period
were presented based on the numerical FEA model. Further, the axial loads on the mooring
lines for different design parameters were analysed.

2. Finite Element Model Formulation and Description
2.1. Brief Description of Finite Eelement Model

A gravity fish cage is usually composed of four parts: a floating collar, containment
nets, sinkers, and mooring lines [11]. The collar and sinkers are used to stretch the net and
balance buoyancy and gravity. Mooring lines connect the collar and the seabed to fix the
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position of the cage. Due to the slender structure, the collar should be modelled by pipe
elements. Truss elements were used to simulate the bending behaviour of the flexible nets.
Similar to the net, for the mooring lines, nonlinear springs with only tensile behaviours
were used. Due to the large displacement of the net, the geometrical nonlinearity should
be considered. The numerical model was built in the commercial software ANSYS/APDL,
which was used to solve the dynamic motion equation. A more elaborate description of
these components is as follows.

2.1.1. Collar

In a gravity cage, the collar is usually a hollow annular structure and is mainly used
to provide buoyancy. Due to the slender and hollow structure, pipe elements are selected
to model the collar, and elastic deflection due to bending was accounted for [38].

2.1.2. Flexible Net

In this FEA model, truss elements were used to simulate the net. The solidity, which
is defined as the ratio between the projected area of the twines and the total area of a net
mesh, is an important parameter and determines the projected area and hydrodynamic
load on the structure. The solidity of the net is [39]

Sn =
2d
L
−
(

d
L

)2
, (1)

where Sn is the solidity of the net, d is the thickness of one twine, and L is the width of
one mesh.

In this paper, 2 mm was chosen as the diameter of the net [11]. However, if truss
elements with the same diameter as the net are used, the model will include too many
elements to calculate. Thus, the net was simplified by horizontal and vertical bar elements
with equivalent larger diameters. In this way, much fewer truss elements were used
to form the structure. The total section area of the adjusted structure was same as the
original structure. Additionally, to keep the same weight and tensile stiffness as the original
structure, the density, the Young’s modulus of the material, and the total cross-section
area of the net were consistent with the original structure, which resulted in a smaller
projected area under the current. In order to ensure that the hydrodynamic force consistent
with the original structure, the drag and inertial coefficients were increased accordingly.
Table 1 shows a set of the parameters of the adjusted net lines according to the diameters of
the cage.

Table 1. Parameters of the truss elements.

Adjusted Structure
(D = 6 m)

Adjusted Structure
(D = 10 m)

Single twine Diameter (mm) 2 2
No. of horizontal net lines 6 6

No. of vertical net lines 40 40
Diameter of horizontal net lines (mm) 17.68 17.68

Diameter of vertical net lines (mm) 11.24 14.51

2.1.3. Sinker

Sinkers are located at the bottom of the cage, and they stretch the net. The weight of
the sinkers has a high influence on both the deformation of the cage and mooring forces [9].
In the model of this work, the sinker was formed by a solid bottom ring with a diameter of
0.1 m, and it was modelled by beam elements.
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2.1.4. Mooring Lines

A mooring system is used to keep the motion of the fish cage within a certain range.
Usually, a complete mooring system includes cables, ropes, and chains with buoys on them.
In this work, the mooring system was simplified into two mooring lines. To simulate the
flexible behaviour of the mooring lines under compression, nonlinear spring elements with
only tensile stiffness were used. The layout of the two mooring lines is illustrated in Figure 1.

Figure 1. Moored (stiffness ks) flexible cylindrical net cage under a uniform current u (= u1 = u2).

2.2. Fluid Flow and Hydrodynamic Load

The dynamic response of the fish cage under both the current and waves was analysed
in this paper. For the whole structure, the dynamic equation can be expressed as [15]

[M]
[ ..
x
]
+ [C]

[ .
x
]
+ [K][x] = G + fb + fH (2)

where [M] is the mass matrix, [C] is the damping matrix, and [K] is the stiffness ma-
trix. Furthermore, G, fb, and fH are the load vectors, including gravity, buoyancy, and
hydrodynamic load, respectively.

The direction of the current and waves is indicated in Figure 1. The current velocities
varied from 0.2 m/s to 0.8 m/s. The linear wave theory was used to model the waves. The
depth of the flow field was set as 500 m, which was much larger than the length of the waves.
The velocity potential and dispersion relationship were expressed as Equations (3) and
(4). Due to the slender structure of the collar and net, the Morison equation (Equation (5))
was used to calculate the hydrodynamic force. To take the relative motion between the
structure and water particles into account, a modified Morison equation was expressed as
Equation (6) [39]. A drag coefficient of CD = 1.2 and an inertia coefficient of Cm = 2 were
used in the simulation [40,41].

φ(x, z, t) =
Hg
2ω

cosh k(h + z)
cosh kh

sin(kx−ωt) (3)

ω2 = gktanhkh (4)
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where k is the wavenumber, H is the wave height, h is the depth of the flow fluid, ω is the
angular frequency of the wave, x and z are the coordinates of the point.

f = CmρD2 .
u +

1
2

CDρD|u + U|(u + U) (5)

f = CmρD2(
.

U − ..
x) +

1
2

CDρD
∣∣u + U − .

x
∣∣(u + U − .

x) (6)

where f is the hydrodynamic force per length, Cm is the inertia coefficient, CD is the drag
coefficient, ρ is the density of the sea water, D is the diameter of the slender structure, U
and

.
U are the velocity and acceleration of the water particle, u is the current velocity, and

.
x

and
..
x are the velocity and acceleration of the structure element.

2.3. Convergence Analysis

A convergence analysis was done to identify the quality of the mesh. The model used
in the convergence analysis was a fish cage with a height of 7 m, a diameter of 6 m under
a current speed 0.5 m/s, wave period 10 s, and 1-m height. Four mesh models: course,
medium, fine, and very fine were used. Number of elements and degrees of freedom are
shown in Table 2. It also includes the maximum and minimum element lengths of each
mesh model.

Table 2. Models and results of the convergence analysis.

Mesh Model Course Medium Fine Very Fine

Total nodes 322 842 1642 2162
Total elements 602 1122 1922 2442

Degrees of freedom, 1200 2760 5160 6720
Max element length (mm) 1000 500 250 200
Min element length (mm) 471.2 235.6 157.1 117.8
Calculated amplitude of

horizontal displacement (mm) 0.934 0.937 0.941 0.942

From the calculated results, the amplitude of the horizontal displacement from the
fine mode was 0.941 m, which was 99.89% of the one from the very fine model. However,
the very fine model had 27.1% more elements and 30.2% more degrees of freedom than the
fine model, which makes the calculation time much longer. Thus, in order to ensure the
accuracy and efficiency of the calculation at the same time, the fine model was used in the
present calculation.

3. Analytical Model Formulation and Solution

The mathematical modelling of the floating flexible cylindrical net cage was formu-
lated in a three-dimensional polar coordinate system (r, θ, z) being the axis of the cylinder
cage at r = 0, with z- axis being vertically upward, and the fluid had an undisturbed free
surface located at z = 0 in the water of finite depth h2. The flexible cylinder is assumed to
be surface-piercing, and the flexible net cage is modelled as a flexible porous membrane
under uniform tensions of radius a and length h1 having a porous membrane bottom of
negligible thickness.

The fluid occupies the region 0 < r < ∞, −h2 < z < 0, except the cage. Hence,
the fluid domain is divided into three regions—namely, R1: (−h2 ≤ z ≤ 0, r ≥ a), R2:
(−h1 ≤ z ≤ 0, r ≤ a), and R3: (−h2 ≤ z ≤ −h1, r ≤ a). Further, the notations S and
G represent the submerged and the gap parts of the flexible net cage, respectively. The
cylindrical flexible cage is connected by mooring lines with stiffness ks at r = a, with y = h2
being the bottom bed (see Figure 1). It is also assumed that there is a uniform current
flowing with speed u making an angle θ with positive direction of the x- axis; hence, the
components of current are (u1, u2) = (u cos θ, u sin θ). Further, it is assumed that the fluid
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is inviscid, incompressible, and the flow is irrotational and simply harmonic in time with
the angular frequency ω.

Thus, there exist velocity potentials Φj(r, θ, z, t), such that Φj(r, θ, z, t) = u1x + u2y +
Φj(r, θ, z, t), j = 1,2,3.

The velocity potentials Φj(r, θ, z, t) satisfy the Laplace equation:(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂

∂θ2

)
Φj +

∂2Φj

∂z2 = 0 in the fluid domain, (7)

where r is the radial distance from the z-axis, and θ is the angle about the x− axis.
The linearised free surface condition on z = 0 is given by(

∂

∂t
+ u1

∂

∂x
+ u2

∂

∂y

)2
Φj + g

∂Φj

∂z
= 0 for j = 1, 2 (8)

where g is the acceleration due to gravity.
As the bottom is rigid, the bottom boundary condition yields

∂Φj

∂z
= 0 for j = 1, 3 on z = −h2. (9)

Assuming that flexible porous membrane bed of the net cage satisfies Darcy’s law for
flow past a porous structure, the linearised kinematic boundary condition with a uniform
current yields

∂Φ2

∂z
=

∂Φ3

∂z
=

∂η

∂t
+ u1

∂η

∂x
+ u2

∂η

∂y
+ ik0G(Φ3 −Φ2)at z = −h1, (10)

where k0 is the wavenumber of the plane gravity wave. It may be noted that, if u1 = 0 and
u2 = 0, then the reduced boundary condition in Equation (10) will be same as in [33,34].

Now, the dynamic condition on the submerged flexible porous membrane satisfies(
−Tf∇2

rθ + mm
∂

∂t2

)
η = −{P3(r, θ, z, t)− P2(r, θ, z, t)}, (11)

where η(r, θ, t) = Re
{

ς(r, θ)eiωt} is the deflection of the flexible porous membrane bed,
which is under the action of a uniform tensile force Tf , mm is the mass of the membrane,
and the hydrodynamic pressure in the presence of current can be read as

Pj(x, y, z, t) = ρgz− ρ

(
∂

∂t
+ u1

∂

∂x
+ u2

∂

∂y

)
Φj for j = 2, 3 (12)

Next, it is assumed that the horizontal deflection of the vertical porous membrane of
the cage is given by ξ(z, t) = Re

{
ζ(z)eiωt}. Hence, the linearised kinematic condition on

the vertical boundary of the cage at r = a, z ∈ S is obtained as

∂Φj

∂r
= ik0(Φ2 −Φ1) +

(
∂

∂t
+ u1

∂

∂x
+ u2

∂

∂y

)
ξ cos θ for j = 1, 2 (13)

with k0 being the same as in Equation (10). Further, the membrane deflection ξ(z, t)
at r = a, z ∈ S satisfies the linearised dynamic conditions:

(
mm

d2

dt2 − Tg
d2

dz2

)
ξ = 2aρ

π∫
0

(
∂Φ2

∂t
− ∂Φ1

∂t

)
cos(π − θ)dθ, (14)

where Tg is the uniform tensile force acting on the vertical membrane of the cage.
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In order to avoid structural failures in storm waves and currents during storm events,
the net cages can be submerged below the water surface. Therefore, it is assumed that the
cylindrical net cage is connected with mooring lines with stiffness ks over the circumference
of the cylinder (r = a), which gives (as in [32,34])

Tf
∂ξ

∂z
= ksξ at r = a, z = 0 (15)

On the other hand, it is considered that the cylindrical cage is fixed at z = −h1, which
implies

ξ(z, t) = 0at z = −h1, r = a (16)

Further, it is assumed that the flexible porous membrane is fixed at the circumference
and yields

ς(r, θ, z) = 0at r = a, z = −h1 (17)

The continuity of the pressure and normal velocity at the interface r = a yield

Φ1 = Φ3 at r = a, z ∈ G (18)

∂Φ1

∂r
=

∂Φ3

∂r
at r = a, z ∈ G, (19)

Finally, the velocity potential in R1 satisfies the radiation boundary it is given by (as
in [42])

lim
r→∞

√
r
(

∂Φ1

∂r
+ ik0Φ1

)
= 0 (20)

In the next section, the solution procedure in terms of the spatial components of the
velocity potentials and horizontal displacement will be discussed.

Analytical Solution

Using the Fourier-Bessel series expansion formula, the velocity potentials satisfying
governing Equation (8), along with the relevant boundary conditions in Equations (8)–(10),
(15), and (20) in their respective regions, the velocity potentials in R1, R2, and R3 are
derived as

φ1 =
−ig

2(ω− uk0)
g0(z)

∞

∑
m=0

αm

{
Jm(k0r) + Am0H(1)

m (k0r)
}

cos mθ +
∞

∑
m=0

∞

∑
n=1

αm AmnKm(knr)gn(z) cos mθ (21)

φ2 =
−ig

2(ω− upn)

∞

∑
m=0

∞

∑
n=0

Bmnαm Im(pnr)Ψ2(z) cos mθ, (22)

φ3 =
−ig

2(ω− upn)

∞

∑
m=0

∞

∑
n=0

Cmnαm Im(pnr)Ψ3(z) cos mθ, (23)

where αm = eimπ/2εm, with εm =

{
1, for m = 0
2, for m ≥ 1

, Jm(k0r), and Hm(k0r) as the Bessel

function and Hankel function of first kind of order m, respectively; Km(k0r) is the modified
Bessel functions of the first kind of order m (as in [42]); and the eigenfunctions associated
with the velocity potentials in Equations (21)–(23) are given by

gn(z) =

{ cosh kn(z+h2)
cosh knh2

, n = 0
cos kn(z+h2)

cos knh2
, n ≥ 1

Ψ2(z) =
(ω2tanhpnz + gpn) cosh pnz
(ω2 − gpntanhpnh1) cosh pnh1

, Ψ3(z) =
cosh pn(z + h2)

sinhpn(h2 − h1)
,

with the wavenumbers kn and pn satisfying the dispersion relations as

(ω− ukn)
2 = gkntanhknh2 (24)
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and pn satisfies the complex dispersion relation associated with the current and tensile
force as{

(Tf p2
n −ms)igk0G− (ω− upn)2

}
{gpntanhpn H − (ω− upn)2} cosh pn H

−pn(Tf p2
n −ms)sinhpn(H − h){pntanhpnh− (ω− upn)2} cosh pnh = 0

(25)

It may be noted that the roots kn satisfy the dispersion relation (Equation (24)). Further,
the root kn for n = 0 is the real positive root that corresponds to the progressive waves,
and the roots kn for n = 1, 2, 3, . . . are the infinite imaginary roots that correspond to the
evanescent waves.

In the gap region (G) and cage region (S): the following series relations give

∞

∑
n=0

A1nYan(z) +
∞

∑
q=0

C1qYcq(z) + Y0(z) = 0, z ∈ G, (26)

∞

∑
n=0

A1nZan(z) +
∞

∑
q=0

C1qZcq(z) + Z0(z) = 0, z ∈ G. (27)

∞

∑
n=0

A1nWan(z) +
∞

∑
q=0

B1qWbq(z) + W0(z) = 0, z ∈ S, (28)

∞

∑
n=0

A1nXan(z) +
∞

∑
q=0

B1qXbq(z) + X0(z) = 0, z ∈ S, (29)

where the expressions Y0, Z0, W0, X0, Yan, Zan, Wan, Xan, Ycq, Zcq, Wbq, and Xbq are associ-
ated with the Hankel, Bessel, and modified Bessel functions. In order to reduce these
dual series relations to the system of linear equations by the least-squares approximation
method, the series relations in Equations (17)–(20) are expressed as

ΓN,M(z) =
N

∑
n=0

A1nVan(z) +
M

∑
q=0

B1qVbq(z) +
M

∑
q=0

C1qVcq(z) + V0(z) = 0. (30)

Again, using the least-squares approximation method, Equation (30) yields (as in [43])

0∫
−h2

|ΓN,M(z)|2dz = minimum. (31)

The set of unknown A1ns is chosen to minimise the integral in Equation (31), which yields

0∫
−h2

ΓN,M(z)
∂ΓN,M(z)

∂A1n
dz = 0, (32)

where “-“ denotes the complex conjugates. The functions Van, Vbq, Vcq, and V0 are associ-
ated with the Hankel function, Bessel function, and modified Bessel function in the gap
and the submerged region, along with their respective eigenfunctions.

Similarly, another four systems of equations can be obtained: two equations are the
combination of Equations (26)–(29). The other two are obtained from the moored edge
condition as in Equation (15) and fixed edge condition as in Equation (16). Now, there
are 4M + 5 equations and 4M + 5 unknowns, which will be solved numerically using the
MATLAB code along with the Bessel, Hankel, and modified Bessel functions of second kind
order to solve the systems Equations (26)–(29) and the equations from the moored edge
and fixed edge conditions using built-in subroutine MATLAB to present the numerical
results. Once the unknown coefficients associated with the velocity potentials are obtained,
the horizontal displacement ζ(z) of the vertical flexible cylindrical cage can be obtained
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by substituting φ1 and φ2 into Equation (14) and applying the partial differential equation
solution method as

ζ(z) = A
cos λz
cos λh

+ B
sin λz
sin λh

+ h0g0(z) +
N

∑
n=0

A1nΘangn(z) +
M

∑
q=0

BbqΘbq pqΨ2(z), (33)

where λ = (ω
√

mm), and the expressions Θan and Θbq are associated with the Hankel
function, Bessel function, and modified Bessel function.

4. Numerical Results and Discussions

In this section, the numerical results from the FEA and analytical model of the hor-
izontal displacement of the flexible cylindrical net cage in the presence of a current are
compared for different mooring stiffness, heights of the cage, and radii of the cage to
check the accuracy of the FEA model. The effects of different current speeds and times
on the cage shape deformations are analysed. Further, the axial loads on the mooring
force for different design parameters are also investigated based on the FEA. Hereafter, all
numerical computations are executed by considering the fluid density ρ = 1025 kgm−3

and acceleration due to gravity g = 9.8 ms−2, unless mentioned otherwise. It may be
noted that the numerical simulation for the FEA was performed on a laptop with an Intel®

core i7-6700HQ CPU with a 2.6 GHz processor and 16 GB of installed ram memory. The
average time required for each run was approximately 24 h. On the other hand, for the
analytical computations, MATLABR2016b, 64-bit (win64) was used to perform calculations.
All numerical computations from the analytical solution were performed on a desktop
machine with an Intel ® core i7-4790 CPU with a 3.60 GHz processor and 8 GB of ram
memory. On average, each case took roughly 7–10 min to finish.

4.1. Comparison of Numerical FEA Model Simulations against Analytical Solution

In this subsection, the numerical FEA model simulations are compared with the
analytical model results in order to check the accuracy of the numerical model based on
the FEA associated with the wave interaction with a moored flexible cylindrical net cage in
the presence of a current. It may be mentioned that, as the horizontal displacements are
important for engineering design and operation, in the present work, the FEA simulations
for both are compared with the analytical results for different design parameters.

In Figure 2, the effects of different values of mooring stiffness on the cage horizontal
displacement between the FEA numerical simulations and analytical results are compared
versus time t(s) for water depth (h2) = 50 m, cage radius (a) = 3 m, and cage height (h1) = 7 m,
and the other parametric values are the same as defined in Table 1. It is observed that
the results of the horizontal displacement of the cage decrease with an increase in the
values of mooring stiffness in both models. This shows that, with the increase in the
mooring line stiffness, the floating cylindrical cage becomes more stable, and as a result,
the displacement decreases. Further, it is found that the displacement between the FEA
numerical model simulations and analytical results are in good agreement with respect to
the same values of mooring stiffness.

From the comparison of the results (Figure 2), it is seen that the horizontal displace-
ment profiles are similar, and the peak wave amplitudes are close in both models. It is
again observed that the crest of the displacement is almost the same between the models
with respect to their mooring stiffness, but the throughput of the displacement is more
pronounced in the FEA model for both mooring stiffness. When the stiffness is 103 Nm−1,
the amplitudes of the horizontal displacement from the FEA model and analytical model
are 0.941 m and 0.981 m, respectively. However, when the mooring stiffness decreases to
100 N/m, the amplitudes of the horizontal displacement from the FEA model and analyt-
ical model increase to 1.141 m and 1.098 m, respectively. From the point of view of the
FEA model, this suggests that the present differences are mainly connected to a sinker and
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nonlinear springs; therefore, the FEA model reproduces a higher crest/throughput of the
displacement, with a higher mooring stiffness that the analytical model cannot reproduce.

Figure 2. Comparison of the horizontal displacement of a cylindrical flexible cage for different
mooring stiffness ks between the numerical finite element analysis (FEA) and analytical simulations
with h2 = 50 m, h1 = 7 m, and a = 5 m.

Figure 3 compares the horizontal displacement of the cylindrical flexible net cage for
different cage heights between the FEA simulations and analytical results with
h2 = 7 m, ks = 103 Nm−1, and the other parametric values are the same as defined
in Table 1 versus time t (s). From comparing the results, it is seen that the effects of the
cage height on the horizontal displacements are similar, and the peak values are in good
agreement in both models. When the ratio between the cage height and water depth is
0.3, the amplitude of the horizontal displacement from the FEA model is 0.903 m, which
is 0.8% lower than the one from the analytical model. When the ratio increases to 0.4, the
amplitude of the horizontal displacement from the FEA model is 0.826 m, which is 2%
higher than the one from the analytical model. Further, it is found that, as the cage height
increases, the horizontal displacement increases, which suggests that, for taller structures,
the horizontal displacement becomes more with certain values of the current speed and
mooring stiffness.

In Figure 3, it is also observed that the phase shift occurs in the horizontal displace-
ment, which is because of the interaction of the wave–current with the cage height changes,
which leads to the constructive/destructive interference of waves at the edges of the
cylindrical cage. Further, it may be explained that a part of the wave energy dissipates
while passing through the porous net cage, and another part of the energy is used to
deform the flexible net cage with a current, which plays an important role for construc-
tive/destructive interference.

Figure 4 shows the comparisons of horizontal displacement between the numerical
FEA simulations and analytical results for different radii of the cage versus time t(s) with
the same values of parameters: water depth h1 = 50 m, cage height h2 = 7 m, and mooring
stiffness ks = 103 Nm−1. From Figure 4, it is observed that, as the radius a of the cage
increases, the horizontal displacement of the cage increases. From the FEA model, the
amplitude of the horizontal displacement of the cage with a diameter of 3 m is 0.942 m,
which is 6.4% lower than the one of the cage with a diameter of 5 m. Meanwhile, from the
analytical mode, the amplitude of horizontal displacement of the cage with a diameter of
3 m is 0.927 m, which is 6.1% lower than the one of the cage with a diameter of 5 m. This is
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due to the fact that the area of the cage increases, and consequently, the area exposed to the
wave loads increases.

Figure 3. Comparison of the horizontal displacement of the cylindrical flexible net cage
for a different cage height h1 between the numerical FEA and analytical simulations for
h2 = 50 m, a = 3 m, and ks = 103 Nm−1.

Figure 4. Comparison of the horizontal displacements for different cage radii a between the numerical
FEA simulations and analytical results with h2 = 50 m, h1 = 7 m, ks = 103 Nm−1, and the other
parametric values are the same as defined in Table 1.

To further validate the FEA analysis of the flexible net cage in the presence of a uniform
current, the effects of flexible cage deformations and the axial loads due to waves on the
mooring lines on different currents and times are investigated.

4.2. FEA Model Simulations for Different Design Parameters

In this subsection, the dynamic analysis of the net cage system is performed with the
FEA, with the focus on the mooring loads due to the actions of the waves—more specifically,
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the axial force, T [N]—and the deformation of the cage. Following the methodology of this
work, the effects of varying parameters will be studied.

Figure 5 depicts the cage deformations for different current speeds of 0.2 m/s–1.2 m/s,
with other parametric values defined in Table 1. It is observed that the deformation of the
flexible net increases with the current speed. The collar does not deform much due to its
high stiffness. The larger current provided larger hydrodynamic forces, which results in
a larger horizontal deformation and lower height of the cage. Therefore, the volume of
the cage reduces rapidly under a large current. The observations of the cage deformations
under the current are similar to [9,11,28]. The blue lines are spring elements that represent
the mooring system. The compression stiffness of the spring is set to zero, so there is no
force from the downstream mooring, even if it is compressed.

Figure 5. Variations of different current speeds on the cage displacements with a wave height = 1 m and wave period = 10 s,
and the other parametric values are the same as mentioned in Table 1.

Figure 6 shows the shapes of the cage at different moments in one period when the
current speed is 0.5 m/s, the wave height is 1 m, and the wave period is 10 s under the
effect of both the current and waves. The general observations are similar as in Figure 5.
However, the deformation of the net varies slightly during one period, so the shape and
the volume of the cage do not change much. Further, it can be observed that the motion
of the cage is close to the motion of the wave, so it is hard to tell the differences between
the shapes of the cage under different times in one period, especially when it is a 3D view.
However, some differences can be seen after scales are added and the view direction is
adjusted. In Figure 6, firstly, the tilt angles of the collar and the bottom ring vary. Secondly,
the height of the cage also varies. The cage does approximate a rigid motion with wave
fluctuation. The deformation and mooring force under different currents and waves are
also studied in [12,15].
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Figure 6. Cage deformation representing the net deformation for different times with a wave height = 1 m, wave period = 10 s,
and current speed u = 0.5 m/s, and the other parametric values are the same as defined in Table 1.

In Figure 7, the effects of the mooring force on the different cage radii versus time
with water depth h2 = 50 m, cage height h1 = 7 m, and u = 0.5 ms−1 are plotted. It is
observed that the force on the structure increases with an increase in the cage radius. This
is due to the fact that the cage with a larger radius has a larger projected area under the
current, which results in a larger hydrodynamic force and mooring force. On the other
hand, from Figure 8, the amplitudes of the mooring forces are very close, which confirms
the results of the displacements in Figure 4.

In Figure 8, the effects of different cage heights on the mooring force versus time
t(s) with a water depth h2 = 50 m, ks = 103 Nm−1, and u = 0.5 m/s are plotted. It is
observed that mooring force increases with an increase in cage height, which is due to the
area of the cylindrical cage increasing, and consequently, the area exposed to the wave
loads increasing.

It may be mentioned that, if the static forces are removed from Figures 7 and 8, readers
may be confused, as the values of the mooring forces are important, because they show
that larger cages under the same sea conditions can result in larger mooring forces.
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Figure 7. Effects of the cage radius on the mooring force versus time t(s) with a water depth h1 = 50 m,
cage height h2 = 7 m, and u = 0.5 m/s.

Figure 8. Effects of different cage heights h1 versus time t(s) for a water depth h1 = 50 m,
ks = 103 Nm−1, and current speed u = 0.5 m/s.

5. Conclusions

In the present paper, a numerical model based on the FEA and an analytical model
under the potential flow theory associated with a moored flexible cylindrical net cage in
the presence of a current were presented. The results of horizontal displacement under the
current velocity between the two models were compared for different design parameters.
Further, the results of the cage deformations and mooring forces for different design
parameters were analysed from the FEA simulations. It was concluded that:

1. The numerical simulations of the horizontal displacements for different design param-
eters of the flexible net cage were in good agreement with the analytical model results.

2. As the current speed, cage height, and diameter of the cage increased, the horizontal
displacement increased. This was because the projected area of the cage increased,
which looked physically reasonable.

3. The analysis of the 3D cage displacements for different current speeds suggested that
the cylindrical cage became more stable for lower values of the current speed.
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4. The increase of the height and radius enlarged the mooring force, because it increased
the projected area of the cage.

5. Comparisons of the results confirming that the developed numerical model based on
the FEA might be useful to study the dynamics response of flexible fishing net systems.
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