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Abstract: Glider-based mobile currents observations are gaining increasing research attention. How-
ever, the quality of such observations is directly related to the pitch accuracy of the glider. As a
buoyancy-driven robot, the glider will be strongly disturbed during the passage through the pycno-
cline. The pycnocline refers to the oceanic phenomenon where the density of the seawater changes
abruptly with respect to depth. The presence of the pycnocline influences the pitch of the glider and
consequently affects the quality of the observed currents data. In this work, we propose an actuator
constrained active disturbance rejection controller (ACADRC) to improve the accuracy of the pitch
angle control when gliders move across the pycnocline. For this purpose, the dynamical model of the
glider is first derived. Then, the longitudinal plane motion model of the glider considering the density
variation is analyzed. Based on that, we discuss three typical types of pycnocline encountered during
glider profiling, which are the pycnocline, the inverted pycnocline and the multiple pycnocline. To
alleviate the low accuracy of bang-bang control and proportion integration differentiation control,
and furthermore, to mitigate the disturbance of pitch by sudden density changes, we propose the
actuator constrained active disturbance rejection controller in conjunction with specific glider pitch
actuator hardware constraints. Simulation results show that the proposed method has significant
improvement in pitch control accuracy over the comparison methods.

Keywords: underwater gliders; pycnocline; pitch control; ACADRC

1. Introduction

The underwater glider (UG) is a kind of buoyancy-driven oceanic observation
robot [1–3]. They are not equipped with propellers, but rely on manipulating buoyancy
and attitude to navigate [4,5]. Combined with the necessary GPS positioning and satellite
communication, gliders are able to achieve autonomous observations for months. With low
vibration, long range and high autonomy, UGs are widely used in oceanic sampling mis-
sions. Among them, glider-based currents observation has been brought into focus [6–8].
This is because the currents sampling via gliders greatly reduces the involvement of mea-
surement vessels and collects data with high autonomy and acceptable quality. However,
such missions are extremely demanding for pitch angle controls [9]. Prevailing UG current
measurements utilize the acoustic Doppler to current profiler (AD2CP) sensor developed
from Nortek [10]. The AD2CP has strict requirements on the beam angle, and the non-
conforming attitude of the glider will bring obstacles to the subsequent data processing
or even seriously affect the quality of the data. Therefore, to ensure the high precision
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control of pitch angle becomes the key issue for glider currents measurement. However,
the following encountered challenges should be considered.

The sudden change of density in the pycnocline will bring significant disturbance
to the pitch control of the glider [11]. Pycnocline is a common oceanic phenomenon that
describes a stratified seawater structure [12]. Following the classical three-layer simplified
model, the partial derivative of seawater density with respect to depth in pycnocline is
significantly larger than that in the upper and lower layers. This results in a steep increase
in seawater density over a limited depth range. The effect of pycnocline disturbance is
particularly dramatic for the buoyancy-driven underwater gliders [13,14]. The deviation of
the pitch angle from the expected value fluctuates significantly during the passage through
the layer. Furthermore, the dynamics of gliders in the pycnocline needs further discussions.

The actuator constraints of the glider imposes challenges for the precise control of the
pitch angle [15,16]. The adjustment of the pitch angle depends on the value of the buoyancy
engine, the displacement of the movable mass and the hydrodynamic damping [17]. The
buoyancy-driven system of the glider consists of the inner and the outer bladders. The
adjustment of the buoyancy is achieved by the transfer of the oil between the two struc-
tures [18]. Usually, the buoyancy engine is set to a constant action strategy in order to dive
to a well-defined depth. This means that the buoyancy engine is not controlled in real time
during the pitch control procedure, but the density disturbance from the environment will
be introduced in the dynamics modeling via the buoyancy engine [19–21]. In addition, due
to the influence of hydrodynamics, the pitch of the glider will cause oscillation during the
adjustment process, resulting in the decrease of control accuracy. So the displacement of
the movable mass plays a key role in controlling the pitch of the glider. The position of the
movable mass is driven by a drive system consisting of a DC motor and a gear train [22].
Therefore, the actuator constraints must be considered when designing the control inputs,
because the actuator constraints limit the feasibility of the control inputs.

Another challenge for the precise pitch control of gliders is to achieve the suppression
of disturbances by the control algorithm. Many outstanding researches have been carried
out in the field of pitch control of underwater gliders [23–25]. Among them, the bang-
bang control has the concise structure. It does not depend on the control model [26]. For
these reason, bang-bang control acts the basic method for glider pitch control. However,
the controlled quantity of bang-bang is difficult to coordinate between overshoot and
high accuracy. Proportion integration differentiation (PID) is widely used in glider pitch
control for its engineering feasibility [27]. However, PID does not perform convincingly
in the face of pycnocline control. In our previous work, applying the ADRC to control
the glider pitch angle was introduced [22]. However, the previous work does not suffi-
ciently consider the actuator constraints. Based on the above discussion, we believe the
anti-disturbance algorithm for glider traversing the pycnocline considering the specific
hardware demanding investigation.

In this work, we propose the actuator constrained active disturbance rejection method
for controlling the pitch of the glider in the presence of the pycnocline. Main contributions
are concluded as follows. Firstly, we derive the dynamics model of the glider. On this
basis, we analyze the longitudinal plane nonlinear motion model containing the variable
buoyancy term. Secondly, we propose the ADRC control algorithm considering actuator
constraints to alleviate the interference of the pycnocline and meet the practical situation of
glider hardware. Finally, we propose the metrics for controlling pitch angle in the presence
of the pycnocline. The simulation results show that the proposed method has significant
improvement in control accuracy of pitch angle compared with the comparison methods.

The paper is organized as follows: Section 2 derives the glider dynamic model.
Section 3 demonstrates the ACADRC. Section 4 introduces three typical structures of
the pycnocline and the control metrics. Section 5 presents the numerical simulation results
and discussions. Finally, conclusions are summarized.
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2. Dynamic Model Derivation

The derivation of the glider dynamics model has been presented in many outstanding
works, such as [17,28]. This section introduces our up to date work compared to [3]. We
simplified the form of the glider mass matrix, thus facilitating the decoupling process of the
matrix model. Moreover, the model is modified in terms of the correction of the buoyancy
term and the accurate calculation of the added mass to better describe the effect of the
buoyancy change caused by the pycnocline.

2.1. Model Derivations

The main parts of our developed underwater glider OUC-III are shown in Figure 1.
To facilitate illustration, the inertial coordinate system, the body coordinate system, and
the velocity coordinate system are introduced. Applying the Newton’s law in the iner-
tial system, the general form of the forces exerted on the underwater glider is obtained,
which is shown in Equation (1). The hydrodynamic forces and moments of the glider
are described in the current coordinate system, while the hydrodynamic forces and mo-
ments can be represented in the body system by the transformation matrix between the
current coordinate system and the machine system. The gravitational forces and moments
represented in the inertial system can also be converted to the body system to represent
the external forces exerted on the glider in the same coordinate system. Then, through
transforming the expressions into the inertial system, the force analysis of the glider is
completed, as demonstrated in Equation (2). Among them, the rv can be calculated through
rv = m−1

v · (mbrb + mmrm + mhrh). {
ṗ = ∑I

i=1 fexti

π̇ = ∑I
j=1 τexti

(1)

{
RBI ∑I

i=1 fexti = mogRBIk + RBC[−D, SF,−L]T = [F1, F2, F3]
T

RBI ∑I
j=1 τexti = mvgrv × RBIk + RBC[M1, M2, M3]

T = [T1, T2, T3]
T (2)



F1 = −m0g sin(θ) + L sin(α)− D cos(α)

F2 = SF
F3 = m0g cos(θ)− D sin(α)− L cos(α)

T1 = M1 cos(α)−M3 sin(α)

T2 = M2 −mbgrb1 cos(θ)−mhgrh1 cos(θ)−mmgrm1 cos(θ)−mhgrh3 sin(θ)−mmgrm3 sin(θ)

T3 = M1 sin(α) + M3 cos(α)

(3)

The calculation of components of the forces and moments in the body frame are
depicted in Equation (3), where the transformation matrix RT

BI and RBC are described by
Equations (4) and (5).

RT
BI =

cos θ cos ψ sin φ sin θ cos ψ− cos φ sin ψ cos φ sin θ cos ψ + sin φ sin ψ

cos θ sin ψ cos φ cos ψ + sin φ sin θ sin ψ − sin φ cos ψ + cos φ sin θ sin ψ

− sin θ sin φ cos θ cos φ cos θ

 (4)

RBC =

cos α · cos β − cos α · sin β − sin α
sin β cos β 0

sin α · cos β − sin α · sin β cos α

 (5)

According to the Lagrangian modeling theory, we discuss the kinetic energy of the
glider. The toral kinetic energy consists of the portion of the glider and the portion of
the added mass (Equation (6)). The derivation of the total kinetic energy with respect to
the generalized quantities qg yields the linear momentum and the angular momentum
expressed in the body system (Equation (7)). Denote the generalized mass matrix as
IM, then the derivatives of P and Π with respect to time can be obtained as shown in
Equation (8). Equation (11) shows the six degrees of freedom of accelerations of the
glider obtained by transforming Equation (8). The derivatives of linear momentum and
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angular momentum with respect to time is expressed with the help of the transformation
relationship of the linear momentum and the angular momentum between the body
coordinate system and the inertial system, see Equations (10) and (11). Moreover, the
specific expression of the İM is shown in Equation (12).

Figure 1. The OUC-III underwater glider systems. As indicated by the serial numbers, they illustrate
1© the mechanical shell, 2© the sampling loads, 3© horizontal wings, 4© the CTD profiler, 5© the

vertical wing, 6© the antenna, 7© the electronic control unit, 8© the actuating system of the movable
mass and 9© the buoyancy engine, respectively.

T = Tv + Tf =
1
2

[
V
Ω

][
mvI −mv r̂v
mv r̂v Jv

][
V
Ω

]
+

1
2

[
V
Ω

][
M f CT

f
C f J f

][
V
Ω

]

=
1
2

[
V
Ω

][
mvI + M f −mv r̂v + CT

f
mv r̂v + C f Jv + J f

][
V
Ω

]
=

1
2

[
V
Ω

][
M C
CT J

][
V
Ω

] (6)

[
P
Π

]
=

∂T
qg

=

[
M C
CT J

]
qg = IMqg (7)

Q =

[
dP/dt
dΠ/dt

]
= İMqg + q̇g IM (8)[

V̇
Ω̇

]
= I−1

M

{[
Ṗ
Π̇

]
− İM

[
V
Ω

]}
(9){

p = RT
BI P

π = RT
BIΠ + b× p

(10)

{
Ṗ = MV ×Ω + RT

IB ∑I
i=1 fexti

Π̇ = CTV ×Ω + CΩ×V + RT
IB ∑I

j=1 τexti
(11)

İM =



ṁb 0 0 0 ṁbrv3 0
0 ṁb 0 −ṁbrv3 0 mvṙv1 + ṁbrv1
0 0 ṁb 0 −mv ṙv1 − ṁbrv1 0
0 −ṁbrv3 0 0 0 −mm ṙm1rm3

ṁbrv3 0 −mv ṙv1 − ṁbrv1 0 2mm ṙm1rm1 0
0 mv ṙv1 + ṁbrv1 0 −mm ṙm1rm3 0 2mm ṙm1rm1

 (12)

ḃ = RIBV, θ̇ =

1 sin φ · tan θ cos φ · tan θ
0 cos φ − sin φ
0 sin φ · sec θ cos φ · sec θ

Ω (13)
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tan α =
V3

V1
, sin β =

V2√
V2

1 + V2
2 + V2

3

(14)

Up to this point, all parameters in Equation (9) can be calculated. Combined with
the specific kinematic equations (Equation (13)) and the expressions of hydrodynamic
angles (Equation (14)), the simulation of the glider motion can be realized using the
Runge-kutta method.

2.2. Longitudinal Model Considering Varying Seawater Density

This section introduces the longitudinal plane model of the glider. Since the movable
mass of the glider keeps neutral and non-rotate, we denote the rv has the form as rv =
[rv1, 0, rv3]

T . Moreover, for the vertical motion, V2, p and r maintains zero. Thus, the cross
term of the added mass and the inertial hydrodynamic term driven by these motions
is zero.

M =

m1 0 0
0 m2 0
0 0 m3

, J =

j1 0 j4
0 j2 0
j4 0 j3

, C =

 0 c1 0
c2 0 c3
0 c4 0

 (15)

I−1
M =



i11 0 i13 0 i15 0
0 i22 0 i24 0 i26

i31 0 i33 0 i35 0
0 i42 0 i44 0 i46

i51 0 i53 0 i55 0
0 i62 0 i64 0 i66

 (16)

i11 =
c2

4 − j2m3

c2
1m3 + c2

4m1 − j2m1m3
, i13 =

− c1c4

c2
1m3 + c2

4m1 − j2m1m3
, i15 =

c1m3

c2
1m3 + c2

4m1 − j2m1m3
,

i22 =
− j1 j3 + j24

c2
2 j3 − 2c2c3 j4 + c2

3 j1 − j1 j3m2 + j24m2
, i24 =

c2 j3 − c3 j4
c2

2 j3 − 2c2c3 j4 + c2
3 j1 − j1 j3m2 + j24m2

,

i26 =
− c2 j4 + c3 j1

c2
2 j3 − 2c2c3 j4 + c2

3 j1 − j1 j3m2 + j24m2
,

i31 =
− c1c4

c2
1m3 + c2

4m1 − j2m1m3
, i33 =

c2
1 − j2m1

c2
1m3 + c2

4m1 − j2m1m3
, i35 =

c4m1

c2
1m3 + c2

4m1 − j2m1m3
,

i42 =
c2 j3 − c3 j4

c2
2 j3 − 2c2c3 j4 + c2

3 j1 − j1 j3m2 + j24m2
, i44 =

c2
3 − j3m2

c2
2 j3 − 2c2c3 j4 + c2

3 j1 − j1 j3m2 + j24m2
,

i46 =
− c2c3 + j4m2

c2
2 j3 − 2c2c3 j4 + c2

3 j1 − j1 j3m2 + j24m2
,

i51 =
c1m3

c2
1m3 + c2

4m1 − j2m1m3
, i53 =

c4m1

c2
1m3 + c2

4m1 − j2m1m3
, i55 =

−m1m3

c2
1m3 + c2

4m1 − j2m1m3
,

i62 =
− c2 j4 + c3 j1

c2
2 j3 − 2c2c3 j4 + c2

3 j1 − j1 j3m2 + j24m2
, i64 =

− c2c3 + j4m2

c2
2 j3 − 2c2c3 j4 + c2

3 j1 − j1 j3m2 + j24m2
,

i66 =
c2

2 − j1m2

c2
2 j3 − 2c2c3 j4 + c2

3 j1 − j1 j3m2 + j24m2
,

(17)

The adjusted added mass cross term C f , leaves only the (2nd, 3rd) element c f 23 that is
not zero. On this basis, we denote the M, J, C has the form as Equations (15) and (16) shows,
where m1 = mv + m f 1, m2 = mv + m f 2, m3 = mv + m f 3, j1 = jv1 + j f 1, j2 = jv2 + j f 2, j3 =
jv3 + j f 3, j4 = jv4 and c1 = −mvrv3, c2 = mvrv3 + c f 1, c3 = −mvrv1 + c f 3, c4 = mvrv1 + c f 2.
The I−1

M can be further expressed in Equation (16), where the elements are demonstrated in
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Equation (17). Taking the above results into Equation (9) and considering the characteristics
of the glider’s vertical motion, the 3D of glider dynamic Equation is obtained.V̇1

V̇3
q̇

 =

i11 i13 i15
i31 i33 i35
i51 i53 i55

·
 −D cos(α) + L sin(α)−m0g sin(θ)−m3qV3 + ṁbqrv3 + ṁbV1
−D sin(α)− L cos(α) + m0g cos(θ) + m1qV1 + ṁbV3 + q(−ṁbrv1 − ṙv1mv)
M2 − c1qV3 + c4qV1 + V3(−ṁbrv1 − ṙv1mv) + ṁbrv3V1 + 2ṙm1mmqrm1 + k


(18)

k = −mbgrb1 cos(θ)−mhgrh1 cos(θ)−mmgrm1 cos(θ)−mhgrh3 sin(θ)−mmgrm3 sin(θ) (19)

Then, the model for the vertical motion of the glider is described in Equation (20).
This work considers the effect of pycnocline on glider pitch control. Thus, the density
distribution of the seawater cannot be considered as uniform. We corrected mb to reflect
the abrupt change of density, refer to Equation (21). In Equation (21), the ρu represents the
uniformly distributed density, while ρv depicts the varying density. Furthermore, based on
the partial derivative of density with respect to depth, we modified ṁb as Equation (22)
shows, where dep denotes the depth. ṁ′b and m′b represent the buoyancy term in the
uniformly distributed density field.

ṡ1 = V1cos θ −V3sin θ

ṡ3 = V1sin θ + V3cos θ

θ̇ = q

V̇1 =
1

c2
1m3 + c2

4m1 − j2m1m3
·{

− c1c4[−D sin(α)− L cos(α) + ṁbV3 + m0g cos(θ) + m1qV1 + q(−ṁbrv1 − ṙv1mv)]+

c1m3[M2 − c1qV3 + c4qV1 + ṁbrv3V1 + 2ṙm1mmqrm1 + k + V3(−ṁbrv1 − ṙv1mv)]+

(c2
4 − j2m3)[−D cos(α) + L sin(α) + ṁbqrv3 + ṁbV1 −m0g sin(θ)−m3qV3]

}
V̇3 =

1

c2
1m3 + c2

4m1 − j2m1m3
·{

− c1c4[−D cos(α) + L sin(α) + ṁbqrv3 + ṁbV1 −m0g sin(θ)−m3qV3]+

c4m1[M2 − c1qV3 + c4qV1 + ṁbrv3V1 + 2ṙm1mmqrm1 + k + V3(−ṁbrv1 − ṙv1mv)]+

(c2
1 − j2m1)[−D sin(α)− L cos(α) + ṁbV3 + m0g cos(θ) + m1qV1 + q(−ṁbrv1 − ṙv1mv)]

}
q̇ =

1

c2
1m3 + c2

4m1 − j2m1m3
·{

c1m3[−D cos(α) + L sin(α) + ṁbqrv3 + ṁbV1 −m0g sin(θ)−m3qV3]+

c4m1[−D sin(α)− L cos(α) + ṁbV3 + m0g cos(θ) + m1qV1 + q(−ṁbrv1 − ṙv1mv)]−
m1m3[M2 − c1qV3 + c4qV1 + ṁbrv3V1 + 2ṙm1mmqrm1 + k + V3(−ṁbrv1 − ṙv1mv)]

}
uin = rm1

(20)

mb =
m′bρv

ρu
(21)

ṁb =

ṁ′b
∂ρv

∂dep
∂ρu

∂dep

(22)

2.3. Parameters Determination

In our previous work [3], we presented the determination of hydrodynamic parame-
ters for the OUC-III glider, and the results are listed in Table 1. According to the research
in [17], parameters in Table 1 is determined by the mechanical shell. Once these parameters
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are calculated via the curve fitting techniques, the hydrodynamic forces and momentum
are able to determine combined with the specific hydrodynamic angles and the velocities.
However, the added mass appeared in Equation (20) changes with the density. Other
physical parameters of the OUC-III glider are listed in Table 2.

Table 1. Hydrodynamic parameters of OUC-III.

Parameters Values

KD0 8.669
KD 612.712
Kβ −67.415
KL0 −2.223
KL 572.727

KMR −38.955
KP −23.694

KM0 0.858
KM −53.524
Kq −155.809

KMY 77.862
Kr −280.766

Table 2. Physical parameters of OUC-III.

Parameters Values

mm 76.600 kg
mh 9.400 kg
mb [−1, 1] kg
Js diag([0.154, 28.365, 28.243])
rh [0.080, 0, 0.014]T

rb [0.897, 0, 0]T

In this work, we calculated the added mass of OUC-III using the hess-smith panel
method [29]. Firstly, the glider surface is divided in a continuous triangular panels using
finite element software. Then, the node information is resolved from the result of the
division, and the area, center and normal of the surface elements are calculated based on
the obtained nodes, as shown in Figure 2. Then, construct the linear system of equations
about the intensity of the Rankine source σ, as Equation (23). Where Vf is the value of
the velocity at infinity, n represent the direction of calculation, the number of the system
of equations is the number of elements. The resulting σ is brought into Equation (24) to
calculate the velocity potential Φ. The additional mass can be calculated from Equation (25).
Note that the added mass is related to the density of the fluid. So the motion of the glider
in the pycnocline needs to consider the change of the added mass.

2πσ(pa) +
N

∑
j=1

σj

∫∫
∆Qj

∂

∂npa

1
rpaqa

dsqa = −Vf · n (23)

Φ(pa) =
∫∫
∆s

σ(qa)

rpaqa

ds (24)

λij = −ρ
N

∑
i=1

Φinjds (25)

Equation (26) shows the added mass terms for ρ = 1000 kg/m3, and these matrices
need to be corrected for fluid density during the glider profile.



J. Mar. Sci. Eng. 2021, 9, 1013 8 of 22

M f =

1.94 0 0
0 65.51 0
0 0 79.46

, J f =

2.04 0 0
0 27.98 0
0 0 28.30

, C f =

0 0.19 0
0 0 −4.46
0 2.94 0

 (26)

Figure 2. The division of the glider surface. The area, center and normal of the surface element are
also illustrated. Note that the normal is pointed inside the panel.

3. The Actuator Constrained Active Disturbance Rejection Control

This section introduces the concept of the actuator constraints and the basic structure
of ACADRC. This part also introduces the basic settings of the control methods involved
in the comparison in Section 5.

3.1. The Actuator Constrains

As discussed before, the buoyancy engine is prone to interfered by the environment.
Furthermore, the OUC-III glider is not equipped with the elevator, which makes the
effective maneuverability of hydrodynamics not accessible. So, the key parameter for pitch
control is the longitudinal displacement of the movable mass. The physical system of the
glider’s movable mass is shown in Figure 3.

Figure 3. The physical system of the glider’s movable mass.

The planetary gear is driven by a DC motor fixed to the movable mass block. The axial
displacement of the movable mass is adjusted by meshing with the screw rod. Assuming
that the movable mass of the glider has a displacement rm1 along the axial direction,
resulting in the overall center of gravity of the glider moving the distance of l = mmrm1/mv.
Considering that the metacentric height of the glider is h, then the steady value of the glider
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pitch angle manipulated by the movable mass can be expressed by Equation (27). In order
to ensure the driving effect of the movable mass at the ultimate angle, the axial tension of
the screw corresponding to the extreme pitch angle should be calculated. The calculation is
shown in Equation (28), where the θsm represent the extreme pitch angle. Accordingly, the
desired torch of the screw under such case can be calculated referring to the lead angle of
screw and the equivalent coefficient of friction as Equation (29) illustrated.

θs = arctan(
mmrm1

mvh
) (27)

Fr = mmg cos θsm (28)

Tr = Fr
d2

r

2
tan(µ + ε) (29)

Denote the reduction gear ratio of planetary gear as i, the maximum continuous output
torque as Tc, and the transmission efficiency as η. Then the continuous output torque of
DC motor can be calculated as Equation (30). The type of DC motor is selected according
to the Tm, and the actuator constraint for glider pitch control can be calculated referring to
the rated speed of the DC motor. The calculated vL is 1.3× 10−3 m/s, which means that
the control algorithm of the pitch must follow the constraints of the calculated vL. The
control algorithm cannot exert influence on the pitch angle according to the ideal control
input, which affects the control effect, but is close to the actual physical system. Moreover,
the movement of the movable mass relies on a linear potentiometer to decode the control
signal. This also contributes to the actuator constraints.

Tm =
Tc

iη
(30)

vL =
n

60× i
L (31)

3.2. The ACADRC

The active disturbance rejection control mainly consists of the tracking differentiator
(TD), the nonlinear state error feedback (NLSEF) and the extended state observer (ESO)
as shown in Figure 4. The TD section arranges the transition process for the reference
input signal, and this design avoids the drastic tracking of the abruptly changing reference
signal. At the same time TD generates the differential signal of the reference output. The
formulas of the TD are show in Equation (32), where r0 denotes the speed factor, h is the
filter factor, and fhan represents the optimal control function. The ESO estimates the system
output and the total disturbance in real time, and generates the system error by making
a difference with the differential signal generated by the TD. By using the system output
signal θ and the input signal u to track and estimate the system state and disturbances,
it is the key to achieve the suppression of environmental disturbances. Its principle is
listed in Equation (33). β01, β01 and β01 are the adjustable parameters and z1, z2, z3 are
the estimations of the pitch angle and its derivatives of each order, respectively. fal is a
continuous power series function with linear segments near the origin [22].

e = θr1 − θ

f h = fhan(e, θr2 , r0, h)
θr1 = θr1 + hθr2

θr2 = θr2 + h f h

(32)
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e = z1 − θ

dz1 = z2 − β01fal(e, a1, δ)

dz2 = z3 − β02fal(e, a2, δ) + b0u
dz3 = −β03fall(e, a3, δ)

(33)

TD NLSEF UG

ESO

Pycnocline
Disturbanc

θr1 (t)

θr2 (t)

e1 (t)

e2 (t)
θr (t)

b01/b0

u(t)

z3(t)

+ -

+ -

z1(t)
z2(t)

+ -
θ (t)

ACADRC
Controller

Actuator 
Constraints

Figure 4. The structure of the ACADRC.

NLSEF can be expressed as Equation (34). The control output of the classical ADRC
can be derived via the output u0 combined with the estimation of the disturbance z3.
However, this control output does not fully consider the actuator constraints. By mapping
the output u to the action space of the movable mass of the glider and combining it with
the properties of the potentiometer-based control of the actuator, the output of ACADRC
can be obtained. 

e1 = θr1 − z1

e2 = θr2 − z2

u0 = β1fal(e1, a4, δu) + β2fal(e2, a2, δu)

(34)

3.3. The Comparison Methods

In this work, to illustrate the control effect of the proposed ACADRC, we chose bang-
bang control and PID control as the comparison methods. They are both commonly used
methods in underwater glider engineering applications.The idea of bang-bang control is
to output the actuator adjustment signal by comparing the the current controlled state
with the target. In OUC-III, the movable mass has the coordinates [−0.65, 0, 0]T meters in
the body-frame. Furthermore, the adjustable range is −0.65± 0.07. In order to prevent
the actuator from excessive oscillation under bang-bang control, we selected the range of
±1 degree from the target pitch as the termination band of control. The PID constructs the
actuator target signal based on the error between the current pitch angle and the target
pitch angle. The incremental PID control is selected in this work, and the principle is
shown in Equation (35), where ∆θ(k) = θ(k) − θ(k − 1). The selected parameters are
kp = 0.0005, ki = 0.0000015, kd = 0.0000008.

∆u = kp[∆θ(k)− ∆θ(k− 1)] + ki∆θ(k) + kd[∆θ(k)− 2∆θ(k− 1) + ∆θ(k− 2)] (35)

4. Discussion on Pycnocline and Control Metrics

This section introduces the structure of the pycnocline used in Section 5. We also
introduce the metrics that depict the effect of pitch control in the presence of the pycnocline.

4.1. Three Typical Types of Pycnocline

Three typical structures of pycnocline are adopted in this work, which are the typically-
discussed pycnocline with three stratified layer [30], the inverted pycnocline [31] and the
dual-pycnocline (double pycnocline) [32]. To facilitate referring, denote them as pycno-
cline 1, pycnocline 2, pycnocline 3. Their density-depth curves are shown in Figure 5.
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Figure 5. The density distributions in three typical types of pycnocline.

The red dot in the figure depicts the boundaries of pycnocline. In the typically-
discussed pycnocline, the partial derivatives of the density with respect to depth are
smaller in both the upper and lower layers of the jump layer, which causes the density of
seawater in these two layers to increase slowly with depth. However, in the jump layer,
the density increases steeply within a limited depth, which leads to undesired changes
in pitch angle control. Generally, the density of seawater increases with depth, but in
the inverted pycnocline, the density of seawater underwater is less than that near the
surface. This may lead to a steep drop in depth for the underwater vehicle and also
cause interference to the pitch angle. The dual-pycnocline can be originally considered
as a continuous typically-discussed pycnocline, whose density exerts disturbances on the
glider in two depth intervals. It causes multiple oscillations of the pitch angle control.
The specific parameters of the three pycnoclines used in this section are listed in Table 3,
where the ub represents the upper boundaries, and lb illustrates the lower boundaries.
The intensity demonstrates the partial of density with respect to the depth among the
jump layer, while the ui and li depicts the intensity of the upper and lower layer of the
pycnocline, respectively. Taking the pycnocline 1 as an example, we demonstrate the
interference of the pycnoncline exerted on to the glider pitch. As Figure 6 shows, the green
band illustrates the pycnocline. It can be observed that the pycnocline influences the pitch
of the UGs significantly.

Table 3. Physical parameters of OUC-III.

Properties Pycnocline 1 Pycnocline 2 Pycnocline 3

ub 30 m 50 m 40 m, 80 m
lb 70 m 70 m 55 m, 100 m

intensity 0.15 −0.13 0.15, 0.11
ui 0.02 −0.001 0.015, 0.01
li 0.01 0.006 0.01, 0.006
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Figure 6. The density distributions in three typical types of pycnocline.

4.2. The Control Metrics of Pitch Control

As shown in Figure 7, the profile of the glider can be divided into four processes. They
are the accelerating diving phase, the stable diving phase, the dive-surfacing switching
phase and the stable surfacing phase. Among them, the accelerating diving stage is more
aggressive in pitch angle control in order to reach the target pitch angle as soon as possible.
After reaching flare point (1), the glider is controlled according to the diving target angle.
At (3), the glider dives to the set depth and starts to adjust buoyancy and attitude to
prepare for surfacing. After the adjustment of the switching process, the glider reaches the
flare point (2), which means that the glider starts to control the floating pitch angle. The
determination of the flare time is defined in Equation (36). The δ depicts the error to index.
We also define the tm to illustrate the time when the glider reach the set depth, which can
be found in Equation (37). To determine flare point (2) (denotes as t f 1), the −19.1 and the
+δ are chosen. Together with the tm, the interval for continuous controlling the pitch angle
during the dive phase can be selected. As shown in Equation (38). The mean and variance
of the glider pitch angle in this selected interval can reflect the control effect of the specific
control algorithm.

(1) The start point

(2) The flare point 1

(3) The reaching point 

(4) The flare point 2
 

(5) The end point

The surface

Figure 7. The profile division of the glider.

t f = sort{abs[θ ± 19.1∓ δ]}[1] (36)

tm = index
[
argmin{abs[(s3− sset)]}

]
(37)
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terval = tm − t f 1 (38)

mean =
∑

i=t f 1, ..., tm
t=i θi

length(θ)
(39)

var =
∑

i=t f 1, ..., tm
t=i (θi −mean)2

length(θ)
(40)

5. Numerical Simulation Results and Discussion

To examine the ACADRC control effect, we conduct the motion simulation of the
glider in the presence of three types of pycnocline. The bang-bang control and the PID
control are introduced to compare the control effect. The diving depth of the glider is set to
200 m. Because the interference of the pycnocline on the pitch control is mainly focused, we
consider the movable mass of the glider as non-rotatable. Therefore, the roll angle and the
heading angle of the glider are all zero degree during the simulation. Figures 8–10 present
the motion simulation results, which consists of the depth results and the pitch results.
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Figure 8. Glider motion simulation with the presence of pycnocline 1.
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Figure 9. Glider motion simulation with the presence of pycnocline 2.

According to the simulation results. Although bang-bang control is a common control
techniques for engineering applications. However, it leads to drastic oscillations in pitch
angle and insufficient suppression in the face of disturbances caused by density jumps.
However, the pitch angle under bang-bang control did not show significant overshoot. PID
control has a significant improvement in accuracy compared to bang-bang control. How-
ever, the control effect performs unstably between the diving and floating. Furthermore,
the control results show that the pitch angle has interval steady-state errors and is seriously
affected by density disturbances. In addition, the pitch angle of PID control has significant
overshoot.
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Figure 10. Glider motion simulation with the presence of pycnocline 3.

The pitch angle controlled by ACADRC is more stable than the comparison method.
The pitch angle can be controlled around the target pitch angle. Furthermore, it has a better
suppression effect on density interference than the comparison method. The disadvantage
lies in that the ACADRC still has overshoot. However, the overshoot of both ACADRC and
PID occurs in the surfacing phase and the glider does not reach the flare point. As defined
in Section 4.2, the control metrics for the pitch control during the selected interval are listed
in Table 4. The results indicate that the ACADRC has the comprehensive performance
over the comparison methods in the aspect of lower variance and closer mean value to the
target pitch.
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Table 4. Results of numerical simulations.

Pycnocline 1
Metrics Bangbang PID ACADRC

t f 1 54 54 44
tm 889 920 883

terval1 835 866 839
mean1 −19.526 −18.912 −19.319
var1 3.683 3.255 1.437
t f 2 1078 1101 1071
te 1897 1933 1826

terval2 819 832 755
mean2 20.016 18.534 19.336
var2 2.554 3.076 1.210

Pycnocline 2
Metrics Bangbang PID ACADRC

t f 1 91 91 44
tm 946 959 927

terval1 855 868 883
mean1 −19.365 −19.326 −19.421
var1 3.401 0.975 1.315
t f 2 1097 1116 1091
te 1988 1981 1906

terval2 891 865 815
mean2 19.280 18.977 19.119
var2 4.056 12.477 0.737

Pycnocline 3
Metrics Bangbang PID ACADRC

t f 1 54 54 44
tm 898 924 892

terval1 844 870 848
mean1 −19.415 −18.932 −19.226
var1 3.667 2.934 1.303
t f 2 1056 1109 1071
te 1882 1927 1840

terval2 826 818 769
mean2 19.910 18.889 19.217
var2 2.295 2.207 0.915

To better visualize the error of the controlled pitch with respect to the target pitch, we
provide the Figures 11–13. For each control algorithm, we show error plots for the diving
control phase and the floating control phase. According to the figures, the pitch angle
under bang-bang control fluctuates up and down along the target pitch, resulting in poorer
accuracy. In contrast, PID has high control accuracy in some stages, and even performs
best in all three algorithms. However, the PID cannot achieve the globally accurate pitch
control. The performance of ACADRC is weaker than PID in some areas, but the control
effect is smoother in the whole control cycle and the suppression of density variation is
better than the comparison method. It is worth noting that the glider cannot suppress the
deviation of the pitch angle even if the movable mass is adjusted to the limit position due to
the abrupt change of density in the pycnocline. At this point, all three discussed methods
are unable to control the pitch angle to maintain the set angle. However, ACADRC can
make a continuous estimation of the disturbance to compensate the control signal and
make the pitch angle return to the set state quickly. In contrast, the PID control still suffers
from oscillations and delays. Therefore, we believe that ACADRC is capable of accurately
controlling the pitch in the presence of the pycnocline.
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(c) Error of PID control during diving in pycnocline 1
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(d) Error of PID control during floating in pycnocline 1

0 100 200 300 400 500 600 700 800
step

5

0

5

er
ro

r [
de

g]

(e) Error of ACADRC control during diving in pycnocline 1
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(f) Error of ACADRC control during floating in pycnocline 1

Figure 11. The pitch control errors with respect to the reference angle (−19.1◦ in the diving phase
and 19.1◦ in the floating phase) with the presence of the typical pycnocline.
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(c) Error of PID control during diving in pycnocline 2
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(e) Error of ACADRC control during diving in pycnocline 2
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(f) Error of ACADRC control during floating in pycnocline 2

Figure 12. The pitch control errors with respect to the reference angle (−19.1◦ in the diving phase
and 19.1◦ in the floating phase) with the presence of the inverted pycnocline.
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(b) Error of bangbang control during floating in pycnocline 3
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(f) Error of ACADRC control during floating in pycnocline 3

Figure 13. The pitch control errors with respect to the reference angle (−19.1◦ in the diving phase
and 19.1◦ in the floating phase) with the presence of the dual-pycnocline.

6. Conclusions

In this work, we have discussed the problem of accurate control of the pitch angle of
the glider in the presence of the pycnocline. We have established the longitudinal model of
the glider considering density variation based on the derived six-degree-of-freedom glider
dynamics equations. On this basis, the influence of three typical pycnocline structures
on the pitch of the glider has been considered. The simulation results have shown that
the abrupt density change caused by pycnocline will bring significant disturbance to
the pitch angle. The actuator constraints of the glider in conjunction with the hardware
characteristics of the glider have been discussed. Under this constraint, the input of the
control algorithm cannot be fully mapped to the actuator action, which has deteriorated the
effectiveness of the control algorithm. The ACADRC has been proposed for this purpose,
which, on the one hand, has allowed estimating disturbances in real time during the control
process. At the same time, the output has been improved to better adapt to the actuator
constraints for the purpose of achieving better pitch control results. The simulations have



J. Mar. Sci. Eng. 2021, 9, 1013 20 of 22

shown the advantages of the proposed method in terms of pitch control accuracy compared
to bang-bang control and PID control.

Future work will focus on further suppression of pitch angle errors caused by pycno-
cline, as well as field tests.
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Nomenclature

mb mass of the bladder
ms mass of the glider static components
mm mass of the movable block
mv mass of the vehicle mv = mb + ms + mm
m0 equivalent mass of net buoyancy
Jv inertia of glider: Jv = [[jv1, 0, jv4], [0, jv2, 0], [jv4, 0, jv3]]
Js inertia of the glider’s static components
M f added mass matrix: M f = diag(m f 1, m f 2, m f 3)
J f added inertia matrix: J f = diag(j f 1, j f 2, j f 3)
C f added coupling matrix: [[0, c f 1, 0], [0, 0, c f 2], [0, c f 3, 0]]
rv position vector of the vehicle in the body coordinate system
rs position vector of static mass in the body coordinate system
rm position vector of the movable mass in the body coordinate system
rb position vector of the bladder in the body coordinate system
lv position vector of the vehicle in the inertia coordinate system
lh position vector of static mass in the inertia coordinate system
lm position vector of the movable mass in the inertia coordinate system
lb position vector of the bladder in the inertia coordinate system
V translational velocity in the body coordinate system, V = [V1, V2, V3]

T

Ω angular velocity in the body coordinate system, Ω = [p, q, r]T

s glider position in the inertia coordinate system, s = [s1, s2, s3]
T

b position vector of glider’s center of buoyancy in the inertia coordinate system
θ glider attitude in the inertia coordinate system θ = [φ, θ, ψ]T

P linear momentum of glider in the body coordinate system
p linear momentum of glider in the inertia coordinate system
Π angular momentum of glider in the body coordinate system
π angular momentum of the glider in the inertia coordinate system
fexti the ith external force expressed in the inertia coordinate system
τexti the ith external moment expressed in the inertia coordinate system
Fgra gravitational forces in the body coordinate system
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Tgra gravitational moments in the body coordinate system
α the angle of attack
β the side slip angle
Thyd hydrodynamic moments in the currents coordinate system
Fhyd hydrodynamic forces in the currents coordinate system
L lift force in the currents coordinate system, L = (KL0 + KLα)V2

D drag force in the currents coordinate system, D = (KD0 + KDα2)V2

SF lateral force in the currents coordinate system, SF = KββV2

Fi (i = 1, 2, 3) moments around three axes in the currents coordinate system
Mi (i = 1, 2, 3) moments around three axes in the currents coordinate system
Q generalized force
qg generalized quantity
T the kinetic energy of the glider system
Tf added kinetic energy in the body frame
Tv kinetic energy of the vehicle
t time
rm1 translational position of mm in body frame
h the metacentric height
θsm the extreme of the pitch angle
d the diameter of the screw rod
ε the lead angle of screw
η the transmission efficiency
vL the constrained velocity of the movable mass (the actuator constraints)
µ the equivalent coefficient of friction
i the reduction gear ratio of planetary gear
L the length of the screw rot
n the rated speed of the DC motor
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