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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive tumor type and is usually
detected at late stage. Here, mathematical modeling is used to assess the feasibility of two-step
early detection with biomarkers, followed by confirmatory imaging. A one-compartment model of
biomarker concentration in blood was parameterized and analyzed. Tumor growth models were
generated from two competing genomic evolution models: gradual tumor evolution and punctuated
equilibrium. When a biomarker is produced by the tumor at moderate-to-high secretion rates, both
evolutionary models indicate that early detection with a blood-based biomarker is feasible and can
occur approximately one and a half years before the limit of detection by imaging. Early detection
with a blood-based biomarker is at the borderline of clinical utility when biomarker secretion rates by
the tumor are an order of magnitude lower and the fraction of biomarker entering the blood is also
lower by an order of magntidue. Regardless of whether tumor evolutionary dynamics follow the
gradual model or punctuated equilibrium model, the uncertainty in production and clearance rates
of molecular biomarkers is a major knowledge gap, and despite significant measurement challenges,
should be a priority for the field. The findings of this study provide caution regarding the feasibility
of early detection of pancreatic cancer with blood-based biomarkers and challenge the community to
measure biomarker production and clearance rates.

Keywords: pancreatic ductal adenocarcinoma; early detection; biomarker; one compartment model;
mass spectrometer; ELISA; shedding rate; clearance rate; limit of quantitation

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is detected at late stage and has a dismal five-year
survival [1]. Early detection can provide a window of opportunity and dramatically increase cure
rates [2]. Blood-based biomarkers are a potential method for early detection [3]. However, development
of biomarkers has proven to be enormously challenging [4]. PDAC was long believed to follow a
gradual evolution model with a particular sequence of mutations (KRAS, followed by CDKN2A, then
P53 and SMAD4) with landmark work by Yachida and colleagues concluding that at least a decade is
required between the occurrence of the first mutated clone, and an additional 5 years for the acquisition
of metastatic capability, after which patients usually die within 2 years [5]. Recent work analyzed
patterns of chromosomal alterations to challenge this view, proposing that tumor evolution may not be
sequential and gradual, and that, instead, it may occur rapidly, following a punctuated equilibrium
model of evolution [6]. Mathematical modeling of cancer has provided numerous insights into tumor
progression and therapy [7]. Therefore, I sought to use mathematical modeling to study early detection
of PDAC, by considering both the gradual evolution and punctuated equilibrium models.

For mathematical modeling of early detection, Swanson and colleagues developed a
one-compartment model to relate prostate cancer tumor size with PSA volume, assuming that both
cancer and normal cells secrete PSA [8]. Lutz and colleagues used a similar one-compartment model
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and provided estimates of minimally detectable tumor sizes and earliest detection times based on
blood tumor biomarker assays using physiological data for prostate cancer (PSA) and ovarian cancer
(CA125) [9]. Hori and colleagues refined this model for ovarian cancer (CA125), finding that a tumor
could grow unnoticed for approximately 10 years and reach a size of 25.36 mm diameter (8.5 cm3) before
becoming detectable by clinical blood assays [10]. In a follow-up study, Hori and colleagues created a
mouse model with luminescent orthotopic A2780 cells that shed secreted alkaline phosphatase (SEAP)
to monitor how blood levels of SEAP correspond to tumor size in a two-compartment model [11].
Furthermore, they also used allometric scaling equations and data from prostate cancer (PSA) to find
that detection and discrimination of aggressive vs nonaggressive tumors could be determined with
blood-based tests alone as early as 7.2 months and 8.9 years, respectively [11].

Application of mathematical modeling to early detection of PDAC might provide additional
insights and guide future experiments to meet the challenge of an early detection test for PDAC that
has eluded investigators for decades [12]. Several factors serve to motivate a theoretical exploration
of early detection for PDAC using blood-based biomarkers, including: the historical difficulty in
finding biomarkers for early detection of pancreatic cancer [2]; recently available in vivo data from
PDAC patients [13]; and conflicting theories for the timing of PDAC genomic evolution [5,6]. In this
study, I use a previously developed, one-compartment model of biomarker secretion to provide
PDAC-specific estimates of earliest detection times and prioritize parameters for experimental
measurements, assuming either a gradual model of decade-long PDAC progression [5] or an alterative
model of PDAC progression (punctuated equilibrium) [6]. I also investigate the sensitivity of earliest
detection times by varying model parameters over orders of magnitude. Finally, I highlight the areas
with critical knowledge gaps to guide future experiments.

2. Results

2.1. Development of a One-Compartment Biomarker Model for PDAC

To study whether early detection of PDAC is feasible with molecular biomarkers, I parameterized
and analyzed a one-compartment model motivated by previous work in prostate and ovarian cancers [8,9].
The components of the one-compartment model are shown in Figure 1. The model requires an equation
for tumor volume over time and I curated the PDAC literature to develop such an equation, with
parameters and values given in Table 1. In the most comprehensive study examined, Haeno and
colleagues analyzed human PDAC tumors measured at diagnosis and autopsy [13]. They concluded
that an exponential growth model was appropriate and unable to fit logistic growth equations, which
is surprising and highlights the rapid lethality of PDAC [13]. At diagnosis, they found the average
tumor to be approximately 26.5 cm3. To estimate the time frame over which this growth occurred,
studies on the genomic evolution of PDAC were examined [5,6]. These studies present contrasting
models of genomic evolution, a gradual evolution model or punctuated equilibrium model. In the
former, there is a T1 stage during which tumors begin to transition from infiltrating to metastatic, and
a T2 stage at which they begin metastatic colonization [5]. The T2 stage was estimated to occur at
the approximate time of tumor diagnosis when the average tumor volume is 26.5 cm3. From these
estimates, the exponential growth constant is 0.003 day−1, which corresponds to a tumor volume
doubling time of 209 days. This is in reasonable agreement with a previously published estimate
of 159 days (64–255 day range) [14]. For the punctuated equilibrium model, phase 1 growth was
assumed to happen over the tumor growth stages of T1: PanIN-Infiltrating period at 11.7 years when
the tumor reaches a 10 mm radius (0.5 cm3), which is an estimated size that causes nutrient limitations
that require tumor progression for further growth. During phase 2, growth is assumed to rapidly
increase due to simultaneously genomic events; i.e., punctuated equilibrium, where it then catches up
to the gradual evolution model by T2: Infiltrating-Metastatic period. During phase 3 of tumor growth,
the punctuated equilibrium model is assumed to slow down and grow at the same exponential rate as
the gradual evolution model. Baseline growth rates are shown for both models in Figure 2.
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Figure 1. Schematic of the one-compartment mathematical model. (A) The one-compartment model
models biomarker concentration in blood, where the biomarker can be shed by both normal and cancer
cells and is eliminated at a constant rate. (B) The tumor growth equation is simple exponential growth
based on autopsy measurements of tumor volumes, including primary and metastases. (C) Ordinary
differential equation for biomarker production consisting of influx from tumor shedding and normal
cell shedding, minus clearance from blood.
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Figure 2. Timecourse of tumor growth in gradual evolution vs punctuated equilibrium models. In the
gradual evolution model, tumor growth is assumed to be exponential from the single founder clone
all through the disease course. In the punctuated equilibrium model, the tumor is assumed to exhibit
exponential growth in 3 phases, with the middle phase representing catastrophic genomic events that
rapidly accelerate growth. Medical imaging is assumed to have a lower limit of detection of 5 mm3

(2.125 mm diameter) which corresponds to 13.5 years of tumor growth in the gradual evolution model.
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Table 1. Tumor growth model parameters, input value ranges (if applicable), and sources.

Parameter Symbol Unit Baseline Range Source

Diameter of primary tumor at diagnosis
(cohort 1: 69% Stage I–III, 31% StageIV) 2r cm 3.7 2.8–4.2 Haeno [13]

Diameter of primary tumor at diagnosis
(cohort 2: 100% Stage I–III) 2r cm 3 2.5–4 Haeno [13]

Volume of primary tumor at diagnosis
(cohort 1: 69% Stage I–III, 31% StageIV) V cm3 26.5 11.5–38.8 (calculated from

Haeno [13])

Volume of primary tumor at diagnosis
(cohort 2: 100% Stage I–III) V cm3 14.1 8.2–33.5 (calclulated

from Haeno)

Tumor volume doubling time TVDT days 159 64–255 Furukawa [14]

Density of cancer cells in solid
tumor tissue dc cells/cm3 2 × 108 (na) Lutz [9]

Density of pancreatic cancer cells in
solid tumor tissue dc cells/um3 2.85 × 103 (na) Kisfalvi [15]

Volume of a single cancer cell vc mm3 5 × 10−6 (na) Lutz [9]

Time to reach infiltrating
capability—gradual model *

T3gm year 18.5 * 12–25 Yachida [5]

Growth rate of gradual model g day−1 0.003316444 (na) Calculated

Tumor volume doubling time for
gradual model TVDTgm days 209 (na) Calculated

Time to reach infiltrating
capability—punctuated equilibrium

model Phase 1
T3pem year 11.7 10–23

(estimated from
Notta [6] and
Yachida [5])

Tumor diameter at infiltrating capacity
punctuated equilibrium model 2r cm 0.01 (na) assumption

Growth rate of punctuated equilibrium
model, phase 1 g1 day−1 0.001089422 (na) Calculated

Growth rate of punctuated equilibrium
model, phase 2 g2 day−1 0.007147335 (na) Calculated

Growth rate of punctuated equilibrium
model, phase 3 g3 day−1 0.003316444 (na) Calculated

Tumor volume doubling time for
punctuated equilibrium model

during phase 2
TVDTpem days 97 (na) Calculated

Average primary tumor volume
at autopsy V cm3 524 (na) (calculated from

Haeno [13])

Average number and size of metastatic
tumors at autopsy V n, cm3 100, 4.19 (na) (calculated from

Haeno [13])

Average sum of primary and metastatic
tumor volumes at autopsy V cm3 943 (na) (calculated from

Haeno [13])

* Calculated from time of initiated tumor cell to parental clone (T1) plus time from parental clone to subclones with
metastatic ability (T2) corresponding to PanIN3.

Following development of the tumor growth models, the remaining parameters for the
one-compartment model were parameterized with literature curation and estimation. In these steps,
much greater uncertainty was encountered and model parameters had to be borrowed from prostate or
ovarian cancer models; Table 2. It was assumed that PDAC biomarkers would be shed by both cancer
and normal cells. It was also assumed that the biomarker would be PSA-like and therefore, for healthy
individuals a concentration of 1.38 ng/mL was used with a disease cutoff of 4 ng/mL. The parameters
with the greatest uncertainty include the following: shedding rate constant of biomarkers in cancer
and normal tissue, and the fraction of shed biomarker that reaches the blood from the interstitium.
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These parameters were investigated over several orders of magnitude. To be considered potentially
useful, a biomarker was required to reach the cutoff with its earliest detection time preceding the
T2: infiltrating-metastatic transition at 18.5 years, at which time most PDAC tumors are assumed
to be detected. An ideal biomarker would have an earliest detection time closer to T1:PanIN-cancer
transition at 11.7 years, which is about a year and a half earlier than the time that a tumor is estimated
to reach the lower limit of detection by medical imaging.

Table 2. Biomarker concentration model parameters, input value ranges, and sources.

Parameter Symbol Unit Baseline Range Source

Biomarker concentration in
blood

over time
B(t) ng/mL TBC * TBC * (na)

Volume of blood in a typical
male or female person VM,F mL 3150, 3825 (na) Lutz [9]

Shedding rate of biomarker
from cancer cells sc

ng(105cells)−1

(day)−1(mL)−1 2.1 2.1–200 Lutz [9]

Shedding rate of biomarkers
from tumor sc

ng/cm3

(day)−1(mL)−1 4200 420–42,000 calculated
from Lutz

Fraction of biomarker that
enters blood from interstitium f (na) 10% (na) Lutz [9]

Steady State biomarker
concentration in healthy

controls
Bn ng/ml 1.38 (na) Lutz [9]

Influx of biomarker shed from
normal cells VnSn ng(day)−1(mL)−1 17.75 (na) calculated

Biomarker elimination rate
from blood e day−1 1.286 0.129–12.86 Swanson [8]

Limit of detection for
molecular assay LODassay ng/mL 0.1 0.01–1 Zhang [16]

Limit of detection for imaging LODimaging mm3 5 mm3 (na) Hori [11]

Time of detection for imaging
assuming gradual
evolution model

Td years 11.4 (na) calculated

* TBC is to be calculated from the model using the other parameters.

2.2. Determination of Earliest Detection Times for Baseline Parameter Values

Using the best estimates for baseline model parameter values, early detection using a molecular
biomarker was determined to be feasible and clinically useful. For the gradual evolution model, earliest
detection time occurs at 11.81 years when the tumor has reached only 0.01 cm3; Figure 3. For the
punctuated evolution model, earliest detection time occurs at approximately the same time. Detection
at this time represents a disease stage approximately 5 years before metastasis occurs. Detection
at this time is also below the limit of detection for medical imaging, and therefore, patients with a
postive biomarker test would likely need to undergo annual imaging to confirm disease. Overall,
calculations with these baseline values are favorable results for early detection with a molecular
biomarker. To determine how sensitive these results are to variations over biologically plausible
parameter values, one-way sensitivity analyses were performed.
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Figure 3. Earliest detection times in gradual evolution vs punctuated equilibrium models. In the first
decade of tumor growth, the biomarker concentration in blood is due to secretion by normal cells. After
this, biomarker concentration is increasingly due to tumor production. At approximately 11.8 years,
blood biomarker levels reach 4 ng/mL, which is the assumed cut-off point for early detection with
a blood test. This is approximately 1.5 year earlier than the limit of detection for medical imaging of
5 mm3.

2.3. Sensitivity Analysis of Model Parameters on Earliest Detection Times

A total of five parameters were investigated using one-way sensitivity analysis: volume of primary
tumor at diagnosis, time T2 of invasive-to-metastatic transition, shedding rate of biomarkers from the
tumor, fraction of biomarker that enters the blood from the interstitium, and biomarker elimination rate
constant across values given in Table 3. The first two parameters, volume of primary tumor at diagnosis
and time at invasive-to-metastic transition, are given in the PDAC literature with relatively precise
values. However, the remaining three parameters have uncertain values in PDAC and were varied
over orders of magnitude. Variation in tumor volume at diagnosis has very little effect on earliest
diagnosis time, reflecting the precision with which this parameter is specified; Figure 4A. The time for
invasive-to-metastic transition has a larger effect on earliest detection time, but even for the worst case
simulated, earliest detection is still feasible and likely to be clinically useful; Figure 4B. Variations in
the tumor shedding rate constant have a large effect on earliest detection times; Figure 4C. The fraction
of secreted biomarker entering blood needs to be at least 4% otherwise a blood-based biomarker does
not outperform imaging; Figure 4D. Finally, if the elimination rate constant increases from 1.286 at
baseline to above 5 then a blood-based biomarker does not outperform imaging; Figure 4E.
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Table 3. Sensitivity analysis: model parameter means, standard deviations, and probability distributions.

Parameter Symbol Baseline Value Minimum Maximum

Volume of primary tumor at
diagnosis Vc

3cm diameter
2.8–4.2

Haeno [13]

2.8 diameter =
11.49 cm3

4.2 diameter =
38.79 cm3

T2: time at
invasive-to-metastatic transition t3 18.5 +/− 3.4 years Yachida [5] 15.1 21.9

Shedding rate of biomarkers
from tumor sc

4200 ng/cm3

(day)−1(mL)−1 over a 100×
range Lutz [9]

420 42,000

Fraction of biomarker that
enters blood from interstitium f 0.10

Lutz [9] 0.001 0.20

Biomarker elimination rate
constant from blood e 1.286 day−1 over a 100× range

Swanson [8]
0.1286 12.86
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Figure 4. Sensitivity of minimum detection times over one-dimensional scans of model parameters.
(A) For the range of tumor volumes at diagnosis there is minimal effect on earliest detection time.
(B) There is a linear dependence between time to metastatic transition (T2) and earliest detection
time that has an important effect on when biomarker screening should begin. (C) Tumor biomarker
shedding rate constant has a exponential effect on earliest detection time and is therefore, a critical
parameter. (D) The fraction of secreted biomarker entering blood also has an exponential effect on
earliest detection times. (E) The blood elimination rate constant has important effects that are generally
mild at the most likely values of >2 day−1.
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2.4. Calculation of Earliest Detection Times for Two Unfavorable Scenarios

The one-way sensitivity analysis did not reveal many areas of parameter space where early
detection would not be clinically useful, so two different scenarios were investigated assuming
increasingly unfavorable combinations of multiple parameters that are plausible given the knowledge
gaps in biomarker secretion rates for PDAC. In scenario 1, tumor secretion is 1/2 lower and the fraction
of biomarker entering the blood is 1/2 lower than baseline values; Table 4. This results in an earliest
detection time of 13.1 years; Figure 5. This represents clinically useful early detection because the
tumor is at early stage and the detection occurs earlier than by imaging. In scenario 2, tumor secretion
is reduced 10x and the fraction entering the blood is also reduced by 10x; Table 4. Here, the earliest
detection time deteriorates by almost 2.5 years and the tumor is on the border of the metastatic stage;
Figure 5. This is earlier than current diagnoses and is probably clinically useful, although less so than
imaging. These scenarios demonstrate that order of magnitude changes in model parameters may
affect whether blood-based biomarkers are clinically useful. Therefore, without accurate estimates
of biomarker secretion rates by the tumor and penetration rates into blood, the feasibility of early
detection cannot be confidently asserted.

Table 4. Two-way Parameter Variation Scenarios.

Early
Detection
Scenario

Tumor Growth
Rate Constant

(g) day−1

Tumor Secretion Rate
Constant (Sc) ng/cm3

(day)−1(mL)−1

Normal Secretion
Influx (VnSn)

ng/day

Biomarker
Elimination Rate

Constant (e) day−1

Fraction of
Biomarker

Entering Blood (f )

Baseline 0.003315953 4200 17.75 1.286 10%

Scenario 1 0.003315953 1/2× lower
2100

unchanged
17.75

unchanged
1.286

1/2× lower
5%

Scenario 2 0.003325953 10× lower
420

unchanged
17.75

unchanged
1.286

10× lower
1%
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Figure 5. Investigation of two unfavorable scenarios on earliest detection times. Scenario 1 is 1/2
reduction in tumor biomarker secretion rate and 1/2 reduction in fraction of biomarker entering the
blood, which results in an earliest detection time of 13.1 years that is slightly earlier than the 13.5 year
threshold for detecting disease by imaging. Scenario 2 is a 10-fold reduction in the tumor biomarker
secretion rate and a 10-fold reduction in the fraction of biomarkers entering the blood, which results in
an earliest detection time of 15.9 years. Therefore, order of magnitude decreases in tumor secretion
rates and fraction entering the blood result in significantly later detection times than imaging.
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3. Discussion

After performing literature curation and specifying a one-compartment model for early detection
with a blood-based molecular biomarker, calculations with baseline values showed that early detection
is feasible and clinically useful. Earliest detection times under baseline scenarios allow for detection
5 years before the start of tumor metastasis. However, most model parameters were taken from PSA
measurements in prostate cancer, which typically is less aggressive than PDAC, so it is uncertain
whether these results are probable, plausible, or inaccurate. Sensitivity analysis was performed across
orders of magnitude for most model parameters. Parameters such as the biomarker clearance rate from
blood and time to T2: infiltrating-metastatic transition did not have significant effects on the feasibility
or clinical utility of early detection. The results generally support the feasibility of early detection with
a molecular biomarker that is similar to PSA; however, there are significant regions of parameter space
where early detection with a blood-based biomarker occurs later than by imaging. For example, if the
fraction of biomarker entering the blood from the interstitium is 1% and biomarker secretion by tumor
cells is 10x below baseline, then imaging would detect a tumor more than two years earlier than a
blood-based biomarker. This is probably still clinically useful because a blood-based biomarker test
may have significantly lower economic costs than imaging and still detect PDAC tumors at earlier
stages, which are known to have higher survival [17].

In this study, tumor growth was modeled by exponential equations. This was motivated by
Haeno and colleagues, who analyzed human PDAC tumors measured at diagnosis and at autopsy
in the largest and most comprehensive study to my knowledge [13]. They concluded that an
exponential growth model was appropriate, linear models had poor fits, and were unable to fit logistic
equations [13]. This suggests that PDAC is a very aggressive cancer that may not be constrained
by nutrient availability that is observed in other tumor types [18]. A widely used model for tumor
growth that is constrained by a type of logistic curve is known as the Gompertz equation [19]. Fitting
this model requires at least three data points because it contains an additional parameter (growth
deceleration). Modeling representations that include aspects of tumorigenesis such as angiogenesis,
contact inhibition, nutrients, and hypoxia are much richer formulations that would result in more
mechanistic insights [20]. Similarly, agent-based and multiscale models incorporate behavior at the cell,
tissue, and organ levels that provide for greater insights [21]. The approach used here is comparatively
simple and based on limited data from PDAC patients. The one-compartment biomarker model is
clearly unrealistic at later stages because biomarker levels grow exponentially in the model, which
they do not do in patients. There is much room for further research into modeling PDAC growth
and biomarker concentrations, for example by using time-course imaging of mouse models, coupled
with advanced sensors for hypoxia, and interpolation to human growth models using allometric
scaling [11]. It would also be advantageous to combine stochastic evolutionary dynamics models with
growth models in order to determine the timing and identity of mutated nucleic acids that may be
shed into blood.

The one-compartment model used here is applicable to other tumor times. As published parameter
values only exist for prostate and ovarian cancers, it is unclear what the extent of variation is in the
model parameters (shedding rates, fraction entering blood, elimination). It may be that leukemias and
lymphomas have the highest fraction of biomarkers entering blood because of their direct connections
to circulation, and, conversely, that tumors of the brain would have the lowest fraction entering
blood because of the blood-brain barrier. A tumor may directly secrete a biomarker into blood or
indirectly cause biomarkers secreted by normal cells to leak into the blood. This effect is due to
disruption of the ECM by tumor invasion, or due to angiogenesis. Leakage of biomarkers may be due
to wounding or inflammation, and therefore, be less specific for cancer. Benign pancreatic diseases
such as pancreatitis may leak biomarkers and therefore, tumor vs benign disease controls must be
included in biomarker studies. Alternatively, leakage may be due only to tumor secretion and therefore,
highly cancer specific, resulting in the release of a protein with good biomarker properties, such as
high concentrations. Biomarker secretion by normal cells may be age-dependent and therefore, greater
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accuracy can be achieved by setting age-dependent cut-offs in ELISA assays, or modeling population
structure explicitly.

There are aspects of the PDAC microenvironment that may make the parameters used in this
investigation inaccurate because they were borrowed from prostate and ovarian cancer models,
which have different microenvironments. For example, primary PDAC tumors are known to be
highly desmoplastic with high interstitial fluid pressure and vasculature collapse, which results in
hypoperfusion [22]. This hypoperfusion results in poor drug delivery and treatment failure [22].
Hypoperfusion due to high interstititial pressures might result in a significant difference in the fraction
of the biomarker entering the blood (model parameter f ). What is the net result of this phenomena?
A higher interstitial pressure might drive more biomarker into the blood, making f higher than in
prostate or ovarian. On the other hand, because the tumor is poorly perfused, there is an overall lower
surface area of blood vessels for biomarker entry, which would make the entry fraction lower. Because
earliest detection time estimates depend heavily on this parameter, this phenomena requires additional
investigation in PDAC tumors. In this investigation, the fraction of biomarker entering plasma was
modelled at only 10% levels, for which early detection is feasible. If this parameter is actually an order
of magnitude or more lower because of hypoperfusion or another factor, then early detection with a
blood-based biomarker may be borderline if other parameters are also significantly less favorable.

Tumor growth has been modelled with sophisticated partial differential equation models that
provide enhanced realism by modeling oxygen and nutrient-limiting gradients affected by abundant
stroma [23]. These effects can be incorporated in future models. There are additional PDAC-specific
effects that may need to be modelled. For example, PDAC cells are known to scavenge for amino acids
to fuel growth in a process called macro-pinocytosis [24]. Therefore, it may be that tumor biomarker
secretion is not constant and might decrease due to macro-pinocytosis. This may provide a reason why
biomarker concentrations do not increase monotonically with disease burden. Similarly, biomarker
clearance from blood may not follow linear kinetics due to a variety of effects. Generally, clearance of
proteins from blood is a poorly understood process, even for major blood proteins such as albumin [25].
These phenomena deserve prioritization for measurement in PDAC mouse models.

Analyses presented here used tumor-specific parameters, which are relatively crude given the
considerable heterogeneity among cancer types. A logical next step is to develop models for cancer
subtypes. Over the long run, it is essential to make personalized models of biomarkers in order to
optimize screening strategies. For example, a future research goal is to associate genetic sequences
with parameters in a biomarker model, such as variations in extracellular matrix genes that might alter
the fraction of biomarker entering blood, or variations in biomarker gene promoter sequences might
affect secretion rates by a tumor. These personalized models may then inform monitoring rates, or,
indeed, even which different biomarkers are monitored, depending on personalized characteristics.

4. Methods

4.1. Estimation of Tumor Growth Rates

Literature curation was performed to determine an appropriate tumor growth model (linear,
exponential, power law, logistic, Gompertz, or other) and its parameters [19]. An exponential model
was selected, and its growth model equation is:

V(t) = V(0)egt (1)

where V(t) is the tumor population over time, V(0) is the initial tumor population, and g is the growth
rate. Literature curation was performed manually in order to determine estimates of these parameters;
Table 1. Tumor volume was modelled rather than tumor population because the limit of detection is
known for imaging. Tumor population sizes were converted to volumes assuming a constant volume
per cell, spherical tumor, and no dependence of cell volume upon population; i.e., compression effects
were ignored. The volume of a single PDAC cancer cell used is 5 × 10−6 mm3 reported by Lutz and
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colleagues [9]. An initial tumor volume V(0) was calculated assuming an initial tumor population
of a single cell. To calculate the tumor growth rate, a simple formula was used, from Mehrara and
colleagues [26]: g = ln(V2/V1)/(T2 − T1). For the gradual evolution model presented by Yachida and
colleagues [5], the average tumor grows for 18.5 years when it reaches the transition from invasive to
metastatic growth and metastasis has occured. I estimate that this is approximately the time when
most tumors are detected at advanced stage [1]. In a recent dataset, the average tumor volume at
diagnosis is 26.5 cm3 and 39 out of 103 patients had detectable metastatic tumors [13]. Therefore,
I estimate that a reasonable time period for tumor growth until diagnosis averages 18.5 years with
corresponding tumor sizes averaging 26.5 cm3.

Using these estimates results in an exponential growth rate constant of 0.003 day−1. For the
punctuated equilibrium model, Notta and colleagues gave only a qualitative description [6] that I
parameterized into three growth phases as follows: In phase 1, tumor growth occurs very slowly,
consisting of genetic drift until a tumor volume of 1 mm3, at which time angiogenesis is necessary for
tumor growth and infiltration [27]. This is assumed to take 11.7 years, which is the identical amount of
time as the gradual evolution model because the early genetic alterations are similar between both
models, resulting in a calculated growth rate of 0.002 day−1. However, in phase 2, the growth rate
dramatically increases in the punctuated equilibrium model due to catastrophic chromosomal events
that confer a large fitness benefit [6]. For simplicity, I assume that this occurs until the T2 time given by
Yachida when metastasis is thought to begin. In phase 3, metastasis occurs and the growth rate in the
punctuated equilibrium model is assumed to be identical to gradual growth model; i.e., tumor volume
doubling time is on average 209 days.

4.2. Estimation of Biomarker Concentration in Blood

To estimate biomarker concentration in blood, a one-compartment model consisting of biomarker
production by normal cells, biomarker production by cancer cells, and biomarker elimination from
blood was assumed to be well-mixed and homogenous, motivated by work from Swanson and
colleagues [8] and Lutz and colleagues [9], who determined parameter values from studies of the
biomarkers PSA in prostate cancer or CA125 in ovarian cancer. An ordinary differential equation
representing the one-compartment model was used:

dB
dt

= f scVc(t) + f snVn − eB(t) (2)

where B(t) is the concentration of the biomarker in blood, f is a coefficient for fraction of biomarker
reaching blood from interstitium, sc and sn are the secretion rates from cancer and normal cells, Vc and
Vn are cancer and normal cells volumes, e is the elimination rate from blood. The volume of normal cells
is assumed to be constant. Biomarker secretion and elimination rates are also assumed to be constant.
Tumor growth is assumed to be exponential with values; Table 1. Initial tumor volume is assumed
to consist of a single cell with a volume of 5 × 10−9 cm3. Values for the one-compartment model
parameters with their units and sources in the literature; Table 2. To solve the ordinary differential
equation and find the timecourse of biomarker concentration in blood, numerical integration was
implemented using the deSolve package in the R programming language [28].

4.3. Sensitivity of Earliest Detection Times over Variations in Model Parameters

The purpose of sensitivity analysis is to determine how variations in model parameters affect
quantities of interest, such as model output, convergence, stability, and other quantities [29]. Sensitivity
analysis was peformed using one-dimensional parameter scans [30]. For each parameter, baseline
value and ranges are specified in Table 3. Parameter scan ranges were chosen for distributions to
achieve parameter spaces over two orders of magnitude except where refined estimates of variance
exist, which is generally similar to the 100× ranges explored by Lutz and colleagues [9]. Sensitivity
analysis was performed only for the gradual evolution model.
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4.4. Investigation of Three Scenarios on Earliest Detection Times

To investigate how earliest detection times vary across biologically plausible values for model
parameters, three different parameter combinations were investigated corresponding to baseline
values, unfavorable, and favorable biomarker secretion values for early detection. Due to secretion of
biomarkers by normal cells, the lower limit of quantitation of an assay, such as an ELISA or PRM, may
be exceeded in normal patients. Therefore, the lower limit of quantitation is not discriminatory for
cancer vs. normal. In these cases, determination of cancer vs normal is assumed to follow a cutoff level
for PSA (4 ng/mL) because biomarker and normal secretion rates were obtained for PSA [9]. There is
an age-dependence on normal PSA concentration [31]. However, age dependence in normal biomarker
concentration levels was assumed to be unimportant for this investigation and a single cutoff was used
for simplicity. Earliest detection time is defined to be the time at which blood biomarker concentration
reaches 4 ng/mL.

For each scenario, parameter values were tuned over plausible ranges. For example, if the
fraction of secreted biomarker is increased above baseline, tumor cell secretion is increased, and
normal cell secretion decreased, this should favor earlier detection times. In contrast, if the fraction
of biomarker reaching the blood is decreased and cancer cell secretion is decreased, this should be
unfavorable for detection times. Values of parameters used in the simluations are given in Table 4.
To solve the ordinary differential equations and find the timecourses of biomarker concentration in
blood, numerical integration was implemented using the deSolve package in the R programming
language [28].

5. Conclusions

In this work I found that for a PSA-like biomarker, early detection is feasible for biologically
plausible parameter values. These feasible parameter regimes trend towards high tumor-to-normal
biomarker secretion, gradual tumor evolution, and a high fraction of secreted biomarker entering the
blood. These are intuitive conclusions, but also identify how sensitive the feasibilty of early detection is
to tumor-to-normal biomarker secretion rates. This theoretical investigation urges experimental studies
of biomarker secretion rates in model systems of PDAC and normal controls, where it is practical
to routinely collect blood samples as disease progresses. There remains significant gaps between
mathematical modeling studies such as this and wetlab experiments, which is a general problem in
systems biology [32]. To help bridge the gap between dry lab and wet lab investigations, relatively
simple experiments to measure biomarker secretion rates in cell lines by adapting well-established
protocols used in secretome studies are recommended [33]. Preferably, measurements should be made
in physical units of nanograms per milliliter (ng/mL), instead of the poorly defined units per milliliter
(U/mL). Although much more costly, due to the uncertainty in biomarker penetration rates and the
complex microenvironment in PDAC, I conclude that experimentation with PDAC animal models for
biomarker secretion and clearance rates is warranted.

Future work in theoretical studies of biomarkers can incorporate more sophisticated models of
tumor growth and biomarker secretion, including stochastic differential equation, agent-based and
multiscale models, as well as models of specific cancer subtypes. These would provide mechanistic
insights and a greater range of simulated behavior [20,21] to help further prioritize experimental
measurements. Finally, studies such as this and Hori and colleagues [11] point to the value in
measuring change in biomarkers over time; i.e., velocity; however, experience with PSA testing has
shown that there is no added value for early detection in measuring PSA velocity [34]. Theoretical
examination of this discrepancy is warranted. Based on the theoretical investigation presented here,
the notion that the gradual evolution of PDAC will result in the feasibility of early detection with
molecular biomarkers appears to be reasonable, but there is still significant uncertainty that should
motivate experiments to measure biomarker secretion rates and the fraction entering blood. There
are additional aspects of PDAC microenvironment, such as hypoperfusion and macropinocytosis
that appear to make early detection less feasible. Finally, recent reports demonstrating excellent
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sensitivity and specificity in PDAC biomarker panels provide empirical support for the feasibility of
early detection, so there remain significant unanswered questions, but also optimism [35–38].
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