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Abstract: Given the present pandemic caused by the severe acute respiratory syndrome coronavirus 2
or SARS-CoV-2 virus, the authors tried fitting existing models for the daily loss of lives. Based on data
reported by Worldometers on the initial stages (first wave) of the pandemic for countries acquiring
the disease, the authors observed that the logarithmic rendering of their data hinted the response of a
first-order process to a step function input, which may be modeled by a three-parameters function,
as described in this paper. This model was compared against other similar, log(N)-class of models
that are non-compartmental type (such as the susceptible, infected, and removed, or SIR models),
obtaining good fit and statistical comparison results, where N denotes the cumulative number of
daily presumed deaths. This simple first-order response model can also be applied to bacterial and
other biological growth phenomena. Here we describe the model, the numerical methods utilized
for its application to actual pandemic data, and the statistical comparisons with other models which
shows that our simple model is comparatively outstanding, given its simplicity. While researching the
models available, the authors found other functions that can also be applied, with extra parameters,
to be described in follow-on articles.

Keywords: epidemiology; pandemic model; contagious disease; infectious disease model; COVID-19;
mathematical models in epidemiology

1. Introduction

Population growth has been studied in many fields, mostly in biology. Initially studied
by Robert Malthus on population growth, this initial model has been transformed and
adapted to particular cases which are commonly referred to as logistic equations, described
by sigmoidal-type functions that commence with a small growth rate but which increases
until reaching a maximum rate, and after this peak in growth rate, it diminishes and the
curve flattens out asymptotically to a rate near zero, where the population reaches some
maximum value, called carrying capacity, horizontal asymptote, saturation value, etc. The
models that describe these growth phenomena are described in numerous papers and
classic books on the subject like [1,2] and others.

One of the main reasons the authors chose of using a simple growth model (which is
generally applied to bacterial growth) arises from the uncertainty in the reported numbers
of infected, recovered, and removed (recovered and/or dead) people during the onset of
the COVID-19 pandemic. There are many recently published papers about mathematical
modeling and analysis of COVID-19 [3–10]. The model presented here was derived based
on data collected at the onset (or “initial-wave”) of the pandemic, and our study, restricted
to this initial-wave, does not include the subsequent waves (as are being experienced
presently), which would require a highly complex dynamical model to track.

Several of the countries for which we tried fitting our model have reset their numbers,
sometimes on a weekly basis, and in other cases, a long time-interval of data collected
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was corrected, and in some others, the cumulative data reported exhibited an unexplained
decrease. The authors had to perform almost daily corrections on the collected data for the
countries that were selected for testing the model based on the daily new data reported and
then run the modeling, repeatedly, with the updated numbers. Without naming countries, it
appeared that the data collection and reporting of the COVID-19 pandemic did not follow a
rigorous count and/or reporting of its numbers on the COVID-19 related presumed deaths.
The contagion parameters were deemed much more unreliable or, in many cases, unknown
and were assumed to be just estimates, so these contagion numbers and recovered numbers
were not used in modeling the pandemic via compartmental, susceptible, infected, and
recovered (SIR)-type models. The number of infections (contagions) is more uncertain,
unknown, or less accurate than number of presumed deaths, due to the nature of the
COVID-19 incubation period including the manifestation of the viral effects or symptoms,
the time of reporting to doctors or to reach to the hospitals, and the time involved in
testing for the virus and the corresponding reporting, For these reasons, the authors just
concentrated on the cumulative number of presumed deceased people obtained from
Worldometers [11], which seemed to be more reliable, at least at the start of the pandemic,
since numerous corrections continued to take effect during the data collection time-interval
the authors utilized for this modeling work. It must be noted that the data obtained from
source [2] contains just presumptive data, as few entities that provide data tested the virus
in deceased people. As to the accuracy of the data, we found it difficult to decide which
source of data to choose from, as the numbers reported by the various sources, with few
exceptions, were in general found not to be in exact agreement, so we decided to just rely
on one source, that given in [2].

Our initial modeling of the ten countries selected is provided in the Supplementary
Materials, section, due to the length and the number of graphs and data provided. The
countries selected for testing our model are, together with the abbreviation used, China
(CN), South Korea (SK), Italy (IT), Iran (IR), USA (US), Spain (SP), Germany (DE), United
Kingdom (UK), and the Netherlands (NE).

For the comparison with other log(N) models, such as those described in [12–17], the
authors used the data for the Netherlands, which was one of the countries that had no
corrections to its data during the time-interval data was collected.

It is assumed that the change in convexity of the sigmoidal curve due to a reduction
in the growth rate, after a peak in the growth rate occurs, is due to some kind of action–
reaction or cause and effect type of process, as described in [17]. For example, the reduction
of limited resources due to their consumption by an increasing population (logistic model),
or by the reaction of the population to a pandemic by increasing the measures taken to
reduce and/or eliminate the number of infections from a pandemic such as the COVID-19
presently affecting most countries.

While the COVID-19 pandemic was initially manifested in the province of Wuhan,
China, it has spread to other world populations in a matter of a few weeks, to some
countries earlier, to some later, but they all exhibited a similar growth-rate behavior. Our
modeling study presented here is based strictly on the data reported on the daily number
of people deceased in the initial stages (first wave) of the pandemic, since it represented a
more accurate parameter than the number of infections.

The models that are presently used for the COVID-19 pandemic estimation and
predictions are mostly based on the SIR-class [18], compartmental in nature, and others
dynamical models such as the one applied by the Institute of Health and Metrics Evaluation
(IHME), “applying mixed effects of non-linear regression framework that estimates the
trajectory of the cumulative and daily death rate as a function of implementation of
social distancing measures”, as described in [19], based on data collected from local and
national government websites and the World Health Organization (WHO). The IHME [19]
is a hybrid modeling approach that generate forecasts based on real-time data using a
dynamical (frequent updates) approach.
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The relaxation of precautionary measures in many countries has produced a deviation
of the expected or “well-behaved” rate of presumed deaths curve after its peak has been
reached. The tail of the decaying rate curve, instead of following a monotonic decay, has
changed (in many countries) its curvature again. For example, in the USA, the peak of death
rates occurred around the third week of April 2020, and started to decay, until a change in
curvature (using the IHME model prediction data) occurred around 28 June 2020. Because
of these changes being experienced in many countries, the authors decided to utilize only
data from the pandemic onset (data collected since 21 January 2020) up to 31 May 2020.
Due to the variations in the expected (or well-behaved) response, the modeling of such
variations would require a dynamical update model such as the one utilized by the IHME,
with an inherent increase in model complexity. Our model in contrast, however, fitted the
onset of the pandemic quite accurately, as compared to other similar log(N) models and
the IHME model in the early onset of the pandemic.

The outline of the paper is as follows. Our mathematical model based on a first-order
process to a step function input is put forward in Section 2. In Section 3 our model is
compared to data reported by Worldometers [11] and compared against other similar,
log(N)-class of models. In Section 4, we point out the importance of different model
approaches. Concluding remarks form Section 5.

2. Materials and Methods
2.1. Mathematical Model

The starting point of our model is the observation that the logarithm of the actual
recorded data by [11] on the number of deaths follows a curve that can be associated with
a first order process, that obtained from a first order differential equation, as the response
of a first order system to a Heaviside (or step) function type of excitation.

Figure 1 describes, pictorially, the steps taken to construct the model. Figure 1a depicts
the shape of the curve (sigmoid) of the actual reported data, ya(t), which is the cumulative
number of deceased people as a function of elapsed time, in days, since the outbreak of
the pandemic for a specific country. Figure 1b depicts the natural logarithm of the actual
recorded data obtained by a process P1, such as y1(t) = ln(ya(t)), and Figure 1c depicts
the linearization of the curve in Figure 1b, i.e., y2(t) = â0 + â1t, obtained by a linearization
process P2.
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Figure 1. (a) Actual sigmoidal curve. (b) Logarithm of the sigmoidal curve. (c) Linearization of the logarithm of the
sigmoidal curve in (a).

The curves shown in Figure 1 are mathematical idealizations. These curves are
actually described by the discrete daily values, which exhibit daily variations around these
mathematically idealized curves or functions. To obtain the idealized curves, the data in
the linearized curve in Figure 1c is approximated, using a weighted least squares fitting
process, using a line equation, and then, the inverse processes P−1

2 and P−1
1 are applied

successively to obtain the idealized first-order model (curve in Figure 1b), and the “actual”
function (Figure 1a) that fits the actual recorded data.
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Some key important information about the pandemic can be obtained from applying
the processes shown in Figure 1, and by their corresponding inverse fitting processes:

(1) An approximating function based on the proposed for the actual data that enables
to predict near future outcomes and also enables to backtrack to estimate the initial
values that might have been in those cases where the early or initial data on the
pandemic outbreak is not available or was not reported or recorded.

(2) A time-constant ( τ) of the first order system that determines the time for which the
number of deceased people will reach a particular percentage of the peak value. Recall
that the response of a first-order system would reach a plateau value asymptotically.
For example, the population will reach 99.33% of the plateau (or saturation) value
y∞ = y1(∞) for a period of time equal to five time constants or t = 5 τ; 99.75% of y∞
for t = 6 τ, etc.

(3) The asymptote’s (maximum) value that corresponds to the maximum number of
people that would be deceased in the long run or for a long period of time.

(4) The inflection point of the estimated curve ŷa(t) at which the sigmoid changes con-
cavity in Figure 1a. This point corresponds also to the time for which the maximum
rate of deaths per day (i.e., d ŷa(t)/d t) occur.

We next describe the two processes P1 and P2 that convert the actual reported data of
Figure 1a into that in Figure 1b (our model), and that in Figure 1b into the linear form in
Figure 1c, respectively.

Process P1: This is a straightforward process that consists simply in taking the natural
logarithm of the actual reported data ya(t) and creating a new array with the natural
logarithm of the actual data values versus time. That is, one generates the array of values

y1(t) = ln(ya(t)) (1)

Since this data resembles the response of a first order-system to a Heaviside (or step)
input function u(t) or stepwise excitation given by y∞u(t), where y∞ is the horizontal
asymptote or saturation value, the curve in Figure 1c is given by

y1(t) = y∞
(
1− e−αt)u(t) , (2)

where the unit-step or Heaviside function u(t) is defined piecewise as u(t) =
{

1, t ≥ 0
0, t < 0

.

In (2), t represents time in units of [day], α is a growth rate in units of [1/day], and
its reciprocal τ = α−1 (days), the time-constant corresponding to the first order-process
or system with initial condition y1(0) = 0. This implies that y1(0) = ln(ya(0)) = 0 which
requires that ya(0) = 1. This indicates that our coordinates require to start at the point
where the first death occurs, that is, our first point is (t, ya) = (0, 1). Therefore, the time t
elapsed is measured from the day the first death occurred.

Process P2: This process linearizes the first order response curve, by transforming
Equation (2) by means of a simple algebraic manipulation and a change of variables as
follows: For t ≥ 0, one has

ln
{

1− y1(t)
y∞

}
= −αt ⇒ ln

{
y∞

y∞ − y1(t)

}
= αt (3)

Letting

y2(t) = ln
{

y∞

y∞ − y1(t)

}
= ln

{
y∞

y∞ − ln[ya(t)]

}
(4)

one can obtain the linear equation ŷ2(t) = αt, after determining α via least squares process,
which as shown in Figure 1c.

A more general model (3-parameters: y∞, a, td, where y∞ is the asymptote value, a is
the shape parameter, and td is a time delay) for a first order process response would include
an initial value yi = y1(td), where td is a time-delay parameter of the process relative to
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some zero time reference and where the first data point exists, at (t, y1) = (td, yi). The
shifted version of the first order model shown in Figure 2b can be written in a more general
form as

y1(t ≥ td) = y∞ − (y∞ − yi)e−α(t−td) u(t− td) (5)
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Figure 2. A more general model: (a) Actual recorded data ya(t) and its approximating function ŷa(t). (b) Logarithm
of the sigmoidal curve and its approximating function ŷ1(t). (c) Linearization of the y1(t) curve and its approximating
function ŷ2(t).

This function is essentially the response of a first-order system to a Heaviside
[or step u(t)] input function. Derivation of this response is explained in the Supplementary
Materials section, under Mathematics of first-order differential equation. Since this system
is linear-time-invariant (LTI), any input delayed in time would correspond to the same
delayed response. That is, one gets the response of a non-anticipative, causal system. More
detailed description of LTI systems is given in reference [20].

The linearization (process P2) for this more general model is obtained algebraically as
follows: From (5), for t ≥ td, one has

ln
{

y1(t∗)− y∞

y∞ − yi

}
= −αt∗ ⇒ ln

{
y∞ − yi

y∞ − y1(t∗)

}
= αt∗ (6)

In (6), the time t∗ = t− td is a time shifted time. Letting

y2(t∗) = ln
{

y∞ − yi
y∞ − y1(t∗)

}
= ln

{
y∞ − yi

y∞ − ln[ya(t∗)]

}
(7)

one can obtain a linear least-squares approximation equation ŷ2(t∗) = αt∗ = α(t− td) =
â1 t + â0 shown in Figure 2c, where â1 = α, â0 = −α td.

The right pointing arrows in Figure 2 indicate the two processes that transform the
actual data into the curve corresponding to our model and the linearization of the data,
while the left pointing arrows indicate the inverse processes, after the linearized data has
been fitted via a weighted least Squares process.

After the coefficient estimate â0 and â1 of the line equation ŷ2(t) have been determined
via a weighted least squares process, then the inverse processes P−1

2 and P−1
1 are applied

to obtain the approximating or fitting functions ŷ1(t) and ŷa(t), respectively. A description
of the inverse processes follows.

From (7), after the line coefficients have been determined via weighted least squares,
one can write

ŷ2(t− td) = ln
{

y∞ − ŷi
y∞ − ŷ1(t− td)

}
= â0 + â1 t (8)

Exponentiating both sides of the second equality in (8) and solving for ŷ1(t) yields

ŷ1(t) = y∞ − (y∞ − ŷi)e−α(t−td) u(t− td) , for all t ≥ td (9)
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In (9) the values â1 = α, â0 = −α td have been replaced back, and ŷi is the initial value
ŷ1(t = td). Once the function ŷ1(t) has been determined, then ŷa(t) is obtained, simply, as

ŷa(t) = exp(ŷ1(t)) (10)

We note that in this study we use weighted least squares, where the weights get larger
towards the later data and smaller towards the initial data values. The hypothesis here
is that the residuals of the natural logarithm of the data and the fitting function become
smaller as the rate of increase becomes smaller, towards the horizontal asymptote, so we
weight heavier towards the region of smaller residuals. We tried several simple weighing
functions that minimize the sum of squares of the residuals between the actual and the
fitted data, such a linear, quadratic, and higher degree weighting functions, where the sum
of the weights in each case is normalized to one. That is,

n

∑
i=1

wi = 1, for all wi > 0, i = {1, . . . , n} (11)

Linear weighting function: For meeting requirement given by Equation (11), the linear
weights, as a function of the data point, are given by

wi =
2

n(n + 1)
i (12)

Quadratic weighting function: For meeting requirement given by Equation (11), the
quadratic weights, as a function of the data point, are given by

wi =
6

n(n + 1)(2n + 1)
i2 (13)

Cubic weighting function: For meeting requirement given by Equation (11), the cubic
weights, as a function of the data point, are given by

wi =
4

n2(n + 1)2 i3 (14)

Since all weights are positive, the weighted linear least squares parameter estimates
â0 and â1 are obtained by solving the normal equations, that is,

a =
(

ATWA
)−1

ATW y2 (15)

In (15), W is the diagonal matrix:

W = diag
[
wj,k

]
, where wj,k =

{
wi, j = k
0, j 6= k

(16)

In (15), a =

[
â0
â1

]
is the vector of coefficients, A =


1
1
...
1

td + 1
td + 2

...
td + n

 is the linear

system matrix, and y2 =


y2(td + 1)
y2(td + 2)

...
y2(td + n)

 is the vector of transformed (linearized) values

y2(t) obtained via (4).
We note that the value for y∞ is obtained by a least squares approach as well, by

minimizing the square of the residuals ri(t) = yi(t) − ŷi(t), that is, by finding a value
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y∞ that minimizes RSS = rTr where r is a column vector of the residuals and T denotes
transposition. Additional details on the fitting process such as error estimates for the
parameters and the corresponding sensitivities are provided in Appendix A.

2.2. Death Rates

The death rate in number of deaths per day is calculated by taking the derivative of
the estimated actual accumulated death data computed by (10). Taking the time derivative
of (10) yields

d ŷa(t)
d t

= exp(ŷ1(t))
d ŷ1(t)

d t
(17)

In (17), the time derivative of ŷ1(t) is obtained from (9) as

d ŷ1(t)
d t

= α(y∞ − ŷi)e−α(t−td), t ≥ td (18)

The graph of (17) shows an initial gradual increase in the values of the rate or time
derivative in units of [deaths/day], then it reaches a peak or maximum value corresponding
to the inflection point of the sigmoid and after this point commences to decrease towards
the value of zero, asymptotically. The graphs of the death rates are also given for each of
the selected countries in the Supplementary Materials section and for Germany in Figure 3
in the Results section. These rate graphs are useful to find the time when the peak rate
occurs, date from which the effects of pandemic begin to diminish.
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Figure 3. Actual and modeled number of presumed deaths using only data from 10 March 2020
for Germany.

3. Results

The model was applied to the actual data that was collected on a daily basis from
the web site given in reference [11] which provides historical and daily updated values
of the COVID-19 infections and presumed deaths for numerous countries. Initially, we
collected the data for a limited set of countries, those that were reported initially, starting
with China. The number of countries that were included in our data set increased in time
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as the pandemic spread over the world. In Section 3.1, our proposed First Order model
is fitted to each of the countries on the initial data set. In Section 3.2, already published
models are fitted to this data set, and the results are compared to those in our proposed
first order model.

3.1. Simulation Results

The data we collected for this article span from 21 January 2020 (earliest data for
China) to 31 May 2020, which we considered sufficient, in number of data points, to test
our model within varying intervals of time for verifying the model estimates and the
characterization of the model parameters with the values of the reported data [11].

Daily data records for ten of the countries utilized in the simulations are given in
Table S1 in the Supplementary Materials section. The graphs corresponding to the actual
data and the estimated model data [ya(t) and ŷa(t); y1(t) and ŷ1(t); y2(t) and ŷ2(t)]; the
horizontal asymptote value y∞; and the Process-P1 time constant τ = 1/α [days] for the
curve ŷ1(t) for each country listed in Table S1 are also illustrated in the Supplementary
Materials section. A fraction (start and end) of Table S1 is repeated here just for reference
in Table 1:

Table 1. Accumulated number of presumed deaths due to COVID-19. Abbreviation Key: China (CN),
South Korea (SK), Italy (IT), Iran (IR), USA (US), Spain (SP), Germany (DE), United Kingdom (UK),
Netherlands (NE).

Date CN SK IT IR US SP FR DE UK NE

01/21 9 0 0 0 0 0 0 0 0 0
01/22 17 0 0 0 0 0 0 0 0 0
01/23 25 0 0 0 0 0 0 0 0 0

. . .
05/29 4634 269 33,229 7677 104,542 27,121 28,714 8594 38,593 5931
05/30 4634 269 33,340 7734 105,557 27,125 28,771 8600 38,819 5951
05/31 4634 270 33,415 7797 106,195 27,127 28,802 8605 38,934 5956
Date CN SK IT IR US SP FR DE UK NE

The graphs that were generated for several of the countries listed in Table S1 of the
Supplementary Materials section include the following graphs:

(1) Actual data ya(t) and the actual data model estimates curve ŷa(t).
(2) The natural logarithm of the actual data y1(t) and the model estimate curve ŷ1(t).
(3) The linearization of the actual data logarithm y2(t) and the linear fit ŷ2(t).
(4) The derivative of the actual data model d ŷa(t)/d t.
(5) Additional graphs of interest, like fit residuals n some of the cases analyzed.

The numerical computations were performed using MATLAB (from MathWorks)
scripts written by the authors, which included some high-level (canned-in) commands. A
Summary of modeling results/parameters, for the given data recorded in Table 1 for the
ten countries selected are provided in Table 2. Very good fits of the proposed First Order
model with a RSS value below one were obtained for CN, SK, and the US; good fits with an
RSS value between one and two were obtained for IT, IR, SP, DE, UK, and NE. The worst
fit was obtained with an RSS value larger than 2 for FR.

For completeness, we provide below a sample of the modeling process for the data
corresponding to Germany (DE), corresponding to Figures 4–6. For the remaining countries,
similar figures are reported in the Supplementary Materials section.
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Table 2. Comparison of key model parameters for the countries listed. N is number of people.
Abbreviation Key: China (CN), South Korea (SK), Italy (IT), Iran (IR), USA (US), Spain (SP), Germany
(DE), United Kingdom (UK), Netherlands (NE).

Parameter
Country

A = y∞
[ln(N)]

A = ya(t→ ∞)
[N]

τ Time-Constant
[Days]

td Time-Delay
[Days]

RSS

CN 8.4480 4664 14.15 0.39 0.4399
SK 5.6173 275 19.42 0.06 0.5745
IT 10.4574 34,801 18.00 1.26 1.4644
IR 9.0025 8124 20.53 1.39 1.0933
US 11.6622 116,099 17.13 1.10 0.3230
SP 10.2858 29,315 14.04 1.38 1.1376
FR 10.3182 30,279 17.89 1.93 2.2950
DE 9.1235 9168 16.70 1.57 1.2356
UK 10.6360 41,606 17.16 2.28 1.2653
NE 8.720 6124 14.85 1.37 1.2483Challenges 2021, 12, x FOR PEER REVIEW 10 of 20 
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Figure 4. Natural logarithm of the actual (and extrapolated) data in Figure 3. We note in this figure the
plateau or saturation value is y∞ = 9.1235, and the time-constant is τ = 16.7038 days. These numbers
indicate that the number of deaths might reach a value of ya(t→ ∞) = exp (9.1235) ' 9168 people.
The sum of squares of the residuals (i.e., ri(t) = ŷ1(t)− y1(t) or estimated minus actual values) for
this data is RSS = rTr = 1.2356.

3.2. Comparison to Other Models

Other log(N) models besides the model presented here, which we call First-Order
model given by

ŷa(t) = exp(ŷ1(t)), (19)

where
ŷ1(t ≥ td) = y∞ − (y∞ − ŷi)e−α(t−td) u(t− td) (20)

are presented and compared next. The model comparison graphs and the modified forms
of these models are also described in Appendix B. These models have been widely applied
(and compared) for a diversity of population growth phenomena. The following models
are reported in [12,17], and [21] and include:
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Gompertz model which is a three-parameters curve

y = a · exp [− exp (b− c x)], (21)

Richards model which is a four-parameters curve

y = a{1 + ν · exp [k(τ − x)] }(−1/ν), (22)

Logistic model, which is another three-parameter curve

y =
a

1 + exp(b− c x)
, (23)

Stannard model, which is a four-parameter curve

y = a
{

1 + exp
[
− l + k x

p

] }(−p)
, (24)

and Schnute model another four-parameters curve

y =

{
yb

1 +
(

yb
2 − yb

1

)
· 1− exp [−a (t− τ1)]

1− exp [−a (τ2 − τ1)]

}(1/b)
. (25)

Parameters like a, b, c, ν, τ, k, l, p, y1, τ1, and τ2 in these models denote shape, shift, and/or
scale parameters (see first column in Table 3).
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Figure 6. Data-Rate corresponding to the derivative of the estimated data in Figure 3. The peak value
occurred on 13 April 2020, according to the model.

Table 3. Model Comparisons for Netherlands Data with y2 = 6124. The Statistics values here
correspond to the residuals obtained between the natural logarithms of the actual data and the
natural logarithms of each model’s fitted data.

Model/Parameters Residuals Mean Value Residuals RSS

First-Order
α = 0.0674; td = 1.37 0.0414 1.2483

Gompertz
b = 2.0755; c = −0.0674 0.0541 1.3919

Richards
ν = 0.01; τ = 31; k = 0.07 0.0057 0.8451

Logistic
b = 3.65; c = 0.099 86.6 1.53 × 102

Stannard
k = 0.74; l = 1.0; p = 10.50 0.1102 1.4161

Schnute
a = 0.0655; b = 0.055;

y1 = 7.274; τ1 = 3.79; τ2 = 138
0.0179 1.8290

These five models, (21) to (25) and the proposed First-Order model, (19) and (20) were
next compared to each other using the logarithm of the original data, y1(t) = ln(ya(t)), for
the Netherlands. Figure 7 depicts the corresponding First-Order model fit (solid red line)
to the data (blue dots).
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.
A comparison between the proposed First-Order model (19) and (20), and the Gom-

pertz model (21), using the following linearization for the Gompertz model

ln
{

ln
(y

a

)}
= c · x− b (26)

shows a close agreement as depicted in Figure 8. Comparisons between the proposed
First-Order model and the other models, Richards, Logistic, Stannard, and Schnute, are
shown in Appendix B. Table 3 summarizes the results for these comparisons by reporting
the residuals obtained between the natural logarithms of the actual data and the natural
logarithms of each model’s fitted data. These parameters were obtained via weighted
linear least squares, when linearization of the models was possible, and via nonlinear least-
squares methods, when linearization was not possible, which included modified Gauss–
Newton, and Nelder–Mead (downhill simplex method) techniques and other appropriate
methods for the minimization of the objective function, the sum of squares of the residuals
or errors between the actual and fitted (or estimated) data. The lower the reported residuals
mean value and/or the residuals RSS value, the better the fit.

We find from the comparisons with other log(N)-type models that our model results
are in very close agreement and that resulting curves are almost indistinguishable in the
graphical rendering of these pair-wise comparisons between our model and the other
models utilized, including those with larger number of parameters, as depicted in the
graphs in Figure 8 and in those in Appendix B.

Other models such as in reference [10] were also studied but not compared, as we
concentrated in the log(N) based ones.
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4. Discussion

The model presented here is meant to be a simple one that can be applied to infectious
diseases and other biological growth phenomena that follow a sigmoidal behavior. The
list of models that have been developed and/or put to use in practice triggered by the
COVID19 pandemic is widely varied in their underlying mathematical approach, using
statistical, biological-based, dynamical systems, time-series analysis, and others. The
Center for Disease Control and Prevention (CDC) [22] receives forecasts from several
contributors that include Universities, Research Groups, Defense, and Private Corporations
(Google, Walmart, etc.) that provide both National and State predictions for a forecast
interval of 4 weeks, for both new and total presumed deaths, and provides an ensemble
forecast at the National and State level, based on those provided by 35 modeling groups.
In [22] there is a link with information on, and links to, the various models [23]. Another
link [24] provides predictions or forecasts comparisons between the model for the US
and States, which are very comparable in their 4 weeks forecasts. One model the authors
considered of interest was the one developed by the Discrete Dynamical Systems (DDS)
group [25] based on statistics and on discrete linear dynamical systems (LDS) theory. Even
though the complexity of the models described are quite varied, it is interesting to note
key pros and cons factors on each, as described by the New England Journal of Medicine
on their article [26] on epidemiological models: “Wrong but Useful—What COVID-19
Epidemiologic Models can and cannot tell us”.

5. Conclusions

In this paper, we derived and compared a simple model for estimating the evolution
of a disease and other biological growth processes that follow, as it occurs in many cases, a
natural sigmoidal evolutionary response. Models can obviously be improved or expanded
to accommodate any particular systemic bias or model variations in the data that is col-
lected, but complexity comes at the cost of less robustness in the predictions, or higher
parameter sensitivities (partial derivatives) unless a dynamical model is employed that
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continually updates the model parameters as new data is considered that follow latest data
trends, or that incorporates a fading memory of earlier collected data. These dynamical
models can be designed based on time-series analysis that includes forecasting and control
theory and stochastic processes models. While the set of possibilities in creating models for
estimation, prediction, or forecasting is quite large, it is always convenient to have a simple
model or a set of proven simple models as a basis for building more complex ones.

Supplementary Materials: The following are available online at https://www.mdpi.com/2078-1
547/12/1/3/s1. Figure S1: reported data of accumulated presumed deaths due to COVID-19 for
China (CN) with discontinuities; Figures S31–S34 corresponding Figures 3–6 of the main manuscript;
and Figure S40 for the Netherlands (NE) corresponding to Figure 7 of the main manuscript. The
remaining figures in the Supplementary Materials section for the ten selected countries are similar,
except for Figure S20, the graph of the residuals of the fit for the USA (US). Table S1: this entire data
set is utilized, which depicts the accumulated number of presumed deaths due to COVID-19 for all
ten countries over a given time span. Additionally, the Supplementary Materials provides a brief
review of the Mathematics of first-order differential equation.
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Appendix A

Details on the Least-Square Model Parameter Estimates

The sample figure (Figure 5 for (DE)) provided in Section 3 (3. Results) depicts the
linearized model data and the weighted least squares linear fit applied to this data. This
fitting process can also be represented as a chi-square fitting process, basically a weighted
least squares fitting process. The following is described in [27], which we follow next,
where the objective is to minimize the function

χ2 =
N

∑
i=1

{
yi − y(xi; a1, . . . , am)

σi

}2
(A1)

In (A1), the set of (model) parameters,
{

aj
}m

j=1 are adjusted to minimize the value

of χ2, where m is the number of parameters the particular model utilizes; the sub-index i
represents the data point number; yi denotes the ith actual measurements or the y-value of
the given ith data point(xi, yi); and ŷi = y(xi; a1, . . . , am) is the ith model fit value (in our
case the ith linear fit estimate, (denoted with the caret symbol “ˆ”); and σi is the standard
deviation associated with ith measurement or recorded data, where normal-distribution
is assumed. According to [27], the sum in (A1) of N-squares of normally distributed
quantities, each normalized to unit variance are not statistically independent, and the
probability distribution (pdf) for different values of χ2 at its minimum can be derived
analytically. This is the chi-square distribution for N-m degrees of freedom. From here, a
probabilistic approach is utilized to infer a goodness of fit. Data can be generated to test the
model adequacy (e.g., via Monte-Carlo simulations). Since the uncertainties are associated
when the measurements are not initially known, then we assume a priori some standard
deviation common to all of the measurement points, say, σi = σ, ∀i, which are associated
to our weighting functions estimates described previously, and assume that the model fits

https://www.mdpi.com/2078-1547/12/1/3/s1
https://www.mdpi.com/2078-1547/12/1/3/s1
https://www.worldometers.info/coronavirus/
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well. Considerations related to the χ2 fitting are utilized to derive the a posteriori value for
σ. Therefore, initially, we assume a value σ for our weights, then fit the model parameters
by minimizing χ2, and finally recomputing

σ2 =
1
N

N

∑
i=1

[yi − ŷ(xi)]

2

(A2)

When the measurement error is not known (in our case the error for reported num-
bers), this method provides some error-bar to be assigned to the points. Taking the
derivative of (A1) with respect to the parameters ak, we obtain equations that must hold
for the minimum:

N

∑
i=1

{
yi − ŷ(xi)

σ2
i

}{
∂ ŷ(xi; . . . , ak, . . .)

∂ ak

}
= 0, k = {1, . . . , m} (A3)

For the case of fitting the data to a straight line (as is our case here), the approach just
described follows:

Consider the problem of fitting a set of N data points (xi, yi) to the straight-line model

ŷ(x) = ŷ(x; a, b) = a + b x. (A4)

We assume that the uncertainty σi associated with each measurement yi is known, and
that xi is known exactly. To measure how well the model agrees with the data, we apply
the chi-square merit Function (A1), which for this case is

χ2 =
N

∑
i=1

{
yi − a− b xi

σi

}2
(A5)

For determining the parameters that minimize this function, we apply the usual rules
from calculus:

∂ χ2

∂ a
= −2

N

∑
i=1

yi − a− b x
σ2

i
= 0; and

∂ χ2

∂ b
= −2

N

∑
i=1

xi(yi − a− b x)
σ2

i
= 0 (A6)

Letting

S =
N

∑
i=1

1
σ2

i
; Sx =

N

∑
i=1

xi

σ2
i

; Sy =
N

∑
i=1

yi

σ2
i

; Sxx =
N

∑
i=1

x2
i

σ2
i

; and Sxy =
N

∑
i=1

xiyi

σ2
i

, (A7)

we can write the system (A6) as

aS + bSx = Sy, and aSx + bSxx = Sxy. (A8)

Solving this (simple) system of equations (e.g., via Cramer’s rule) yields

∆ = S · Sxx − (Sx)
2; a =

1
∆
{

Sxx · Sy − Sx · Sxy
}

; b =
1
∆
{

S · Sxy − Sx · Sy
}

(A9)

Next, we need to determine the uncertainties in the parameters a and b. Considering
propagation of errors, the variance σ2

f in the value of any function f will be

σ2
f =

N

∑
i=1

σ2
i

(
∂ f
∂ yi

)2
(A10)
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For the straight line, the derivatives of a and b with respect to yi can be directly
evaluated from their solutions (A9):

∂ a
∂ yi

=
Sxx − SxSy

σ2
i ∆

; and
∂ b
∂ yi

=
S · xi − Sx

σ2
i ∆

(A11)

Summing over the points we get

σ2
a =

Sxx

∆
; and σ2

b =
S
∆

(A12)

Appendix B

This Appendix depicts the comparisons of our proposed First Order Model to the
Richards, Logistic, Stannard, and Schnute models, illustrated in Figures A1–A4, respec-
tively, and the modified forms of the equations are described in Equations (A13)–(A16).
This Appendix B complements the information provided in the Section 3.2, Comparison to
other Models.
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There are also modified forms of the Logistic, Gompertz, Richards, and Schnute
models from reference [12,17,21], whose simpler forms were discussed in Section 3.2.
Comparisons to other models are listed below for completeness. The parameter µm is the
slope of the tangent line at the inflection point of the sigmoid (at t = ti), i.e., the maximum
derivative value of the sigmoid.
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Logistic—Modified Form:

y =
A

1 + exp
[

4µm
A (λ− t) + 2

] (A13)

Gompertz—Modified Form:

y = A · exp
{
− exp

[µm · e
A

(λ− t) + 1
] }

; e = exp(1) (A14)

Richards—Modified Form:

y = A
{

1 + ν · exp(1 + ν) · exp
[µm

A
(1 + ν)(1+1/ν) · (λ− t)

] }(−1/ν)
(A15)

Schnute—Modified Form:

y =

(
µm

1− b
a

)[
1− b · exp (a · λ + 1− b− a · t)

1− b

](1/b)
(A16)
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