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Abstract: The choice of selecting fruit for canned whole tomatoes is driven by several quality
attributes including sweetness, acidity, and softness of tomatoes. Moreover, tomatoes can be con-
taminated with a variety of molds during cultivation, harvest, and transportation. Conventional
evaluation operations for tomato softness and microbial spoilage are usually time-consuming, de-
structive, and high-cost. One strategy for rapid tomato sorting is to utilize hyper/multispectral
imaging. This paper proposes to improve on traditional broad-band infrared imaging of existing
color and dirt sorters by increasing the spectral resolution of the information collected. The findings
of this study will characterize the potential of the technology in terms of predicting tomato softness
and identification of tomato microbial spoilage for further development by the industry.
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1. Introduction

Tomatoes are the second most grown and consumed vegetable in the United States.
Tomatoes typically ripen gradually from the inside out, involving dramatic changes in
color, flavor, texture, and composition (such as chlorophyll replaced by carotenoids, mainly
lycopene) [1]. The majority of tomatoes consumed are thermally treated and processed
into various products, such as canned whole tomatoes and tomato paste. The choice of
selecting fruit for canned whole tomatoes is driven by several quality parameters, such
as the acidity and softness of the tomatoes [2]. Soft tomatoes, which are not suitable for
canned foods, are usually detected by handling to feel the texture in the food industry.
When soft tomatoes are detected, they can be delivered to the tomato paste production line
instead of the canned tomato line. Tomato softening is a consequence of loss of turgor, or
degradation of polymer constituents of the cell wall [3]. The breakdown of cell walls and
the structural components of tomatoes has a great impact on the texture of a tomato.

Currently, the online detection of the softness and microbial spoilage of the whole
tomato is still full of grand challenges. Buyers, processors, and scientists who focus
on tomato breeding and quality control strategies need a rapid technology to improve
the efficiency of tomato quality evaluation. For tomato processors, having a method
to automatically determine the quality of tomatoes is essential to establish a purchase
price, and it must be performed very quickly. However, the mechanical texture analyzer
with a destructive nature (puncture testing) and low efficiency (flat plate compression)
is not the ideal solution for online whole fruit softness detection [1,4–6]. Tomato mold
contamination can occur at different times from the farm to the table [7]. These infected
fruits are discarded as waste or organic fertilizer for the soil. In a previous study, fungus
in infected tomato fruit was accurately detected by using enzyme-linked immunosorbent
assay (ELISA) [8]. However, this kind of technique requires laborious steps, such as
extraction and derivatization, and is destructive and time-consuming [9]. It takes a long
time to obtain the results, and the analysis of the sample is of high-cost. In the future,
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the sustainable development of advanced agriculture will definitely require the novel
development and in-depth application of smart agricultural technology [10–12].

Rapid methods for the assessment of the safety and quality of tomato products have
made advances during the last 15 years [13]. Infrared spectroscopy was used as an efficient
method to measure sugars, acids, and soluble solids content (SSC) in processing toma-
toes [14,15]. The cost of point spectral instruments is generally much lower than that of
spectral imaging systems. Nevertheless, the drawback of portable spectroscopic methods is
that spectral data are collected from a single point or from a small portion of tested samples
which may not guarantee data accuracy and representativeness [16–18]. The point spec-
troscopy would provide a mean spectrum of several single points (average measurement)
of a sample, irrespective of the area of the sample scanned. As the spectra collected are av-
eraged to provide a single spectrum, the heterogeneous information on spatial distribution
(such as spoilage defect) within the sample is thus lost for point spectroscopy.

Hyper/multispectral imaging can integrate the characteristics of spectroscopy and
imaging into one system, and provide heterogeneous information captured from one end
of a sample to the other, which has been acknowledged as a more advanced means to meet
the demand in food industries [19–23]. In a recent study, hyperspectral imaging (HSI) was
successfully used to detect and quantify fish microbial spoilage, yielding determination co-
efficients in prediction (R2

P) of more than 0.90 [24]. The cracking defects on cherry tomatoes
were identified by HSI coupled with ultraviolet (UV) (320–400 nm) light as an excitation
source for producing fluorescence emissions in 400 to 700 nm [25]. It was indicated that the
fluorescence emission could be a significant attribute for the discrimination of defective
sites from the sound surface of the cherry tomatoes. Due to the destruction of tissues by
fungal contamination (alternaria or stachybotrys), the chemical compositions including
protein and lipid content, and physical parameters including density, volume and weight
of tomatoes will change, and this change can be detected in spectral features [26]. Autoflu-
orescence analysis either using steady-state or time-resolved fluorescence emission has
been employed as a tool for the evaluation of organoleptic/nutraceutical content of many
foods [27,28]. Hyperspectral fluorescence based on a blue laser (408 nm) was associated
with fruit firmness [29]. Multispectral imaging (MSI) has also been effectively applied to
detect other quality traits of plant foods such as color, SSC, pH, and antioxidants [30,31].
The results obtained using such methods are comparable to those using reference methods.
However, there are rare studies on rapid assessments of whole tomato softness due to ripen-
ing and senescence, and microbial spoilage (i.e., fungal infection) and the discoloration
that it causes based on hyper/multispectral imaging. The study was designed to improve
on traditional broad-band infrared imaging of existing color and dirt sorters by increasing
the spectral resolution of the information collected.

2. Objective of the Project

The specific objectives of this project are to:

(a) Establish both HSI and MSI systems for whole-tomato softness and microbial spoilage
assessments

(b) Acquire the reflectance and fluorescence spectral images of both unpeeled and peeled
fruit from three tomato cultivars

(c) Develop statistical models to predict the softness of measured tomatoes and to as-
certain the effects of tomato peel and variety on the optical vision prediction of fruit
softness

(d) Select feature wavelengths to determine optimal threshold values for microbial
spoilage detection

(e) Visualize the distribution of microbial spoilage on unpeeled and peeled whole tomatoes.

The findings of this preliminary study will characterize the potential of the technology
in terms of predicting tomato softness and identification of tomato microbial spoilage for
further development by the industry.
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3. Plans and Procedures

Two spectral vision systems in terms of HSI and MSI systems will be developed. The
lab-based line-scan HSI system equipped with two light sources can operate in either
reflectance or fluorescence mode. The core components of the HSI system are a computer,
a spectrograph with a wavelength range of 384–810 nm (ImSpector V8_4_102, Spectral
Imaging Ltd., Oulu, Finland), a charge-coupled device (CCD) camera (Photometrics Cool-
SNAPcf, Roper Scientific® Photometrics, Tucson, AZ, USA), two tungsten–halogen bulbs
for reflectance measurement, and two kinds of UV excitation sources (365 nm and 385 nm)
for fluorescence measurement. The area-scan MSI system mainly consists of a computer, a
quantum scientific imaging (QSI) 660 cooled CCD camera equipped with a filter wheel,
wavelength filters, and excitation sources (such as UV, Green, Blue, and Red lights for
excitation). Wavelengths (409, 466, 520, 542, 575, 579, 675, and 775 nm) are the filters
available in the lab which may relate to specific molecules.

A total of 504 tomatoes produced from the farm will be used in this research. Healthy
red tomatoes (252 for three cultivars) and microbial spoilage samples (252 for three cultivars)
will be respectively collected at a grading station seven times (72 samples at one time).
These 72 samples will be tested over a period of 1 week to obtain a greater variation in
tomato softness and microbial spoilage. Alternaria and Stachybotrys (black mold) are two
common types of mold in tomatoes in CA. Such tomatoes will be obtained from the mold
bucket at the grading station. Samples will be first cleaned using a water tank dip then
sprayed with water. The washed tomatoes will be first transported to a ventilated place to
remove the moisture on the skin, then moved into storage at about 65 ◦F until completion of
the experiment. In each test, tomato samples will be divided into two equal parts. Samples
in one group will be peeled, with tomatoes of another group not being peeled. Tomato
images of both groups will be captured by the above two spectral imaging systems.

Individual tomatoes will be oriented so the stem–calyx axis is kept horizontal and also
perpendicular to the imaging system. The defective samples will be arranged to expose the
microbial spoilage for imaging. Hyperspectral reflectance and fluorescence images will be
obtained from the fruit in sequence by performing line scans at the surface of the tomatoes.
Additionally, multispectral fluorescence data from the same test samples based on different
excitation sources and filters will be acquired. Analyses of the spectral images will be
performed using Matlab and ImageJ software. The high-resolution spectral reflectance and
fluorescence from regions of interest (ROIs), such as good and defective surface areas, will
be extracted in software. Different computer algorithms will be developed for selection
of the most significant waveband combinations for defect detection and classification.
Following the waveband selection, the feature wavebands will be used to determine
the threshold values for microbial spoilage detection. The threshold value at which the
classification accuracy is highest will be determined.

After spectral reflectance and fluorescence images are acquired from both peeled
and unpeeled samples, the softness or hardness of whole tomatoes will be assessed by
using a TA.XT2 Texture Analyzer (Texture Technologies Corp., Scarsdale, NY, USA) in a
compression test using a cylindrical plate (100 mm high, 52 mm internal diameter) [32].
The probe will travel at a constant speed of 2 mm/s while compressing and extruding the
sample down to 10 mm above the bottom of the cell [33,34]. Softness values will be taken
as the area under the curve after the maximum peak was reached. Spectral data will be
analyzed. Data processing includes the preprocessing of spectral data and the development
and validation of calibration models. The information from spectral images will be linked,
based on multivariate analyses, to the measured reference values, and optimal prediction
models will be generated to quantify tomato softness. Statistical analysis of variance
(ANOVA) and multivariate analysis will be performed using SPSS and Matlab software.

Based on the new method found in the study, it is expected that an online computer
vision system mounted with an advanced back-illuminated complementary metal–oxide
semiconductor (CMOS) camera (Prime 95B 25MM, Photometrics) with a price of $30,000
will be eventually established to enhance the detection speed of spoilage and softness of
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tomato products during real-time applications. As the latest camera in use, the new Prime
95B 22MM camera can acquire images with low illumination levels, and high resolution
(number of pixels) and speeds (frame rate), such as images captured in 1 to 3 ms, which is
more suitable for industrial machine vision detection speeds. For example, it could measure
tomatoes at above 1 mph when they move down the processing line.

4. Conclusions

This study could be of benefit to the grand challenges facing planetary health—local
and global environments and human health. The developed spectral imaging system will
characterize the potential for automatic quality detection of whole-tomato products. The
results will be summarized to produce a research paper including reference tables that can
be used by the industry as a guide to better understand the advanced techniques used for
softness and microbial spoilage detection of whole tomato.
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