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Abstract: Diagnosability of a multiprocessor system is an important topic of study. A measure for
fault diagnosis of the system restrains that every fault-free node has at least g fault-free neighbor
vertices, which is called the g-good-neighbor diagnosability of the system. As a famous topology
structure of interconnection networks, the n-dimensional bubble-sort graph Bn has many good
properties. In this paper, we prove that (1) the 1-good-neighbor diagnosability of Bn is 2n− 3 under
Preparata, Metze, and Chien’s (PMC) model for n ≥ 4 and Maeng and Malek’s (MM)∗ model for
n ≥ 5; (2) the 2-good-neighbor diagnosability of Bn is 4n− 9 under the PMC model and the MM∗

model for n ≥ 4; (3) the 3-good-neighbor diagnosability of Bn is 8n− 25 under the PMC model and
the MM∗ model for n ≥ 7.

Keywords: interconnection network; graph; diagnosability; PMC model; MM∗ model;
bubble-sort graph

1. Introduction

A multiprocessor system and interconnection network (networks for short) have an underlying
topology, which is usually presented by a graph, where nodes represent processors and links represent
communication links between processors. We use graphs and networks interchangeably. For the
system, some processors may fail in the system, so processor fault identification plays an important
role in reliable computing. The first step to deal with faults is to identify the faulty processors from
the fault-free ones. The identification process is called the diagnosis of the system. A system is said
to be t-diagnosable if all faulty processors can be identified without replacement, provided that the
number of faulty processors presented does not exceed t. The diagnosability t(G) of a system G is the
maximum value of t such that G is t-diagnosable. Several diagnosis models (e.g., Preparata, Metze,
and Chien’s (PMC) model [1], Barsi, Grandoni, and Maestrini’s (BGM) model [2], and Maeng and
Malek’s (MM) model [3]) have been proposed to investigate the diagnosability of multiprocessor
systems. In particular, two of the proposed models, the PMC model and MM model, are well known
and widely used. In the PMC model, the diagnosis of the system is achieved through two linked
processors testing each other. In the MM model, to diagnose a system, a node sends the same task to
two of its neighbor vertices, and then compares their responses. Sengupta and Dahbura [4] proposed a
special case of the MM model, called the MM* model, in which each node must test all the pairs of its
adjacent nodes. In 2012, Peng et al. [5] proposed a measure for fault diagnosis of the system, namely,
the g-good-neighbor diagnosability of the system (which is also called g-good-neighbor conditional
diagnosability), which requires that every fault-free node contains at least g fault-free neighbors. In [5],
they studied the g-good-neighbor diagnosability of the n-dimensional hypercube under the PMC
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model. Numerous studies have been investigated under the PMC model and MM model or MM*
model, see [1–21].

In this paper, we prove that (1) the diagnosability of n-dimensional bubble-sort graph Bn is n− 1
under the PMC model for n ≥ 4; (2) the 1-good-neighbor diagnosability of Bn is 2n− 3 under the PMC
model for n ≥ 4 and the MM∗ model for n ≥ 5; (3) the 2-good-neighbor diagnosability of Bn is 4n− 9
under the PMC model and the MM∗ model for n ≥ 4; (4) the 3-good-neighbor diagnosability of Bn is
8n− 25 under the PMC model and the MM∗ model for n ≥ 7.

2. Preliminaries

In this section, some definitions and notations needed are introduced for our discussion,
then bubble-sort graphs will be introduced.

2.1. Definitions and Notations

A multiprocessor system is modeled as an undirected simple graph G = (V, E), whose vertices
(nodes) represent processors and edges (links) represent communication links. Given a nonempty
vertex subset V′ of V, the induced subgraph by V′ in G, denoted by G[V′], is a graph, whose vertex set
is V′ and the edge set is the set of all the edges of G with both endpoints in V′. The degree dG(v) of a
vertex v is the number of edges incident with v. We denote by δ(G) the minimum degrees of vertices
of G. For any vertex v, we define the neighborhood NG(v) of v in G to be the set of vertices adjacent to
v. u is called a neighbor vertex or a neighbor of v for u ∈ NG(v). Let S ⊆ V. We use NG(S) to denote
the set ∪v∈SNG(v)\S. For neighborhoods and degrees, we will usually omit the subscript for the graph
when no confusion arises. A graph G is said to be k-regular if for any vertex v, dG(v) = k. A graph is
bipartite if its vertex set can be partitioned into two subsets X and Y so that every edge has one end in
X and one end in Y ; such a partition (X, Y) is called a bipartition of the graph, and X and Y its parts.
We denote a bipartite graph G with bipartition (X, Y) by G = (X, Y; E). If G = (X, Y; E) is simple and
every vertex in X is joined to every vertex in Y, then G = (X, Y; E) is called a complete bipartite graph,
denoted by Kn,m, where |X| = n and |Y| = m. Let G = (V, E) be a connected graph. The connectivity
κ(G) of a graph G is the minimum number of vertices whose removal results in a disconnected graph
or only one vertex left. A fault set F ⊆ V is called a g-good-neighbor faulty set if |N(v) ∩ (V\F)| ≥ g
for every vertex v in V\F. A g-good-neighbor cut of a graph G is a g-good-neighbor faulty set F
such that G − F is disconnected. The minimum cardinality of g-good-neighbor cuts is said to be
the g-good-neighbor connectivity of G, denoted by κ(g)(G). For graph-theoretical terminology and
notation not defined here we follow [22].

2.2. The Bubble-Sort Graph

The bubble-sort graph has been known as a famous topology structure of interconnection
networks. In this section, its definition and some useful properties are introduced.

In the permutation ( 1 2 ... n
p1 p2 ... pn

), i −→ pi. For the convenience, we denote the permutation

( 1 2 ... n
p1 p2 ... pn

) by p1 p2 . . . pn. Every permutation can be denoted by a product of cycles [23].

For example, (1 2 3
3 1 2) = (132). Specially, (1 2 ... n

1 2 ... n) = (1). The product στ of two permutations is the
composition function τ followed by σ, for example, (12)(13) = (132). For terminology and notation
not defined here we follow [23].

Let [n] = {1, 2, · · · , n}, and let Sn be the symmetric group on [n] containing all permutations
p = p1 p2 · · · pn of [n]. It is well known that {(i, i + 1) : i = 1, 2, . . . , n− 1} is a generating set for Sn.
The n-dimensional bubble-sort graph Bn [24] is the graph with vertex set V(Bn) = Sn in which two
vertices u, v are adjacent if and only if u = v(i, i + 1), 1 ≤ i ≤ n− 1. It is easy to see from the definition
that Bn is a (n− 1)-regular graph on n! vertices. The graphs B2, B3 and B4 are depicted in Figure 1.
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Proposition 3. For any integer n ≥ 3, the girth of Bn is 4.79

Theorem 1. ([10]) Every nonidentity permutation in the symmetric group is uniquely (up to the order of the80

factors) a product of disjoint cycles, each of which has length at least 2.81

Proposition 4. [16] Let Bn be a bubble-sort graph. If two vertices u, v are adjacent, there is no common neighbor82

vertex of these two vertices, i.e., |N(u) ∩ N(v)| = 0. If two vertices u, v are not adjacent, there is at most two83

common neighbor vertices of these two vertices, i.e., |N(u) ∩ N(v)| ≤ 2.84

Theorem 2. [5,6,25] κ(Bn) = κ(0)(Bn) = n− 1 for n ≥ 2.85

Theorem 3. [5,6,25] κ(1)(Bn) = 2n− 4 for n ≥ 3.86

Theorem 4. [5,6,25] κ(2)(Bn) = 4n− 12 for n ≥ 4.87

Theorem 5. [17] κ(3)(Bn) = 12 for n = 5 and κ(3)(Bn) = 8n− 32 for n ≥ 6.88
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Fig. 1. The bubble-sort graphs B2, B3 and B4
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3. The diagnosability of the bubble-sort graph under the PMC model90

In this section, we shall show the g-good-neighbor diagnosability of the bubble-sort graph under91

the PMC model for g = 0, 1, 2, 3.92

Let F1 and F2 be two distinct subsets of V for a system G = (V, E). Define the symmetric difference93

F1 M F2 = (F1 \ F2) ∪ (F2 \ F1). Yuan et al. [26] presented a sufficient and necessary condition for a94

system to be g-good-neighbor t-diagnosable under the PMC model.95

Lemma 1. ([26]) A system G = (V, E) is g-good-neighbor t-diagnosable under the PMC model if and only if96

there is an edge uv ∈ E with u ∈ V\(F1 ∪ F2) and v ∈ F1 M F2 for each distinct pair of g-good-neighbor faulty97

subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t (See Fig. 2). The g-good-neighbor diagnosability tg(G) of G98

is the maximum value of t such that G is g-good-neighbor t-diagnosable under the PMC model.99

Figure 1. The bubble-sort graphs B2, B3 and B4.

Note that Bn is a subclass of Cayley graphs. Bn has the following useful properties.

Proposition 1. For any integer n ≥ 2, Bn is (n− 1)-regular and vertex transitive.

Proposition 2. For any integer n ≥ 2, Bn is bipartite.

Proposition 3. For any integer n ≥ 3, the girth of Bn is 4.

Theorem 1 ([23]). Every nonidentity permutation in the symmetric group is uniquely (up to the order of the
factors) a product of disjoint cycles, each of which has length of at least 2.

Proposition 4 ([12]). Let Bn be a bubble-sort graph. If two vertices u, v are adjacent, there is no common
neighbor vertex of these two vertices, i.e., |N(u) ∩ N(v)| = 0. If two vertices u, v are not adjacent, there is at
most two common neighbor vertices of these two vertices, i.e., |N(u) ∩ N(v)| ≤ 2.

Theorem 2 ([7,25,26]). κ(Bn) = κ(0)(Bn) = n− 1 for n ≥ 2.

Theorem 3 ([7,25,26]). κ(1)(Bn) = 2n− 4 for n ≥ 3.

Theorem 4 ([7,25,26]). κ(2)(Bn) = 4n− 12 for n ≥ 4.

Theorem 5 ([27]). κ(3)(Bn) = 12 for n = 5 and κ(3)(Bn) = 8n− 32 for n ≥ 6.

3. The Diagnosability of the Bubble-Sort Graph under the PMC Model

In this section, we shall show the g-good-neighbor diagnosability of the bubble-sort graph under
the PMC model for g = 0, 1, 2, 3.

Let F1 and F2 be two distinct subsets of V for a system G = (V, E). Define the symmetric difference
F1 M F2 = (F1 \ F2) ∪ (F2 \ F1). Yuan et al. [20] presented a sufficient and necessary condition for a
system to be g-good-neighbor t-diagnosable under the PMC model.
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Lemma 1 ([20]). A system G = (V, E) is g-good-neighbor t-diagnosable under the PMC model if and only if
there is an edge uv ∈ E with u ∈ V\(F1 ∪ F2) and v ∈ F1 M F2 for each distinct pair of g-good-neighbor faulty
subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t (See Figure 2). The g-good-neighbor diagnosability tg(G) of
G is the maximum value of t such that G is g-good-neighbor t-diagnosable under the PMC model.
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Fig. 2. Illustration of a distinguishable pair (F1, F2) under the PMC model
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Theorem 6. The diagnosability of the bubble-sort graph Bn is n− 1 under the PMC model when n ≥ 4.101

Proof. Let A = {(1)}. Then |N(A)| = n− 1. Let F1 = N(A) and F2 = A ∪ N(A). Then |F1| = n− 1102

and |F2| = n. Since (1) = F1 M F2 and NBn((1)) = F1 ⊂ F2, there is no edge of Bn between103

V(Bn)\(F1 ∪ F2) and F1 M F2. By Lemma 1, we show that Bn is not n-diagnosable under the PMC104

model. Hence, by the definition of the diagnosability, we have that the diagnosability of Bn is less than105

n-diagnosable, i.e., t(Bn) = t0(Bn) ≤ n− 1.106

By the definition of the diagnosability, it is sufficient to show that Bn is (n− 1)-diagnosable under107

the PMC model. By Lemma 1, to prove that Bn is (n− 1)-diagnosable, it is equivalent to prove that108

there is an edge uv ∈ E(Bn) with u ∈ V(Bn)\(F1 ∪ F2) and v ∈ F1 M F2 for each distinct pair of faulty109

subsets F1 and F2 of V(Bn) with |F1| ≤ n− 1 and |F2| ≤ n− 1. We prove this statement by contradiction.110

Suppose that there are two distinct faulty subsets F1 and F2 of V(Bn) with |F1| ≤ n− 1 and |F2| ≤ n− 1,111

but the vertex set pair (F1, F2) is not satisfied with the condition in Theorem 1, i.e., there are no edges112

between V(Bn)\(F1 ∪ F2) and F1 M F2. Without loss of generality, assume that F2 \ F1 6= ∅. Suppose113

V(Bn) = F1 ∪ F2. By the definition of Bn, |F1 ∪ F2| = |Sn| = n!. It is obvious that n! > 2n− 2 for n ≥ 4.114

Since n ≥ 4, we have that n! = |V(Bn)| = |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤ |F1|+ |F2| < 2n− 2,115

a contradiction. Therefore, V(Bn) 6= F1 ∪ F2. Since there are no edges between V(Bn) \ (F1 ∪ F2)116

and F1 M F2, and |V(Bn) \ (F1 ∪ F2)| 6= 0 and |F1 M F2| 6= 0, we have that F1 ∩ F2 is a cut set. By117

Theorem 2, |F1 ∩ F2| ≥ n− 1. Therefore, |F2| = |F2\F1|+ |F1 ∩ F2| ≥ 1 + n− 1 = n, which contradicts118

with that |F2| ≤ n− 1. So Bn is (n− 1)-diagnosable. By the definition of t(Bn), the diagnosability119

t(Bn) ≥ n− 1.120

Theorem 7. The 1-good-neighbor diagnosability of Bn is 2n− 3 under the PMC model when n ≥ 4.121

Proof. Let A = {(1), (12)}. By Proposition 2, |N(A)| = 2n− 4. Let F1 = N(A) and F2 = A ∪ N(A).122

Then |F1| = 2n− 4 and |F2| = 2n− 2. Let v ∈ V(Bn)\(F1 ∪ F2). By Proposition 4, |N(v) ∩ N((1))| ≤ 2123

and |N(v) ∩ N((12))| ≤ 2. By Proposition 2, N(v) ∩ N((1)) 6= ∅ and N(v) ∩ N((12)) = ∅ or124

N(v)∩ N((12) 6= ∅ and N(v)∩ N((1)) = ∅. Therefore, d(v) ≥ n− 1− 2 ≥ 1 (n ≥ 4) in Bn − (F1 ∪ F2)125

and F1 is a 1-good-neighbor cut of Bn. Since {(1), (12)} = F1 M F2 and F1 ⊂ F2, there is no edge of Bn126

between V(Bn)\(F1 ∪ F2) and F1 M F2. By Lemma 1, we show that Bn is not 1-good-neighbor (2n−127

2)-diagnosable under the PMC model. Hence, by the definition of the 1-good-neighbor diagnosability,128

we have that t1(Bn) ≤ 2n− 3.129

By the definition of the 1-good-neighbor diagnosability, it is sufficient to show that Bn is130

1-good-neighbor (2n − 3)-diagnosable. By Lemma 1, to prove that Bn is 1-good-neighbor (2n −131

3)-diagnosable, it is equivalent to prove that there is an edge uv ∈ E(Bn) with u ∈ V(Bn)\(F1 ∪ F2)132

and v ∈ F1 M F2 for each distinct pair of 1-good-neighbor faulty subsets F1 and F2 of V(Bn) with133

|F1| ≤ 2n− 3 and |F2| ≤ 2n− 3.134

We prove this statement by contradiction. Suppose that there are two distinct 1-good-neighbor135

faulty subsets F1 and F2 of V(Bn) with |F1| ≤ 2n− 3 and |F2| ≤ 2n− 3, but the vertex set pair (F1, F2)136

is not satisfied with the condition in Lemma 1, i.e., there are no edges between V(Bn)\(F1 ∪ F2) and137

F1 M F2. Without loss of generality, assume that F2 \ F1 6= ∅. Suppose V(Bn) = F1 ∪ F2. Since n ≥ 4,138

Figure 2. Illustration of a distinguishable pair (F1, F2) under Preparata, Metze, and Chien’s
(PMC) model.

Theorem 6. The diagnosability of the bubble-sort graph Bn is n− 1 under the PMC model when n ≥ 4.

Proof. Let A = {(1)}. Then |N(A)| = n− 1. Let F1 = N(A) and F2 = A ∪ N(A). Then |F1| = n− 1
and |F2| = n. Since (1) = F1 M F2 and NBn((1)) = F1 ⊂ F2, there is no edge of Bn between
V(Bn)\(F1 ∪ F2) and F1 M F2. By Lemma 1, we show that Bn is not n-diagnosable under the PMC
model. Hence, by the definition of the diagnosability, we have that the diagnosability of Bn is less than
n-diagnosable, i.e., t(Bn) = t0(Bn) ≤ n− 1.

By the definition of the diagnosability, it is sufficient to show that Bn is (n− 1)-diagnosable under
the PMC model. By Lemma 1, to prove that Bn is (n− 1)-diagnosable, it is equivalent to prove that
there is an edge uv ∈ E(Bn) with u ∈ V(Bn)\(F1 ∪ F2) and v ∈ F1 M F2 for each distinct pair of
faulty subsets F1 and F2 of V(Bn) with |F1| ≤ n− 1 and |F2| ≤ n− 1. We prove this statement by
contradiction. Suppose that there are two distinct faulty subsets F1 and F2 of V(Bn) with |F1| ≤ n− 1
and |F2| ≤ n− 1, but the vertex set pair (F1, F2) is not satisfied with the condition in Theorem 1, i.e.,
there are no edges between V(Bn)\(F1 ∪ F2) and F1 M F2. Without loss of generality, assume that
F2 \ F1 6= ∅. Suppose V(Bn) = F1 ∪ F2. By the definition of Bn, |F1 ∪ F2| = |Sn| = n!. It is obvious that
n! > 2n− 2 for n ≥ 4. Since n ≥ 4, we have that n! = |V(Bn)| = |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤
|F1|+ |F2| < 2n− 2, a contradiction. Therefore, V(Bn) 6= F1 ∪ F2. Since there are no edges between
V(Bn) \ (F1 ∪ F2) and F1 M F2, and |V(Bn) \ (F1 ∪ F2)| 6= 0 and |F1 M F2| 6= 0, we have that F1 ∩ F2

is a cut set. By Theorem 2, |F1 ∩ F2| ≥ n− 1. Therefore, |F2| = |F2\F1|+ |F1 ∩ F2| ≥ 1 + n− 1 = n,
which contradicts with that |F2| ≤ n− 1. So Bn is (n− 1)-diagnosable. By the definition of t(Bn),
the diagnosability t(Bn) ≥ n− 1.

Theorem 7. The 1-good-neighbor diagnosability of Bn is 2n− 3 under the PMC model when n ≥ 4.

Proof. Let A = {(1), (12)}. By Proposition 2, |N(A)| = 2n− 4. Let F1 = N(A) and F2 = A ∪ N(A).
Then |F1| = 2n− 4 and |F2| = 2n− 2. Let v ∈ V(Bn)\(F1 ∪ F2). By Proposition 4, |N(v) ∩ N((1))| ≤
2 and |N(v) ∩ N((12))| ≤ 2. By Proposition 2, N(v) ∩ N((1)) 6= ∅ and N(v) ∩ N((12)) = ∅
or N(v) ∩ N((12) 6= ∅ and N(v) ∩ N((1)) = ∅. Therefore, d(v) ≥ n − 1 − 2 ≥ 1 (n ≥ 4) in
Bn − (F1 ∪ F2) and F1 is a 1-good-neighbor cut of Bn. Since {(1), (12)} = F1 M F2 and F1 ⊂ F2,
there is no edge of Bn between V(Bn)\(F1 ∪ F2) and F1 M F2. By Lemma 1, we show that Bn is
not 1-good-neighbor (2n− 2)-diagnosable under the PMC model. Hence, by the definition of the
1-good-neighbor diagnosability, we have that t1(Bn) ≤ 2n− 3.

By the definition of the 1-good-neighbor diagnosability, it is sufficient to show that Bn

is 1-good-neighbor (2n − 3)-diagnosable. By Lemma 1, to prove that Bn is 1-good-neighbor
(2n− 3)-diagnosable, it is equivalent to prove that there is an edge uv ∈ E(Bn) with u ∈ V(Bn)\(F1 ∪
F2) and v ∈ F1 M F2 for each distinct pair of 1-good-neighbor faulty subsets F1 and F2 of V(Bn) with
|F1| ≤ 2n− 3 and |F2| ≤ 2n− 3.

We prove this statement by contradiction. Suppose that there are two distinct 1-good-neighbor
faulty subsets F1 and F2 of V(Bn) with |F1| ≤ 2n− 3 and |F2| ≤ 2n− 3, but the vertex set pair (F1, F2)
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is not satisfied with the condition in Lemma 1, i.e., there are no edges between V(Bn)\(F1 ∪ F2) and
F1 M F2. Without loss of generality, assume that F2 \ F1 6= ∅. Suppose V(Bn) = F1 ∪ F2. Since n ≥ 4,
we have that n! = |V(Bn)| = |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤ |F1|+ |F2| ≤ 2(2n− 3) = 4n− 6,
a contradiction. Therefore, V(Bn) 6= F1 ∪ F2.

Since there are no edges between V(Bn) \ (F1 ∪ F2) and F1 M F2, and F1 is a 1-good-neighbor faulty
set, Bn − F1 has two parts Bn − F1 − F2 and Bn[F2 \ F1] (for convenience). Thus, δ(Bn − F1 − F2) ≥ 1
and δ(Bn[F2 \ F1]) ≥ 1. Similarly, δ(Bn[F1 \ F2]) ≥ 1 when F1 \ F2 6= ∅. Therefore, F1 ∩ F2 is also
a 1-good-neighbor faulty set. When F1 \ F2 = ∅, F1 ∩ F2 = F1 is also a 1-good-neighbor faulty
set. Since there are no edges between V(Bn − F1 − F2) and F1 M F2, F1 ∩ F2 is a 1-good-neighbor
cut. By Theorem 3, |F1 ∩ F2| ≥ 2n − 4. Note that |F2\F1| ≥ 2. Therefore, |F2| = |F2\F1| + |F1 ∩
F2| ≥ 2 + 2n − 4 = 2n − 2, which contradicts with that |F2| ≤ 2n − 3. So Bn is 1-good-neighbor
(2n− 3)-diagnosable. By the definition of t1(Bn), t1(Bn) ≥ 2n− 3.

Lemma 2. Let A = {(1), (12), (34), (12)(34)}. If n ≥ 4, F1 = NBn(A), F2 = A ∪ NBn(A),
then |F1| = 4n− 12, |F2| = 4n− 8, δ(Bn − F1) ≥ 2, and δ(Bn − F2) ≥ 2.

Proof. By A = {(1), (12), (34), (12)(34)}, we have that Bn[A] is a 4-cycle. By Propositions 3 and 4,
|NBn(A)| = 4n− 12. Thus from calculating, we have |F1| = 4n− 12, |F2| = |A|+ |F1| = 4n− 8.

Let v ∈ V(Bn)\F2 and |N(v) ∩ N(A)| 6= 0 and w ∈ N(v) ∩ N(A). Let u ∈ A and uw ∈ E(Bn).
By Proposition 1, let u = (1). Then w = (ab) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n − 1}\{(12), (34)}.
By Proposition 2, there is no u′ ∈ {(12), (34)} such that |N(u′) ∩ N(v)| ≥ 1. Therefore, we consider
only u′ ∈ {(1), (12)(34)}. We discuss the following cases.

Case 1. v = (ab)(cd) and {a, b} ∩ {c, d} = ∅, (cd) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n− 1}\{(ab)}.
If (cd) ∈ {(12), (34)}, then a contradiction to v ∈ V(Bn)\F2. Therefore, (cd) ∈ {(i, i + 1) :

i = 1, 2, 3, . . . , n− 1}\{(ab), (12), (34)}. In this case, |N(v) ∩ N(u)| = 2. Consider (12)(34)(xy) and
(ab)(cd)(uv), (xy) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n− 1}\{(12), (34)}. Suppose {x, y} ∩ {1, 2, 3, 4} = ∅.
Since (ab), (cd) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n − 1}\{(12), (34)}, (12)(34)(xy) 6= (ab)(cd)(uv).
If (xy) = (23), then (12)(34)(23) = (1243). If (uv) 6= (12), then, 1 → 1 in (ab)(cd)(uv),
(12)(34)(23) = (1243) 6= (ab)(cd)(uv). If (uv) = (12), then, 2 → 1 in (ab)(cd)(uv), (12)(34)(23) =
(1243) 6= (ab)(cd)(uv). If (xy) = (45), then (12)(34)(45) = (12)(345). If (uv) 6= (12), then, 1 → 1
in (ab)(cd)(uv), (12)(34)(45) = (12)(345) 6= (ab)(cd)(uv). If (uv) = (12), then, 3 → 3 or 3 → 2 in
(ab)(cd)(uv), (12)(34)(45) = (12)(345) 6= (ab)(cd)(uv). Therefore, |N(v) ∩ N(A)| ≤ 2.

Case 2. v = (ab)(cd) and {a, b} ∩ {c, d} 6= ∅, (cd) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n− 1}\{(ab)}.
Without loss of generality, let v = (ab)(bd) = (abd). Let w′ ∈ N(v) \ {w}.

Then w′ = (ab)(bd)(uv), (uv) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n − 1}\{(cd)}. If (uv) = (ab),
then w′ = (ab)(bd)(uv) = (ad). Note (ad) /∈ {(i, i+ 1) : i = 1, 2, 3, . . . , n− 1}. Then |N(v)∩N(u)| = 1.
Suppose (uv) 6= (ab). Consider (12)(34)(xy) and (ab)(cd)(uv), (xy) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n−
1}\{(12), (34)}. If {x, y} ∩ {1, 2, 3, 4} = ∅, then, by Theorem 1, (12)(34)(xy) 6= w′ = (ab)(bd)(uv).
If (xy) = (23), then (12)(34)(23) = (1243). If (uv) = (12), then, 2 → 1 in (ab)(cd)(uv),
(12)(34)(23) = (1243) 6= (ab)(cd)(uv). If (uv) 6= (12), then, 1 → 1 or 1 → 3 in (ab)(cd)(uv),
(12)(34)(23) = (1243) 6= (ab)(cd)(uv). If (xy) = (45), then (12)(34)(45) = (12)(345). If (uv) 6= (12),
then, 1→ 1 in (ab)(cd)(uv), (12)(34)(45) = (12)(345) 6= (ab)(cd)(uv). If (uv) = (12), then, 3→ 3 or
3→ 2 in (ab)(cd)(uv), (12)(34)(45) = (12)(345) 6= (ab)(cd)(uv). Therefore, |N(v) ∩ N(A)| ≤ 2.

By Cases 1 and 2, d(v) ≥ n− 1− 2 ≥ 2 (n ≥ 5) in Bn − (F1 ∪ F2) and F1 is a 2-good-neighbor cut
of Bn. When n = 4, it is easy to verify that F1 is a 2-good-neighbor cut of Bn.

Lemma 3. Let n ≥ 4. Then the 2-good-neighbor diagnosability t2(Bn) ≤ 4n− 9 under the PMC model.
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Proof. Let A be defined in Lemma 2, and let F1 = NBn(A), F2 = A∪NBn(A). By Lemma 2, |F1| = 4n−
12, |F2| = 4n− 8, δ(Bn − F1) ≥ 2 and δ(Bn − F2) ≥ 2. Therefore, F1 and F2 are both 2-good-neighbor
faulty sets of Bn with |F1| = 4n − 12 and |F2| = 4n − 8. Since A = F1 M F2 and NBn(A) = F1 ⊂
F2, there is no edge of Bn between V(Bn)\(F1 ∪ F2) and F1 M F2. By Lemma 1, we show that Bn

is not 2-good-neighbor (4n − 8)-diagnosable under the PMC model. Hence, by the definition of
2-good-neighbor diagnosability, we conclude that the 2-good-neighbor diagnosability of Bn is less than
4n− 8, i.e., t2(Bn) ≤ 4n− 9.

Lemma 4. Let H be a subgraph of Bn such that δ(H) = 2. Then |V(H)| ≥ 4.

By the definition of Bn, we have Lemma 4.

Lemma 5. Let n ≥ 4. Then the 2-good-neighbor diagnosability t2(Bn) ≥ 4n− 9 under the PMC model.

Proof. By the definition of 2-good-neighbor diagnosability, it is sufficient to show that Bn is
2-good-neighbor (4n − 9)-diagnosable. By Theorem 1, to prove Bn is 2-good-neighbor (4n −
9)-diagnosable, it is equivalent to prove that there is an edge uv ∈ E(Bn) with u ∈ V(Bn)\(F1 ∪ F2)

and v ∈ F1 M F2 for each distinct pair of 2-good-neighbor faulty subsets F1 and F2 of V(Bn) with
|F1| ≤ 4n− 9 and |F2| ≤ 4n− 9.

We prove this statement by contradiction. Suppose that there are two distinct 2-good-neighbor
faulty subsets F1 and F2 of V(Bn) with |F1| ≤ 4n− 9 and |F2| ≤ 4n− 9, but the vertex set pair (F1, F2)

is not satisfied with the condition in Lemma 1, i.e., there are no edges between V(Bn)\(F1 ∪ F2) and
F1 M F2. Without loss of generality, assume that F2 \ F1 6= ∅. Suppose V(Bn) = F1 ∪ F2. By the
definition of Bn, |F1 ∪ F2| = |Sn| = n!. It is obvious that n! > 8n − 18 for n ≥ 4. Since n ≥ 4,
we have that n! = |V(Bn)| = |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤ |F1|+ |F2| ≤ 2(4n− 9) = 8n− 18,
a contradiction. Therefore, V(Bn) 6= F1 ∪ F2.

Since there are no edges between V(Bn) \ (F1 ∪ F2) and F1 M F2, and F1 is a 2-good-neighbor faulty
set, Bn− F1 has two parts Bn− F1− F2 and Bn[F2 \ F1]. Thus, δ(Bn− F1− F2) ≥ 2 and δ(Bn[F2 \ F1]) ≥ 2.
Similarly, δ(Bn[F1 \ F2]) ≥ 2 when F1 \ F2 6= ∅. Therefore, F1 ∩ F2 is also a 2-good-neighbor faulty set.
When F1 \ F2 = ∅, F1 ∩ F2 = F1 is also a 2-good-neighbor faulty set. Since there are no edges between
V(Bn − F1 − F2) and F1 M F2, F1 ∩ F2 is a 2-good-neighbor cut. Since n ≥ 4, by Theorem 4, |F1 ∩ F2| ≥
4n− 12. By Lemma 4, |F2\F1| ≥ 4. Therefore, |F2| = |F2\F1|+ |F1 ∩ F2| ≥ 4 + 8n− 22 = 8n− 18,
which contradicts with that |F2| ≤ 4n− 9. So Bn is 2-good-neighbor (8n− 19)-diagnosable. By the
definition of t2(Bn), t2(Bn) ≥ 4n− 9.

Combining Lemmas 3 and 5, we have the following theorem.

Theorem 8. Let n ≥ 4. Then the 2-good-neighbor diagnosability of the bubble-sort graph Bn under the PMC
model is 4n− 9.

Lemma 6. Let A = {(1), (12), (34), (56), (12)(34), (12)(56), (34)(56), (12)(34)(56)}. If n ≥ 7,
F1 = NBn(A), F2 = A∪NBn(A), then |F1| = 8n− 32, |F2| = 8n− 24, δ(Bn− F1) ≥ 3 and δ(Bn− F2) ≥ 3.

Proof. By A = {(1), (12), (34), (56), (12)(34), (12)(56), (34)(56), (12)(34)(56)}, we have that Bn[A] is
3-regular and |A| = 8.

Claim 1. (N(u) ∩ N(v))\A = ∅ for u, v ∈ A.

By Proposition 1, let u = (1). By Proposition 2, we consider only v ∈ {(12)(34), (12)(56),
(34)(56)}. Since |N(u) ∩ N(v)| = 2, by Proposition 4, we have (N(u) ∩ N(v))\A = ∅. The proof of
Claim 1 is complete.

By Claim 1, |NBn(A)| = 8n− 32. Thus from calculating, we have |F1| = 8n− 32, |F2| = |A|+
|F1| = 8n − 24. Let v ∈ V(Bn)\F2 and |N(v) ∩ N(A)| 6= 0 and w ∈ N(v) ∩ N(A). Let u ∈ A
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and uw ∈ E(Bn). By Proposition 1, let u = (1). Then w = (ab) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n −
1}\{(12), (34), (56)}. By Proposition 2, there is no u′ ∈ {(12), (34), (56), (12)(34)(56)} such that
|N(u′) ∩ N(v)| ≥ 1. Therefore, we consider only u′ ∈ {(1), (12)(34), (12)(56), (34)(56)}.

Claim 2. |N(A) ∩ N(v)| ≤ 2.

Let v ∈ V(Bn)\F2. We discuss the following cases.

Case 1. v = (ab)(cd) and {a, b} ∩ {c, d} = ∅, (cd) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n− 1}\{(ab)}.
If (cd) ∈ {(12), (34), (56)}, then a contradiction to v ∈ V(Bn)\F2. Therefore, (cd) ∈ {(i, i+ 1) : i =

1, 2, 3, . . . , n− 1}\{(ab), (12), (34), (56)}. Consider (ab)(cd)(uv). If (uv) = (ab), then |N(v)∩ N(u)| =
2. Let (uv) 6= (ab).

Consider (12)(34)(xy) and (ab)(cd)(uv), (xy) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n− 1}\{(12),
(34), (56)}. Suppose {x, y} ∩ {1, 2, 3, 4} = ∅. Since (ab), (cd) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n −
1}\{(12), (34), (56)}, (12)(34)(xy) 6= (ab)(cd)(uv). If (xy) = (23), then (12)(34)(23) = (1243).
If (uv) 6= (12), then, 1 → 1 in (ab)(cd)(uv), (12)(34)(23) = (1243) 6= (ab)(cd)(uv). If (uv) =

(12), then, 2 → 1 in (ab)(cd)(uv), (12)(34)(23) = (1243) 6= (ab)(cd)(uv). If (xy) = (45),
then (12)(34)(45) = (12)(345). If (uv) 6= (12), then, 1 → 1 in (ab)(cd)(uv), (12)(34)(45) =

(12)(345) 6= (ab)(cd)(uv). If (uv) = (12), then, 3 → 3 or 3 → 2 in (ab)(cd)(uv), (12)(34)(45) =

(12)(345) 6= (ab)(cd)(uv).
Consider (34)(56)(xy) and (ab)(cd)(uv), (xy) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n− 1}\{(12),

(34), (56)}. Suppose {x, y} ∩ {3, 4, 5, 6} = ∅. Since (ab), (cd) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n −
1}\{(12), (34), (56)}, (34)(56)(xy) 6= (ab)(cd)(uv). If (xy) = (23), then (34)(23)(56) = (243)(56).
If (uv) = (23), then 2 → 3 or 2 → 2 in (ab)(cd)(uv), (34)(23)(56) = (243)(56) 6= (ab)(cd)(uv).
If (uv) 6= (23), then (uv) = (12) or (34) or (uv) (u, v ≥ 4). When (uv) = (12), 2→ 1 in (ab)(cd)(uv),
(34)(23)(56) = (243)(56) 6= (ab)(cd)(uv). When (uv) = (34), 2 → 2 or 2 → 3 in (ab)(cd)(uv),
(34)(23)(56) = (243)(56) 6= (ab)(cd)(uv). When u, v ≥ 4, 2 → 2 or 2 → 3 in (ab)(cd)(uv),
(34)(23)(56) = (243)(56) 6= (ab)(cd)(uv).

Similarly, consider (12)(56)(xy) and (ab)(cd)(uv). We have (12)(56)(xy) 6= (ab)(cd)(uv).
Therefore, |N(v) ∩ N(A)| ≤ 2.

Case 2. v = (ab)(cd) and {a, b} ∩ {c, d} 6= ∅, (cd) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n− 1}\{(ab)}.
Without loss of generality, let v = (ab)(bd) = (abd). Let w′ ∈ N(v) \ {w}. Then w′ =

(ab)(bd)(uv), (uv) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n − 1}\{(cd)}. If (uv) = (ab), then w′ =

(ab)(bd)(uv) = (ad). Note (ad) /∈ {(i, i + 1) : i = 1, 2, 3, . . . , n − 1}. Then |N(v) ∩ N(u)| =

1. Suppose (uv) 6= (ab). Consider (12)(34)(xy) and (ab)(cd)(uv), (xy) ∈ {(i, i + 1) : i =

1, 2, 3, . . . , n− 1}\{(12), (34), (56)}. If {x, y} ∩ {1, 2, 3, 4} = ∅, then, by Theorem 1, (12)(34)(xy) 6=
w′ = (ab)(bd)(uv). If (xy) = (23), then (12)(34)(23) = (1243). If (uv) = (12), then, 2 → 1 in
(ab)(cd)(uv), (12)(34)(23) = (1243) 6= (ab)(cd)(uv). If (uv) 6= (12), then, 1 → 1 or 1 → 3 in
(ab)(cd)(uv), (12)(34)(23) = (1243) 6= (ab)(cd)(uv). If (xy) = (45), then (12)(34)(45) = (12)(345).
If (uv) 6= (12), then, 1 → 1 or 1 → 3 in (ab)(cd)(uv), (12)(34)(45) = (12)(345) 6= (ab)(cd)(uv).
If (uv) = (12), then, 3→ 3 or 3→ 2 in (ab)(cd)(uv), (12)(34)(45) = (12)(345) 6= (ab)(cd)(uv).

Consider (34)(56)(xy) and (ab)(cd)(uv), (xy) ∈ {(i, i + 1) : i = 1, 2, 3, . . . , n− 1}\{(12),
(34), (56)}. If {x, y} ∩ {3, 4, 5, 6} = ∅, then, by Theorem 1, (34)(56)(xy) 6= w′ = (ab)(bd)(uv).
If (xy) = (23), then (34)(56)(xy) = (243)(56). If (uv) = (12), then, 2 → 1 in (ab)(cd)(uv),
(34)(56)(xy) 6= (ab)(cd)(uv). If (uv) 6= (12), then, 1 → 1 or 1 → 3 in (ab)(cd)(uv), (34)(56)(xy) 6=
(ab)(cd)(uv). If (xy) = (45), then (34)(56)(xy) = (3465). If (uv) 6= (12), then, 1 → 1 or 1 → 3 in
(ab)(cd)(uv), (34)(56)(xy) 6= (ab)(cd)(uv). If (uv) = (12), then, 3 → 3 or 3 → 2 in (ab)(cd)(uv),
(34)(56)(xy) 6= (ab)(cd)(uv). If (xy) = (67), then (34)(56)(xy) = (34)(567). If (uv) 6= (12), then,
1→ 1 or 1→ 3 in (ab)(cd)(uv), (34)(56)(xy) 6= (ab)(cd)(uv). If (uv) = (12), then, 3→ 3 or 3→ 2 in
(ab)(cd)(uv), (34)(56)(xy) 6= (ab)(cd)(uv).
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Similarly, consider (12)(56)(xy) and (ab)(cd)(uv). We have (12)(56)(xy) 6= (ab)(cd)(uv).
Therefore, |N(v) ∩ N(A)| ≤ 2. The proof of Claim 2 is complete.

By Claim 2, d(v) ≥ n − 1− 3 ≥ 3 (n ≥ 7) in Bn − (F1 ∪ F2) and F1 is a 3-good-neighbor cut
of Bn.

Lemma 7. Let n ≥ 7. Then the 3-good-neighbor diagnosability t3(Bn) ≤ 8n− 25 under the PMC model.

Proof. Let A be defined in Lemma 6, and let F1 = NBn(A), F2 = A ∪ NBn(A). By Lemma 6,
|F1| = 8n − 32, |F2| = 8n − 24, δ(Bn − F1) ≥ 3 and δ(Bn − F2) ≥ 3. Therefore, F1 and F2 are both
3-good-neighbor faulty sets of Bn with |F1| = 8n− 32 and |F2| = 8n− 24. Since A = F1 M F2 and
NBn(A) = F1 ⊂ F2, there is no edge of Bn between V(Bn)\(F1 ∪ F2) and F1 M F2. By Lemma 1, we can
deduce that Bn is not 3-good-neighbor (8n− 24)-diagnosable under the PMC model. Hence, by the
definition of 3-good-neighbor diagnosability, we conclude that the 2-good-neighbor diagnosability of
Bn is less than 8n− 24, i.e., t2(Bn) ≤ 8n− 25.

Lemma 8. Let H be a subgraph of Bn such that δ(H) = 3. Then |V(H)| ≥ 8.

Proof. Note that there is no subgraph K3,3 of Bn. Suppose, on the contrary, that there is a subgraph
H′ of Bn such that δ(H′) ≥ 3 and |V(H′)| = 7. Since Bn is bipartite, let V(H′) = (U, W) and
|U| = 3, |W| = 4. By Proposition 1, let W = {(1), x, y, z} and U = {a, b, c}. Since δ(H′) ≥ 3,
N(x) ∩ N(y) = {a, b, c}, a contradiction to Proposition 4. Therefore, |V(H)| ≥ 8.

Lemma 9. Let n ≥ 7. Then the 3-good-neighbor diagnosability t3(Bn) ≥ 8n− 25 under the PMC model.

Proof. By the definition of 3-good-neighbor diagnosability, it is sufficient to show that Bn

is 3-good-neighbor (8n − 25)-diagnosable. By Lemma 1, to prove Bn is 3-good-neighbor
(8n − 25)-diagnosable, it is equivalent to prove that there is an edge uv ∈ E(Bn) with
u ∈ V(Bn)\(F1 ∪ F2) and v ∈ F1 M F2 for each distinct pair of 3-good-neighbor faulty subsets F1

and F2 of V(Bn) with |F1| ≤ 8n− 25 and |F2| ≤ 8n− 25.
We prove this statement by contradiction. Suppose that there are two distinct 3-good-neighbor

faulty subsets F1 and F2 of V(Bn) with |F1| ≤ 8n − 25 and |F2| ≤ 8n − 25, but the vertex set pair
(F1, F2) is not satisfied with the condition in Lemma 1, i.e., there are no edges between V(Bn)\(F1 ∪ F2)

and F1 M F2. Without loss of generality, assume that F2 \ F1 6= ∅. Suppose V(Bn) = F1 ∪ F2. By the
definition of Bn, |F1 ∪ F2| = |Sn| = n!. It is obvious that n! > 16n − 50 for n ≥ 7. Since n ≥ 7,
we have that n! = |V(Bn)| = |F1 ∪ F2| = |F1|+ |F2| − |F1 ∩ F2| ≤ |F1|+ |F2| ≤ 2(8n− 25) = 16n− 50,
a contradiction. Therefore, V(Bn) 6= F1 ∪ F2.

Since there are no edges between V(Bn) \ (F1 ∪ F2) and F1 M F2, and F1 is a 3-good-neighbor faulty
set, Bn− F1 has two parts Bn− F1− F2 and Bn[F2 \ F1]. Thus, δ(Bn− F1− F2) ≥ 3 and δ(Bn[F2 \ F1]) ≥ 3.
Similarly, δ(Bn[F1 \ F2]) ≥ 3 when F1 \ F2 6= ∅. Therefore, F1 ∩ F2 is also a 3-good-neighbor faulty set.
When F1 \ F2 = ∅, F1 ∩ F2 = F1 is also a 3-good-neighbor faulty set. Since there are no edges between
V(Bn − F1 − F2) and F1 M F2, F1 ∩ F2 is a 3-good-neighbor cut. Since n ≥ 7, by Theorem 5, |F1 ∩ F2| ≥
8n− 32. By Lemma 8, |F2\F1| ≥ 8. Therefore, |F2| = |F2\F1|+ |F1 ∩ F2| ≥ 8 + 8n− 32 = 8n− 24,
which contradicts with that |F2| ≤ 8n− 25. So Bn is 3-good-neighbor (8n− 25)-diagnosable. By the
definition of t3(Bn), t3(Bn) ≥ 8n− 25.

Combining Lemmas 7 and 9, we have the following theorem.

Theorem 9. Let n ≥ 7. Then the 3-good-neighbor diagnosability of the bubble-sort graph Bn under the PMC
model is 8n− 25.
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4. The Diagnosability of the Bubble-Sort Graph Bn under the MM∗ Model

Before discussing the diagnosability of the bubble-sort graph Bn under the MM∗ model, we first
give an existing result.

Lemma 10 ([4,20]). A system G = (V, E) is g-good-neighbor t-diagnosable under the MM∗ model if and only
if for each distinct pair of g-good-neighbor faulty subsets F1 and F2 of V with |F1| ≤ t and |F2| ≤ t satisfies one
of the following conditions. (1) There are two vertices u, w ∈ V \ (F1 ∪ F2) and there is a vertex v ∈ F1 M F2

such that uw ∈ E and vw ∈ E. (2) There are two vertices u, v ∈ F1 \ F2 and there is a vertex w ∈ V \ (F1 ∪ F2)

such that uw ∈ E and vw ∈ E. (3) There are two vertices u, v ∈ F2 \ F1 and there is a vertex w ∈ V \ (F1 ∪ F2)

such that uw ∈ E and vw ∈ E (See Figure 3). The g-good-neighbor diagnosability tg(G) of G is the maximum
value of t such that G is g-good-neighbor t-diagnosable under the MM∗ model.
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Theorem 10. [16] The diagnosability t(G) = t0(G) of Bn is n− 1 under the MM∗ model when n ≥ 4.322
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Figure 3. Illustration of a distinguishable pair (F1, F2) under Maeng and Malek’s (MM)* model.

Theorem 10 ([12]). The diagnosability t(G) = t0(G) of Bn is n− 1 under the MM∗ model when n ≥ 4.

A component of a graph G is odd according as it has an odd number of vertices. We denote by
o(G) the number of odd component of G.

Lemma 11 ([22]). A graph G = (V, E) has a perfect matching if and only if o(G− S) ≤ |S| for all S ⊆ V.

Lemma 12 ([22]). Let k ≥ 0 be an integer. Then every k-regular bipartite graph has k edge-disjoint
perfect matchings.

Since the bubble-sort graph is a regular bipartite graph, we have the following corollary
by Lemma 12.

Corollary 1. The bubble-sort graph has a perfect matching.

Lemma 13. Let n ≥ 4. Then the 1-good-neighbor diagnosability of the bubble-sort graph Bn under the MM∗

model is less than or equal to 2n− 3, i.e., t1(Bn) ≤ 2n− 3.

Proof. Let u = (1) and v = (12). Then u is adjacent to v. Let F1 = N({u, v}) and F2 = F1 ∪
{u, v}. By Proposition 2, |F1| = 2n− 4, |F2| = 2n− 2. Let w ∈ V(Bn)\(F1 ∪ F2). By Proposition 4,
|N(w) ∩ N((1))| ≤ 2 and |N(w) ∩ N((12))| ≤ 2. By Proposition 2, if N(w) ∩ N((1)) 6= ∅, then
N(w) ∩ N((12)) = ∅ or if N(w) ∩ N((12) 6= ∅, then N(w) ∩ N((1)) = ∅. Therefore, d(v) ≥
n− 1− 2 ≥ 1 (n ≥ 4) in Bn− (F1∪ F2) and F1 is a 1-good-neighbor cut of Bn. Since {(1), (12)} = F1 M F2

and F1 ⊂ F2, there is no edge of Bn between V(Bn)\(F1 ∪ F2) and F1 M F2. By Lemma 10, we show that
Bn is not 1-good-neighbor (2n− 2)-diagnosable under the MM∗ model. Hence, by the definition of the
1-good-neighbor diagnosability, we have that t1(Bn) ≤ 2n− 3.

Lemma 14. Let n ≥ 5. Then the 1-good-neighbor diagnosability of the bubble-sort graph Bn under the MM∗

model is more than or equal to 2n− 3, i.e., t1(Bn) ≥ 2n− 3.
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Proof. By the definition of 1-good-neighbor diagnosability, it is sufficient to show that Bn is
1-good-neighbor (2n− 3)-diagnosable. By Lemma 10, suppose, on the contrary, that there are two
distinct 1-good-neighbor faulty subsets F1 and F2 of Bn with |F1| ≤ 2n− 3 and |F2| ≤ 2n− 3, but the
vertex set pair (F1, F2) is not satisfied with any one condition in Theorem 10. Without loss of generality,
assume that F2 \ F1 6= ∅. Similarly to the discussion on V(Bn) 6= F1 ∪ F2 in Theorem 3, we have
V(Bn) 6= F1 ∪ F2.

Claim 1. Bn − F1 − F2 has no isolated vertex.

Suppose, on the contrary, that Bn − F1 − F2 has at least one isolated vertex w. Since F1 is a
1-good-neighbor faulty set, there is a vertex u ∈ F2 \ F1 such that u is adjacent to w. Since the
vertex set pair (F1, F2) is not satisfied with any one condition in Lemma 10, there is at most one
vertex u ∈ F2 \ F1 such that u is adjacent to w. Thus, there is just a vertex u ∈ F2 \ F1 such that
u is adjacent to w. Assume F1 \ F2 = ∅. Then F1 ⊆ F2. Since F2 is a 1-good-neighbor faulty set,
Bn − F2 = Bn − F1 − F2 has no isolated vertex, a contradiction. Therefore, let F1 \ F2 6= ∅ as follows.
Similarly, we can show that there is just a vertex v ∈ F1 \ F2 such that v is adjacent to w. Let W ⊆
V(Bn) \ (F1 ∪ F2) be the set of isolated vertices in Bn[V(Bn) \ (F1 ∪ F2)], and let H be the subgraph
induced by the vertex set V(Bn) \ (F1 ∪ F2 ∪W). Then for any w ∈ W, there are (n− 3) neighbors
in F1 ∩ F2. By Corollary 1, Bn has a perfect matching. By Lemma 11, |W| ≤ o(G − (F1 ∪ F2)) ≤
|F1 ∪ F2| ≤ |F1| + |F2| − |F1 ∩ F2| ≤ 2(2n − 3) − (n − 3) = 3n − 3. Assume V(H) = ∅. Note that
n! = |V(Bn)| = |F1 ∪ F2|+ |W| ≤ 2(3n− 3) = 6n− 6. This is a contradiction to n ≥ 5. So V(H) 6= ∅.
Since the vertex set pair (F1, F2) is not satisfied with the condition (1) of Theorem 10, and any vertex of
V(H) is not isolated in H, we induce that there is no edge between V(H) and F1 M F2. Thus, F1 ∩ F2 is
a vertex cut of Bn and δ(Bn − (F1 ∩ F2)) ≥ 1, i.e., F1 ∩ F2 is a 1-good-neighbor cut of Bn. By Theorem 3,
|F1 ∩ F2| ≥ 2n− 4. Because |F1| ≤ 2n− 3 and |F2| ≤ 2n− 3, and neither F1 \ F2 nor F2 \ F1 is empty,
we have |F1 \ F2| = |F2 \ F1| = 1. Let F1 \ F2 = {v1} and F2 \ F1 = {v2}. Then for any vertex w ∈ W,
w is adjacent to v1 and v2. According to Proposition 4, there are at most three common neighbors for
any pair of vertices in Bn, it follows that there are at most two isolated vertices in Bn − F1 − F2, i.e.,
|W| ≤ 2.

Suppose that there is exactly one isolated vertex v in Bn − F1 − F2. Let v1 and v2 be adjacent to
v. Then NBn(v) \ {v1, v2} ⊆ F1 ∩ F2. Note that Bn has no 3-cycle. Thus, NBn(v1) \ {v} ⊆ F1 ∩ F2,
NBn(v2) \ {v} ⊆ F1 ∩ F2, |(NBn(v) \ {v1, v2}) ∩ (NBn(v1) \ {v})| = 0 and |(NBn(v) \ {v1, v2}) ∩
(NBn(v2) \ {v})| = 0 and |[NBn(v1) \ {v}] ∩ [NBn(v2) \ {v}]| ≤ 1. Thus, |F1 ∩ F2| ≥ |NBn(v) \
{v1, v2}|+ |NBn(v1) \ {v}|+ |NBn(v2) \ {v}| ≥ (n− 1− 2) + (n− 1− 1) + (n− 1− 1)− 1 = 3n− 8.
It follows that |F2| = |F2 \ F1|+ |F1 ∩ F2| ≥ 1 + 3n− 8 = 3n− 7 > 2n− 3 (n ≥ 5), which contradicts
|F2| ≤ 2n− 3.

Suppose that there are exactly two isolated vertices v and w in Bn − F1 − F2. Let v1 and v2 be
adjacent to v and w, respectively. Then NBn(v) \ {v1, v2} ⊆ F1 ∩ F2, NBn(w) \ {v1, v2} ⊆ F1 ∩ F2,
NBn(v1) \ {v, w} ⊆ F1 ∩ F2, NBn(v2) \ {v, w} ⊆ F1 ∩ F2, |(NBn(v) \ {v1, v2}) ∩ (NBn(v1) \ {v, w})| =
0 and |(NBn(v) \ {v1, v2}) ∩ (NBn(v2) \ {v, w})| = 0. |(NBn(w) \ {v1, v2}) ∩ (NBn(v1) \ {v, w})| =
0, |(NBn(w) \ {v1, v2}) ∩ (NBn(v2) \ {v, w})| = 0 and |[NBn(v1) \ {v, w}] ∩ [NBn(v2) \ {v, w}]| = 0.
By Proposition 4, there are at most two common neighbors for any pair of vertices in Bn. Thus, it follows
that |(NBn(v) \ {v1, v2}) ∩ (NBn(w) \ {v1, v2})| = 0. Thus, |F1 ∩ F2| ≥ |NBn(v) \ {v1, v2}|+ |NBn(w) \
{v1, v2}|+ |NBn(v1) \ {v, w}|+ |NBn(v2) \ {v, w}| = (n− 1− 2) + (n− 1− 2) + (n− 1− 2) + (n−
1− 2) = 4n− 12. It follows that |F2| = |F2 \ F1|+ |F1 ∩ F2| ≥ 1 + 4n− 12 = 4n− 11 > 2n− 3 (n ≥ 5),
which contradicts |F2| ≤ 2n− 3. The proof of Claim 1 is complete.

Let u ∈ V(Bn) \ (F1 ∪ F2). By Claim 1, u has at least one neighbor in Bn − F1− F2. Since the vertex
set pair (F1, F2) is not satisfied with any one condition in Lemma 10, by the condition (1) of Lemma 10,
for any pair of adjacent vertices u, w ∈ V(Bn) \ (F1 ∪ F2), there is no vertex v ∈ F1 M F2 such that
uw ∈ E(Bn) and vw ∈ E(Bn). It follows that u has no neighbor in F1 M F2. By the arbitrariness of u,
there is no edge between V(Bn) \ (F1 ∪ F2) and F1 M F2. Since F2 \ F1 6= ∅ and F1 is a 1-good-neighbor
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faulty set, δBn([F2 \ F1]) ≥ 1 and hence |F2 \ F1| ≥ 2. Since both F1 and F2 are 1-good-neighbor faulty
sets, and there is no edge between V(Bn) \ (F1 ∪ F2) and F1 M F2, F1 ∩ F2 is a 1-good-neighbor cut of
Bn. By Theorem 3, |F1 ∩ F2| ≥ 2n− 4. Therefore, |F2| = |F2\F1|+ |F1 ∩ F2| ≥ 2 + 2n− 4 = 2n− 2,
which contradicts with that |F2| ≤ 2n− 3. So Bn is 1-good-neighbor (2n− 3)-diagnosable. By the
definition of t1(Bn), t1(Bn) ≥ 3n− 4.

Combining Lemmas 13 and 14, we have the following theorem.

Theorem 11. Let n ≥ 5. Then the 1-good-neighbor diagnosability of the bubble-sort graph Bn under the MM∗

model is 2n− 3.

Lemma 15. Let n ≥ 4. Then the 2-good-neighbor diagnosability t2(Bn) ≤ 4n− 9 under the MM∗ model.

Proof. Let A, F1 and F2 be defined in Lemma 2. By the Lemma 2, F1 = NBn(A), F2 = A ∪ NBn(A),
then |F1| = 4n − 12, |F2| = 4n − 8, δ(Bn − F1) ≥ 2, and δ(Bn − F2) ≥ 2. So both F1 and F2 are
2-good-neighbor faulty sets. By the definitions of F1 and F2, F1 M F2 = A. Note F1 \ F2 = ∅, F2 \ F1 = A
and (V(Bn) \ (F1 ∪ F2)) ∩ A = ∅. Therefore, both F1 and F2 are not satisfied with any one condition in
Lemma 10, and Bn is not 2-good-neighbor (4n− 8)-diagnosable. Hence, t2(Bn) ≤ 4n− 9. The proof
is complete.

Lemma 16. Let n ≥ 4. Then the 2-good-neighbor diagnosability t2(Bn) ≥ 4n− 9 under the MM∗ model.

Proof. By the definition of 2-good-neighbor diagnosability, it is sufficient to show that Bn is
2-good-neighbor (4n− 9)-diagnosable. By Lemma 10, suppose, on the contrary, that there are two
distinct 2-good-neighbor faulty subsets F1 and F2 of Bn with |F1| ≤ 4n− 9 and |F2| ≤ 4n− 9, but the
vertex set pair (F1, F2) is not satisfied with any one condition in Lemma 10. Without loss of generality,
assume that F2 \ F1 6= ∅. Similarly to the discussion on V(Bn) 6= F1 ∪ F2 in Lemma 5, we have
V(Bn) 6= F1 ∪ F2.

Claim 1. Bn − F1 − F2 has no isolated vertex.

Suppose, on the contrary, that Bn − F1 − F2 has at least one isolated vertex w. Since F1 is a 2-good
neighbor faulty set, there are two vertices u, v ∈ F2 \ F1 such that u and v are adjacent to w. Since the
vertex set pair (F1, F2) is not satisfied with any one condition in Lemma 10, this is a contradiction.
Therefore, BSn − F1 − F2 has no isolated vertex. The proof of Claim 1 is complete.

Let u ∈ V(Bn) \ (F1 ∪ F2). By Claim 1, u has at least one neighbor in Bn − F1 − F2. Since the
vertex set pair (F1, F2) is not satisfied with any one condition in Theorem 10, by the condition (1) of
Lemma 10, for any pair of adjacent vertices u, w ∈ V(Bn) \ (F1 ∪ F2), there is no vertex v ∈ F1 M F2

such that uw ∈ E(Bn) and vw ∈ E(Bn). It follows that u has no neighbor in F1 M F2. By the
arbitrariness of u, there is no edge between V(Bn) \ (F1 ∪ F2) and F1 M F2. Since F2 \ F1 6= ∅ and
F1 is a 2-good-neighbor faulty set, δBn([F2 \ F1]) ≥ 2. By Lemma 4, |F2 \ F1| ≥ 4. Since both F1

and F2 are 2-good-neighbor faulty sets, and there is no edge between V(Bn) \ (F1 ∪ F2) and F1 M F2,
F1 ∩ F2 is a 2-good-neighbor cut of Bn. By Theorem 4, we have |F1 ∩ F2| ≥ 4n − 12. Therefore,
|F2| = |F2 \ F1|+ |F1 ∩ F2| ≥ 4 + (4n− 12) = 4n− 8, which contradicts |F2| ≤ 4n− 9. Therefore, Bn is
2-good-neighbor (4n− 9)-diagnosable and t2(Bn) ≥ 4n− 9. The proof is complete.

Combining Lemmas 15 and 16, we have the following theorem.

Theorem 12. Let n ≥ 4. Then the 2-good-neighbor diagnosability of the bubble-sort star graph Bn under the
MM∗ model is 4n− 9.
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We point out that B4 is the least bubble-sort graph satisfying the three sufficient conditions in
Lemma 10. Because B3 is a cycle with six vertices which is isomorphic to the 3-dimensional star graph,
by [21] B3 is not 2-diagnosable.

Lemma 17. Let n ≥ 7. Then the 3-good-neighbor diagnosability t3(Bn) ≤ 8n− 25 under the MM∗ model.

Proof. Let A, F1 and F2 be defined in Lemma 6. By the Lemma 6, F1 = NBn(A), F2 = A ∪ NBn(A),
then |F1| = 8n − 32, |F2| = 8n − 24, δ(Bn − F1) ≥ 3, and δ(Bn − F2) ≥ 3. So both F1 and F2 are
3-good-neighbor faulty sets. By the definitions of F1 and F2, F1 M F2 = A. Note F1 \ F2 = ∅, F2 \ F1 = A
and (V(Bn) \ (F1 ∪ F2)) ∩ A = ∅. Therefore, both F1 and F2 are not satisfied with any one condition in
Lemma 10, and Bn is not 3-good-neighbor (8n− 24)-diagnosable. Hence, t2(Bn) ≤ 8n− 25. The proof
is complete.

Lemma 18. Let n ≥ 7. Then the 3-good-neighbor diagnosability t3(Bn) ≥ 8n− 25 under the MM∗ model.

Proof. By the definition of 3-good-neighbor diagnosability, it is sufficient to show that Bn is
3-good-neighbor (8n − 25)-diagnosable. By Lemma 10, suppose, on the contrary, that there are
two distinct 3-good-neighbor faulty subsets F1 and F2 of Bn with |F1| ≤ 8n− 25 and |F2| ≤ 8n− 25,
but the vertex set pair (F1, F2) is not satisfied with any one condition in Lemma 10. Without loss
of generality, assume that F2 \ F1 6= ∅. Similarly to the discussion on V(Bn) 6= F1 ∪ F2 in Lemma 9,
we have V(Bn) 6= F1 ∪ F2.

Claim 1. Bn − F1 − F2 has no isolated vertex.

Suppose, on the contrary, that Bn − F1 − F2 has at least one isolated vertex w. Since F1 is a 3-good
neighbor faulty set, there are three vertices u, v ∈ F2 \ F1 such that u, v and x are adjacent to w. Since the
vertex set pair (F1, F2) is not satisfied with any one condition in Lemma 10, this is a contradiction.
Therefore, BSn − F1 − F2 has no isolated vertex. The proof of Claim 1 is complete.

Let u ∈ V(Bn) \ (F1 ∪ F2). By Claim 1, u has at least one neighbor in Bn − F1 − F2. Since the
vertex set pair (F1, F2) is not satisfied with any one condition in Theorem 10, by the condition (1) of
Lemma 10, for any pair of adjacent vertices u, w ∈ V(Bn) \ (F1 ∪ F2), there is no vertex v ∈ F1 M F2

such that uw ∈ E(Bn) and vw ∈ E(Bn). It follows that u has no neighbor in F1 M F2. By the
arbitrariness of u, there is no edge between V(Bn) \ (F1 ∪ F2) and F1 M F2. Since F2 \ F1 6= ∅ and
F1 is a 3-good-neighbor faulty set, δBn([F2 \ F1]) ≥ 3. By Lemma 8, |F2 \ F1| ≥ 8. Since both F1

and F2 are 3-good-neighbor faulty sets, and there is no edge between V(Bn) \ (F1 ∪ F2) and F1 M F2,
F1 ∩ F2 is a 3-good-neighbor cut of Bn. By Theorem 5, we have |F1 ∩ F2| ≥ 8n − 32. Therefore,
|F2| = |F2 \ F1|+ |F1 ∩ F2| ≥ 8 + (8n− 32) = 8n− 24, which contradicts |F2| ≤ 8n− 25. Therefore,
Bn is 3-good-neighbor (8n− 25)-diagnosable and t3(Bn) ≥ 8n− 25. The proof is complete.

Combining Lemmas 17 and 18, we have the following theorem.

Theorem 13. Let n ≥ 7. Then the 3-good-neighbor diagnosability of the bubble-sort graph Bn under the MM∗

model is 8n− 25.

5. Conclusions

In this paper, we investigate the problem of g-good-neighbor diagnosability of the n-dimensional
bubble-sort graph Bn under the PMC model and MM∗model and show g-good-neighbor diagnosability
of Bn is 2g(n− g)− 1 under the PMC model for g = 0, 1, 2, 3 and the MM∗ model for g = 0, 1, 2, 3,
respectively. The work will help engineers to develop more different networks.
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