
 information

Article

Full Support for Efficiently Mining Multi-Perspective
Declarative Constraints from Process Logs †

Christian Sturm *, Myriel Fichtner and Stefan Schönig

Institute for Computer Science, University of Bayreuth, 95447 Bayreuth, Germany;
myriel.fichtner@uni-bayreuth.de (M.F.); stefan.schoenig@uni-bayreuth.de (S.S.)
* Correspondence: christian.sturm@uni-bayreuth.de; Tel.: +49-(0)-921-55-76-24
† This paper is an extended version of conference paper: Sturm C., Schönig S. and Jablonski S. A MapReduce

Approach for Mining Multi-Perspective Declarative Process Models. In Proceedings of the 20th International
Conference on Enterprise Information Systems, 2018.

Received: 21 November 2018; Accepted: 10 January 2019; Published: 15 January 2019

Abstract: Declarative process management has emerged as an alternative solution for describing
flexible workflows. In turn, the modelling opportunities with languages such as Declare are less
intuitive and hard to implement. The area of process discovery covers the automatic discovery
of process models. It has been shown that the performance of process mining algorithms,
particularly when considering the multi-perspective declarative process models, are not satisfactory.
State-of-the-art mining tools do not support multi-perspective declarative models at this moment.
We address this open research problem by proposing an efficient mining framework that leverages the
latest big data analysis technology and builds upon the distributed processing method MapReduce.
The paper at hand further completes the research on multi-perspective declarative process mining by
extending our previous work in various ways; in particular, we introduce algorithms and descriptions
for the full set of commonly accepted types of MP-Declare constraints. Additionally, we provide a
novel implementation concept allowing an easy introduction and discovery of customised constraint
templates. We evaluated the mining performance and effectiveness of the presented approach
on several real-life event logs. The results highlight that, with our efficient mining technique,
multi-perspective declarative process models can be extracted in reasonable time.

Keywords: declarative process management; process mining; process discovery; mp-declare;
mapreduce; big data

1. Introduction

The research field of process mining refers to the automated discovery, conformance checking and
enhancement of business process models. Automated process discovery generates process models from
digitally provided event logs consisting of traces, such that each trace corresponds to one execution
of the recorded process. Each event in a trace consists of an event class (i.e., the activity to which the
event corresponds) and a timestamp. However, further information may also be available such as the
originator that performed a certain activity as well as data values in the form of attribute–value pairs.
Process mining is especially relevant for the analysis of processes that are often referred to as flexible,
unstructured or knowledge-intense [1]. Applying traditional process mining approaches that extract
procedural process models result in models that are colloquially called Spaghetti models due to their
complex und unreadable structure [2]. The results of process mining can alternatively be represented
as declarative process models, i.e., rules for directly representing the causality of the behaviour [3].
The advantages of declarative languages such as Declare [4] or DPIL [5] have been emphasised in
the literature. It is also well known that behaviour is typically intertwined with dependencies upon
value ranges of data parameters and resource characteristics [6]. An example sheds some light into

Information 2019, 10, 29; doi:10.3390/info10010029 www.mdpi.com/journal/information

http://www.mdpi.com/journal/information
http://www.mdpi.com
https://orcid.org/0000-0002-7666-4482
http://dx.doi.org/10.3390/info10010029
http://www.mdpi.com/journal/information

Information 2019, 10, 29 2 of 36

this complex issue. Let us assume a review activity must be performed. Both novices and experts
of a certain team are eligible to perform this task. However, if a novice is executing it, it is required
that a second person is double-checking the result. Thus, the activity “double-checking” only has
to be executed when novices perform the review step. Here, the resource perspective influences the
behavioural perspective. Therefore, Declare has been extended towards Multi-Perspective Declare
(MP-Declare) [7]. The relative strengths and weaknesses of different declarative process discovery
algorithms are discussed in the literature [8–10]. In summary, state-of-the-art mining tools such as
MINERful [11,12] and DeclareMiner [13] do not support MP-Declare at this moment. In particular,
the discovery of constraints that impose additional statements on data values or ranges of data values,
respectively, is an issue. In [14,15], first approaches to enable the discovery of MP-Declare constraints
based on SQL and relational databases have been proposed. However, it has not been investigated
how this complex mining task can be performed in an efficient way.

In our previous work [16], we first addressed this open research problem by proposing an
efficient mining framework for discovering MP-Declare models that leverages latest big data analysis
technology and builds upon the distributed processing method MapReduce. We introduced a
preliminary subset of parallelisable algorithms for discovering commonly used types of MP-Declare
constraints. The paper at hand further completes the research on MP-Declare mining by extending our
previous work [16] in various ways:

(i) We introduce algorithms and descriptions for the full set of commonly accepted types of
MP-Declare constraints.

(ii) The conceptual architecture of the implementation has been reworked such that new types of
constraints can be easily defined and extracted by the user.

(iii) We provide a more detailed description of the conceptual approach as well as the implemented
protoype.

(iv) Related work is discussed more thoroughly.

We evaluated the mining performance and effectiveness of the presented approach on several
real-life event logs. The results highlight that, with our efficient mining technique, multi-perspective
declarative process models can be extracted in reasonable duration.

The paper is structured as follows. Section 2 discusses related work. Section 3 introduces
the language and semantics of MP-Declare as well as basic mining metrics. Section 4 describes
the distributed framework we propose to speed up multi-perspective declarative process discovery.
In particular, we describe the whole set of algorithms to extract commonly used types of declarative
constraints. Section 5 describes the implementation of our approach as well as the evaluation of our
technique with real-life cases. Section 7 concludes the paper.

2. Related Work

Several approaches have been proposed for the discovery of declarative process models.
The relative strengths and weaknesses of different declarative process discovery algorithms are
discussed in the literature [8–10]. In [17], the authors presented an approach that allows the user to
select from a set of predefined Declare templates the ones to be used for the discovery. Other approaches
to improve the performances of the discovery task are presented in [18,19]. Additionally, there are
post-processing approaches that aim at simplifying the resulting Declare models in terms of redundancy
elimination [20,21], consistency checking [21,22] and disambiguation [23].

Other approaches for the discovery of Declare constraints have been presented in [24–26]. In [24],
the authors presented the Evolutionary Declare Miner, which implements the discovery task using a
genetic algorithm. The work in [25,26] describes the usage of inductive logic programming techniques
to mine models expressed as a SCIFF first-order logic theory, consisting of a set of implication
rules named Social Integrity Constraints (ICs). Finally, the learned theory is translated into the
Declare notation.

Information 2019, 10, 29 3 of 36

An approach similar to the SQL-based one is presented in [27] and is based on temporal logic
query checking. In [28], the authors defined Timed Declare, an extension of Declare that relies on
timed automata. In [29], an approach for analysing event logs with Timed Declare is proposed.
The DPILMiner [30], the RALphMiner [31] and the team compositions miner [32] exploit discovery
approaches to incorporate the resource perspective and to mine for a set of predefined resource
assignment constraints. In [33], the authors introduced for the first time a data-aware semantics for
Declare and [34] first covered the data perspective in declarative process discovery, although this
approach only allows for the discovery of discriminative activation conditions. The work in [14,15]
proposes the first approach to enable the discovery of MP-Declare constraints by querying event logs
given in relational databases with SQL. Hence, event logs first need to be imported into a relational
database and the templates of MP-Declare are mapped to SQL queries. Existing research on SQL-based
MP-Declare mining focuses on the description of effectiveness, however, a performance evaluation has
not been described.

Furthermore, MP-Declare models are supported in the context of conformance checking [35],
trace generation [36] and execution [37]. The execution engine builds on a classification strategy for
different constraint types and a transformation component into the execution language Alloy that
is used to solve SAT problems. Here, a modelling and execution prototype has been implemented
as well.

In recent work [16,38], the authors presented a distributed approach for mining MP-Declare
process models based on MapReduce. The paper at hand extends this work by providing algorithms
and descriptions for the full set of commonly accepted types of MP-Declare constraints as well as
an in-depth description of the implemented prototype. Furthermore, the conceptual architecture of
the implementation has been reworked such that new types of constraints can be easily defined and
extracted by the user.

3. Preliminaries

In this section, we describe the basic concepts of of multi-perspective declarative process
modelling and introduce basic metrics of declarative process mining. Further on, we introduce
in the basic concepts of MapReduce as scaffolding computation model.

3.1. Multi-Perspective, Declarative Process Modelling

Declarative process models are strong in representing the behaviour of flexible business processes.
Declarative process modelling languages such as Declare [39] describe a set of constraints that must
be satisfied throughout the process execution. Constraints are instances of predefined templates.
Templates are patterns that define parameterised classes of properties. The semantics of such templates
are typically formalised using formal logics such as Linear Temporal Logic over finite traces (LTL f) [40].

The main shortcoming of existing languages such as Declare is the fact that templates are not
capable of modelling the connection between the temporal flow and other perspectives of a process.
Consider the example of a loan application process where it should be possible to specify constraints
such as the following:

1. Activation conditions: When a loan is requested and account balance > 4000 EUR, the loan must
subsequently be granted.

2. Correlation conditions: When a loan is requested, the loan must subsequently be granted and
amount requested = amount granted.

3. Target conditions: When a loan is requested, the loan must subsequently be granted by a specific
member of the financial board.

4. Temporal conditions: When a loan is requested, the loan must subsequently be granted within the
next 30 days.

Information 2019, 10, 29 4 of 36

Traditional Declare only allows for defining single-perspective constraints that relate activities
without considering other process perspectives such as data values and resources. Here, the F, X, G,
and U LTL f future operators have the following semantics: formula Fψ1 means that ψ1 holds sometime
in the future; Xψ1 means that ψ1 holds in the next position; Gψ1 means that ψ1 holds forever in the
future; and ψ1Uψ2 means that sometime in the future ψ2 will hold and until that moment ψ1 holds
(with ψ1 and ψ2 LTL f formulas). The O, Y and S LTL f past operators have the following meaning:
Oψ1 means that ψ1 holds sometime in the past; Yψ1 means that ψ1 holds in the previous position; and
ψ1Sψ2 means that ψ1 has held sometime in the past and since that moment ψ2 holds.

The response constraint G(A → FB), for example, defines that if A occurs, B must eventually
follow. Hence, this constraint is satisfied in traces such as t1 = 〈A, A, B, C〉, t2 = 〈B, B, C, D〉,
and t3 = 〈A, B, C, B〉, but not for t4 = 〈A, B, A, C〉 because the second occurrence of A is not followed
by a B. In t2, it is so-called vacuously satisfied [41], in a trivial way, because A never occurs.

An activation activity of a constraint in a trace is an activity whose execution imposes some
obligations on the execution of other activities (the so-called target activities) in the same trace (see
Table 1). A is an activation activity for the response constraint G(A→ FB) and B is a target, because
performing A forces B to be executed, at some point in the future. An activation of a constraint leads to
a fulfillment or to a violation. Consider, G(A→ FB). In trace t1, the constraint is activated and fulfilled
twice; however, in trace t3, it is activated and fulfilled only once. In trace t4, it is activated twice and
the second activation leads to a violation (B does not occur subsequently).

Table 1. Semantics for MP-Declare constraints in LTL f .

Template LTL f Semantics

existence(A) > → F(e(A)∧ϕa(~x)) ∨O(e(A)∧ϕa(~x))

responded existence(A, B) G((A∧ϕa(~x))→ (O(B∧ϕc(~x,~y) ∧ ϕt(~y)) ∨ F(B∧ϕc(~x,~y) ∧ ϕt(~y))))

response(A, B) G((A∧ϕa(~x))→ F(B∧ϕc(~x,~y) ∧ ϕt(~y)))
alternate response(A, B) G((A∧ϕa(~x))→ X(¬(A∧ϕa(~x))U(B∧ϕc(~x,~y) ∧ ϕt(~y)))
chain response(A, B) G((A∧ϕa(~x))→ X(B∧ϕc(~x,~y) ∧ ϕt(~y)))

precedence(A, B) G((B∧ϕa(~x))→ O(A∧ϕc(~x,~y) ∧ ϕt(~y)))
alternate precedence(A, B) G((B∧ϕa(~x))→ Y(¬(B∧ϕa(~x))S(A∧ϕc(~x,~y) ∧ ϕt(~y)))
chain precedence(A, B) G((B∧ϕa(~x))→ Y(A∧ϕc(~x,~y) ∧ ϕt(~y)))

co existence(A, B) responded existence(A, B) ∧ responded existence(B, A)
succession(A, B) response(A, B) ∧ precedence(A, B)
alternate succession(A, B) alternate response(A, B) ∧ alternate precedence(A, B)
chain succession(A, B) chain response(A, B) ∧ chain precedence(A, B)

not responded existence(A, B) G((A∧ϕa(~x))→ ¬(O(B∧ϕc(~x,~y) ∧ ϕt(~y)) ∨ F(B∧ϕc(~x,~y) ∧ ϕt(~y))))
not response(A, B) G((A∧ϕa(~x))→ ¬F(B∧ϕc(~x,~y) ∧ ϕt(~y)))
not precedence(A, B) G((B∧ϕa(~x))→ ¬O(A∧ϕc(~x,~y) ∧ ϕt(~y)))
not chain response(A, B) G((A∧ϕa(~x))→ ¬X(B∧ϕc(~x,~y) ∧ ϕt(~y)))
not chain precedence(A, B) G((B∧ϕa(~x))→ ¬Y(A∧ϕc(~x,~y) ∧ ϕt(~y)))
not co existence(A, B) not responded existence(A, B) ∧ not responded existence(B, A)
not succession(A, B) not response(A, B) ∧ not precedence(A, B)
not chain succession(A, B) not chain response(A, B) ∧ not chain precedence(A, B)

The necessity for defining such multi-perspective coherencies led to the definition of a
multi-perspective extension of Declare (called MP-Declare) [35]. The semantics of MP-Declare
build on the term of payload of an event. e(activity) identifies the occurrence of an event to
distinguish it from the activity name. At the time of a certain event e, its attributes x1, . . . , xm

have certain values. pe
activity = (valx1, . . . , valxn) represents its payload. To denote the projection

of the payload pe
A = (x1, . . . , xn) over attributes x1, . . . , xm with m 6 n, the notation pe

A[x1, . . . , xm]

is used. For instance, pe
ApplyForTrip[Resource]=SS is the projection of the attribute Resource in the

event description. Moreover, the n-ples of attributes xi are given as ~x. Hence, the templates in

Information 2019, 10, 29 5 of 36

MP-Declare extend the traditional version of Declare with further conditions and constraints on
event attributes. In particular, given the events e(A) and e(B) with payloads pe

A = (x1, . . . , xn) and
pe

B = (y1, . . . , yn), the activation condition ϕa, the correlation condition ϕc, and the target condition ϕt are
specified. The activation condition is part of the activation φa, whereas the correlation and target
conditions are part of the target φt, according to their respective time of execution and evaluation.
The activation condition is a fact that must be valid when the activation happens. For a response
constraint, the activation condition has the shape ϕa(x1, . . . , xn), meaning that the proposition ϕa over
(x1, . . . , xn) must hold true. The correlation condition must be valid when the target happens, and it
relates the payloads of the activation and the target event. It has the shape ϕc(x1, . . . , xm, y1, . . . , ym)

with m 6 n, where ϕc is a formula on the variables of both the payload of e(A) and the payload of
e(B). Target conditions express conditions on the values of the attributes that are registered at the
moment wherein the target activity occurs. They have the shape ϕt(y1, . . . , ym) with m 6 n, where ϕt

is a propositional formula involving variables in the payload of e(B).

3.2. Metrics for Mining MP-Declare Models

In this section, we explain the metrics that are used to distinguish between constraints that are
fulfilled in the event log and constraints that are rarely satisfied. These metrics are called support
and confidence.

Evaluation the given constraint templates provides for every possible combination of values
for the free variables in the templates the number of satisfactions in the examined log. Based on
the number of satisfactions, two metrics, Support and Confidence, are calculated, which express the
probability of a concrete constraint to be valid during process execution. Here, Support is defined as
the number of fulfilments of a constraint divided by the number of occurrences of the condition of
a constraint. The Confidence metric scales the support by the fraction of traces in the log where the
activation condition is satisfied. Constraints are considered valid if their Support and Confidence values
are above a certain threshold. In the work at hand, we consider two specifications of support that have
been defined in the literature, namely the event-based support [12] and the trace-based support [17].
As defined in [12], we denote the set of events in a trace t of an event log L that fulfil an LTL f formula
ψ as |=e

t (ψ). The set of all events in the log L that fulfil ψ are given as |=e
L (ψ). Given a constraint Ξ

comprising activation φa and target φt, the event-based support S e
L and the event-based confidence Ce

L
as follows:

S e
L =

|L|
∑

i=1

∣∣∣|=e
ti
(Ξ)

∣∣∣∣∣|=e
L (φa)

∣∣ (1)

Ce
L =
S e

L ×
∣∣|=e

L (φa)
∣∣

|L| (2)

3.3. MapReduce

3.3.1. Origin

MapReduce was originally introduced back in 2004 by Jeffrey Dean and Sanjay Ghemawat [42]
to handle the storage and processing of Google Inc.’s internal datasets, which exceeded the size
of normal datasets (BigData) and thus are not applicable with contemporary processing methods.
These data are usually distributed over several nodes within a network of hard drives. The MapReduce
programming model helps to write frugal code snippets in terms of abstracting from low-level layers
like network communication, parallelisation, node failure, etc. The wide-ranging application use cases,
e.g., large-scale machine learning problems, analysing web pages and indexing the Word Wide Web
for Google’s web search service, shows the versatility of MapReduce. Since then, MapReduce has
entered and solved many issues in a variety of application domains. In this paper, we carry the list of

Information 2019, 10, 29 6 of 36

use-cases forward in terms of an efficient framework for discovering multi-perspective declarative
process models within the field of Business Process Management.

3.3.2. Implementations

There are a couple of confounding artefacts referring to the same terminology, i.e., MapReduce
(or map and reduce), but include different concepts. To avoid misunderstandings, the two main
representatives are differentiated here.

• MapReduce. Referring to Google’s original paper [42] or Hadoop [43], the open source de-facto
standard implementation in Java, MapReduce, implies two functions, namely Map (a parallel
transformation) and Reduce (a parallel aggregation). For the sake of performance with large
datasets, these implementations include an intermediate shuffle or group phase.

• Map and Reduce in Functional Programming. Functional Programming languages or
frameworks, such as Haskell, Java (includes functional concepts since Version 1.8) or Spark, also use
the terms map and reduce, but are different from the MapReduce concepts mentioned above.
For instance, in functional programming, users specify the semantic logic in a declarative way
rather than the control flow [44].

However, we specify the functionality of process model discovery in an abstract way, so that it
can be migrated to any implementation, e.g. Apache’s Hadoop [38] or Java (cf. Section 5).

3.3.3. Functionality

In this section, we explain the basic principle of MapReduce by means of the typical word-count
example. As stated, this can be applied to several implementations and serves as fundamental basis
for the remainder of the paper.

The input of the map-function is the text whose words are going to be counted. As we want
to count the words (not characters or something else), we have to split the sentences or text by
whitespaces, to receive the whole text separated by words. The map-function produces key–value
pairs and for our simple example each word builds the key of a single key–value pair with the value 1
(e.g., (Process, 1)). The reduce-function obtains then key–value pairs, whose values are aggregated to
identical keys (during the shuffling or grouping phase), e.g., each value 1 of the three key–value pairs
(Process, 1) are aggregated to (Process, [1, 1, 1]) in the example below. The Reducer finally processes
the list of values, for instance sums up the elements, e.g., (Process, 3).

Full Example:

Input: DECLARATIVE PROCESS MINING DISCOVERS DECLARATIVE PROCESS MODELS, USED IN

BUSINESS PROCESS MANAGEMENT.
Mapping:
(DECLARATIVE, 1), (PROCESS, 1), (MINING, 1), (DISCOVERS, 1), (DEVLARATIVE, 1), (PROCESS, 1),

(MODELS„ 1), (USED, 1), (IN, 1), (BUSINESS, 1), (PROCESS, 1), (MANAGEMENT, 1)
Shuffling:
(DECLARATIVE, [1, 1]), (PROCESS, [1, 1, 1]), (MINING, 1), (DISCOVERS, 1), (MODELS,, 1), (USED, 1)

(IN, 1), (BUSINESS, 1), (MANAGEMENT, 1)
Reducing:
(DECLARATIVE, 2), (PROCESS, 3), (MINING, 1), (DISCOVERS, 1), ...

In a nutshell, the map-function applies logic to its input and produces key–value pairs based on
the logic. In sophisticated frameworks, a shuffle or group stage follows to do a pre-aggregation for
performance issues. The reduce-function receives the prepared key–value pairs and again applies
specific logic to it.

Information 2019, 10, 29 7 of 36

4. Map-Reduce for Declarative Process Mining

In this section, we describe an efficient framework for discovering MP-Declare constraints.
After giving insights into the internal infrastructure, we explain the parallelisable discovery algorithms
for commonly used MP-Declare constraints that are used to discover models under consideration of
further perspectives.

4.1. Architecture and Infrastructure

The basic idea of the algorithm builds upon the MapReduce computation model. One key
advantage is the inbuilt opportunity for executing the calculations in parallel, leading to an enormous
performance boost. At first, the scaffolding of the MapReduce algorithm is described briefly by means
of relational constraints with respect to the discovery of a process model described below. In the
next section, we use an example log containing two traces defined in Equation (3). For the sake of
comprehensibility, we use in this case a single-perspective example to outline the calculation steps.

t0 = 〈a, b, b, c〉 t1 = 〈a, c, d〉 (3)

To compute the support and confidence metrics, two MapReduce jobs are required, MR-I and
MR-II (cf. Figure 1).

MR-I

trace0

trace1

trace2

tracen

MR-
II

memory

σ

η

ε

σ

η

ε

Support

Confidence

Figure 1. Infrastructure of the calculation [16].

4.1.1. MR-I

In the map-phase of MR-I, key–value pairs are created from the locally provided event data, i.e.,
a single trace of a log file. Each of the key–value pairs is assigned to a number for further processing.
In the case of process discovery, this number is always 1. The challenge is to generate these key–value
pairs in order to address the logic for the MP-Declare constraints.

Example 1. Given a trace t0 = 〈a, b, b, c〉, consider the response template, i.e., whenever an event e1 occurs,
the event e2 must follow (response(e1, e2)). The trace t0 is therefore mapped to five different key–value pairs
in the map phase: ((a, b), 1), ((a, c), 1), ((b, b), 1), ((b, c), 1), ((b, c), 1). The keys are exactly those event pairs
which fulfil the response template: a is followed by b and c, the first b is followed by c and the second b, which is
again followed by c. Note that a constraint can only be fulfilled once per trace, e.g. response(a, b) is fulfilled
only by the first event b. The underlying mapping algorithm containing the logic for all constraint templates is
described in Section 4.2.

The reduce-phase finally obtains the key–value pairs that have been produced.
The reduce-function must be declared by the user once again. In the case of constraint checking,
this phase depicts a summation of values. To continue the example above, the result of the reducer
with trace t0 is: ((a, b), 1), ((a, c), 1), ((b, b), 1), ((b, c), 2).

σ-Function

The support metric is defined as the number of fulfilments of a constraint divided by the number
of occurrences of the activation. The MR-I job in the example above calculates exactly the number

Information 2019, 10, 29 8 of 36

of fulfilments, thus the numerator of the support formula. In the following, we use a function
σγ : E× E→ N, where E are events, for describing this figure, e.g., in t0: σresponse(b, c) = 2. γ denotes
a constraint template like response or chainResponse.

η-Function

To calculate the support of a constraint, the number of occurrences of the activation is necessary.
If the event that fulfils a constraint occurs after the activation event (future constraining constraints),
this is the first event in the constraint template, e.g., b in the constraint response(b, c). In the reverse case,
where the event that fulfils a constraint occurs before the activation event (history-based constraints),
event c would be taken into account. We define the number of occurrences of events as η : E→ N, for
instance in trace t0: η(b) = 2. To obtain the correct values for the η-function, for each event e in the trace
a key–value pair, (e, 1) is additionally emitted in the map phase, e.g., for t0, (a, 1), (b, 1), (b, 1), (c, 1),
which is reduced to (a, 1), (b, 2), (c, 1).

ε-Function

A third value is necessary for determining the confidence, namely the amount of traces in which
a given event occurs. We introduce the function ε : E→ N, which holds this information. Taking into
account the second trace t1 (cf. Equation (3)), MR-I outputs ε(c) = 2 or ε(d) = 1, as c occurs in t0 and
t1, whereas d occurs in t1 solely. Transferring this to MR-I, for each unique event e, a key–value pair
(e, 1) has to be produced, neglecting multiple occurrences of events, e.g., for trace t0: (a, 1), (b, 1), (c, 1).

Tables 2 and 3 show the complete result of MR-I for the input log (cf. Equation (3)) considering
two constraint templates: response and chainResponse. The output of all mappers serves as the input for
the reducers.

Table 2. Output Mapper MR-I [16].

Trace σR σCR η ε

a,b,b,c ab,1 bc,1 ab,1 a,1 a,1
ac,1 bb,1 b,1 b,1
bb,1 bc,1 b,1 c,1
bc,1 c,1

a,c,d ac,1 ac,1 a,1 a,1
ad,1 cd,1 c,1 c,1
cd,1 d,1 d,1

Table 3. Output Reducer MR-I [16].

σR σCR η ε

ab,1 bc,2 ab,1 ac,1 a,2 a,2
ac,2 ad,1 bb,1 cd,1 b,2 b,1
bb,1 cd,1 bc,1 c,2 c,2

d,1 d,1

4.1.2. MR-II

Two MapReduce jobs are performed where the event log only serves as input for the first
MapReduce job. The output values of MR-I are used in MR-II to calculate support and confidence.
Note that these calculations had to be extracted to a separate job because every single trace of the
provided log needs to be tackled first in MR-I in order to obtain the σ-, η- and ε-functions. This makes
MR-II mandatory; however, with a look on the performance, support and confidence can be computed
in parallel again.

Information 2019, 10, 29 9 of 36

Using the functions introduced above, the support of a (future constraining) constraint
response(b, c) can be computed as SR(b, c) = σR(b,c)

η(b) = 2
2 = 1 (cf. Equation (4)), thus as the fraction

between the fulfilments of the constraint and the amount of its activations.

SFC(e1, e2) =
σ(e1, e2)

η(e1)
(4)

SBC(e1, e2) =
σ(e1, e2)

η(e2)
(5)

The confidence of a (future constraining) constraint for an event pair (e1, e2) is the product of
the support of (e1, e2) with the ratio between the amount of traces in the log in which event e1 occurs
(or e2 in case of history-based constraints) and the total number of traces in the log, denoted as |l| in
Equation (6).

CFC(e1, e2) = SFC(e1, e2) ·
ε(e1)

|l| (6)

CBC(e1, e2) = SBC(e1, e2) ·
ε(e2)

|l| (7)

In the running example, the confidence of the constraint response(b, c) is calculated as
CR(b, c) = SR(b, c) · (ε(b)

|l|) = 1 · 1
2 = 0.5.

In terms of MapReduce, the MR-II is structured rather trivial. In the map-phase, the output of
MR-I is conducted directly to the reducer neglecting η and ε, i.e., all key–value pairs of the σ-function
of all constraints are emitted and obtained by the reducer. The reduce-function then consults the DB
to look up the relevant η- and ε-value for a given key and calculates the corresponding support and
confidence values (according to Equations (4)–(7)).

4.2. Mapping MP-Declare Templates to MapReduce

We have to apply the logic of MP-Declare constraints into the MR-I mapping function to emit
the necessary key–value pairs (KVPs) and calculate the correct values for support and confidence.
For this purpose, we developed and derived algorithms from the support functions introduced in [12].
Therefore, we defined specific σγ functions for each of the MP-Declare relation constraints. Note that all
the algorithms are working at only one trace instead of the whole log file, which ensures the capability
of parallelisation.

For reasons of readability, we use an abbreviated form for representing the event data in this
section. We let the set of activities be {a, b, c, d}. Below, we restrict to one single perspective,
e.g., the organisational perspective, thus the defined resources that can execute the activities are
{x, y, z}. For instance, trace t2 in Equation (8) holds the information that in the beginning a was
executed by x, subsequently c was executed by z and so forth. In the end, the case is closed when again
a was executed by x.

t2 = 〈ax, cz, by, bx, dz, by, ax〉 (8)

The structure of the algorithm is built upon a nested for-loop, so that, for each event in a given
trace, every successor is considered. Henceforth, i denotes the loop control variable for the outer loop
and j is the counter variable for the inner loop.

In the case of t2 (cf. Equation (8)), all successors for ax are addressed in the inner loop (i = 0),
whereas in the next step (i = 1) all successors for cz are considered and so forth. While iterating
over the trace, different representations of the events are requested to match the multi-perspective
constraint templates. We denote the events for the outer loop as ieΓ and for the inner loop as eΓ

j , where
Γ takes either A (activation) or T (target).

For instance, for i = 1 and j = 4, and in search of activation constraints (i.e., A = (task, resource)
and T = (task)), the following representations are detected: 1eA = cz, 1eT = c, eA

4 = dz and eT
4 = d.

Information 2019, 10, 29 10 of 36

In the following section, we describe all necessary equations and variables to calculate the
constraints in Table 4 from the multi-perspective view. The 20 single-perspective constraints are
classified into four groups according to Di Ciccio and Mecella [12]: existence constraints (01–06),
relation constraints (07–13), mutual relation constraints (13–17), and negative relation constraints
(18–20). The characteristics of each group and their specific calculation of the support and confidence
value is assumed in the corresponding Sections 4.2.1–4.2.4. Further, we explain how the constraints of
each group are defined and how they are considered from a multi-perspective view by differentiating
between activation and target constraints. Finally, we point out the constraints’ respective mining
details by giving an example referring to the trace in Equation (8). All equations are summarised at the
end of this section in Table 20.

Table 4. Overview of all single-perspective constraints according to Di Ciccio and Mecella [12].
The symbol # represents the number of occurrences of the following event. The notation ti[f irst]
refers to the first event and ti[last] to the last event in the trace i in the log containing m ∈ N traces with
i ∈ {1, ..., m}.

Constraint Activated with Fulfilled with Trace-/Event-Based

01. Existence(n, a) a #a Trace-based
02. Participation(a) a #a ≥ 1 Trace-based
03. Absence(n + 1, a) a #a ≤ n Trace-based
04. Uniqueness(a) a #a ≤ 1 Trace-based
05. Init(a) a ti[f irst] = a Trace-based
06. End(a) a ti[last] = a Trace-based
07. Responded Existence(a, b) a b Event-based
08. Response(a, b) a b Event-based
09. AlternateResponse(a, b) a b Event-based
10. ChainResponse(a, b) a b Event-based
11. Precedence(a, b) b a Event-based
12. AlternatePrecedence(a, b) b a Event-based
13. ChainPrecedence(a, b) b a Event-based
14. CoExistence(a, b) a, b a, b Event-based
15. Succession(a, b) a, b a, b Event-based
16. AlternateSuccession(a, b) a, b a, b Event-based
17. ChainSuccession(a, b) a, b a, b Event-based
18. NotChainSuccession(a, b) a, b a, b Event-based
19. NotSuccession(a, b) a, b a, b Event-based
20. NotCoExistence(a, b) a, b a, b Event-based

4.2.1. Existence Constraints

Existence constraints (EC) deal with future constraining constraints and describe the presence
or absence and in some parts the position of a single event. They consider the number of occurrences
of a single event in the trace. This amount is then for example compared to a fixed value n while
the constraint is fulfilled if the comparison is true. For existence constraints, no nested loops are
necessary and solely the outer loop referring to the loop control variable i is used. Since existence
constraints consider exclusively one variable, only activation constraints are meaningful. Therefore,
the single event holds the additional condition. The trace-based support and confidence equations
(Equations (4) and (6)) are adapted for multi-perspective existence constraints as follows.

The support is stated as SEC, while e and x are used as place holders for an arbitrary event that is
executed by an additional condition x. The value of σEC(ex) describes the number of fulfillments of
the respective existence constraint. The number of traces in the whole log is presented by |l|.

SEC(ex) =
σEC(ex)
|l| (9)

Information 2019, 10, 29 11 of 36

The confidence CEC requires ε(ex) which stores the number of traces in which event e executed
by x occurs.

CEC(ex) = SEC(ex) · ε(ex)
|l| (10)

The following items describe six existence constraints and the determination of the associated
values of σ for the exemplary trace in Equation (8).

1. Existence
Description. The future constraining constraint existence(n, e) indicates that event e must occur
at least n-times in the trace. The variable n takes an integer between 1 and the amount of
occurrences of the event e in the trace, while e activates the constraint.
Mining Trace-based
Beginning with the first trace, the constraint is fulfilled for each event e and variable n if the
amount of occurrences of e in the trace is equal or greater than the value of n. By iterating
through the trace, the fulfilled constraints are contemporaneously computed with the amount
of occurrences of the respective event. As explained above, only activation constraints are take
into account. The initial assignment of i is 0, while j is not considered, because of computing
a trace-based constraint. Thus, the event ax is considered first and the amount of occurrences
of ax is increased from 0 to 1 (cf. Table 5). The variable n takes the value of the up to this point
computed amount of occurrences of the respective event in the trace. Thus, existence(1, ax) is
investigated in this first case and σE(1, ax) is incremented by 1. In the case of i = 5, the amount
of occurrences of event by in the trace is increased from 1 to 2 and therefore existence(2, by)
is fulfilled.

Table 5. MR-I results for existence constraints (activation).

ax cz by bx dz by ax

1 1 1 1 1 2 2

2. Participation
Description. The future constraining constraint participation(e) indicates that event e occurs at
least once in the trace. This constraint is equivalent to existence(1, e).
Mining Trace-based
For each event that occurs in the considered trace, the respective constraint is fulfilled. All traces
that fulfil the constraint relating to a certain e are counted to receive the number of fulfillments in
the whole log. That value is computed just as the corresponding value of ε.
Because this constraint is classified as trace-based, only activation constraints are considered and
there is no nested loop necessary. Similar to the existence constraint, i is initialised with 0 and the
computation starts with ax. The constraint participation is fulfilled for each event that occurs in
the trace, while each event is regarded by the iteration variable i. In the step with i = 5 and i = 6,
the σ-value must not be modified, as the constraint participation(1, by) and (1, ax) were already
activated and fulfilled with 2eA and 0eA and is stored only once per trace (cf. Table 6).

Table 6. MR-I results for participation constraints (activation).

ax cz by bx dz by ax

3 3 3 3 3 1PA 2PA

3. Absence
Description. The future constraining constraint absence(n + 1, e) indicates that event e may
occur at most n− times in the trace. The variable n takes an integer between 2 and the size of the

Information 2019, 10, 29 12 of 36

respective trace, while event e activates the constraint.
Mining Trace-based
In the first step, the amount of occurrences of each event in a trace is counted by iterating the
trace with variable i. Since the absence constraint is limited by this amount, it has to be checked
after counting the occurrences of all events. In a second step, two additional nested loops are
added. The outer loop considers variable n reaching from 2 to the size of longest trace in the event
log. The inner loop iterates all events in the trace and in each cycle, their amount of occurrences
which were counted in the first step are compared to the recent value of n. Let ae be the variable
for the inner loop that refers to the set of events in the trace, containing each event once in the
order predetermined by the control variable i. The constraint is fulfilled for a certain event, if n is
greater than the amount of occurrences of the respective event. If the constraint is fulfilled, it is
implicitly fulfilled for all values bigger than n.
For this constraint, only activation constraints are considered and so the event holds the
additional condition. The initial assignment of (n, ae) is (2, 0), hence absence(2, ax) is investigated
in the first case. The constraint is not fulfilled, since ax occurs 2 times in the trace. In the
next step, the σ-value needs to be incremented by 1, as the constraint absence(2, cz) is fulfilled.
This constraint is also fulfilled for values of n greater than 2, represented by 2.. in Table 7.

Table 7. MR-I results for absence constraints (activation).

ax cz by bx dz

3.. 2.. 3.. 2.. 2..

4. Uniqueness
Description.
The future constraining constraint uniqueness(e) indicates that event e occurs at most once in the
trace. This constraint is equivalent to absence(2,e).
Mining Trace-based
The computation for the uniqueness constraint is equal to the computation of the participation
constraint. The only difference is the value of n. In the uniqueness constraint, n is fixed to the
value 2 and thus the constraint is fulfilled for a certain event, if it does not occur in the trace or
occurs only once in the trace. As described in the above section, we consider vacuously defined
constraints. For this reason, uniqueness constraint is not fulfilled if the event does not occur in
the trace.
Since n is fixed, the additional nested loops are not necessary. As the uniqueness constraint is
trace-based, only activation constraints are taken into account. In the case of 1U and 2U in Table 8,
the referring constraints uniqueness(ax) and uniqueness(by) are violated because the events ax
and by occur 2 times in the trace.

Table 8. MR-I results for uniqueness constraints (activation).

ax cz by bx dz

1U 3 2U 3 3

5. Init
Description.
The future constraining constraint init(e) indicates that event e is the first event that occurs in
the trace.
Mining Trace-based
For each trace, only the first event per trace is taken into account. Each of these events fulfil the
constraint. Only the initial assignment of i = 0, eA

0 and activation constraints are considered.

Information 2019, 10, 29 13 of 36

The event ax is the first event in the trace and fulfils the constraint, while the fulfillment check for
all over events in the trace eA

1 to eA
6 is skipped (cf. Table 9).

Table 9. MR-I results for init constraints (activation).

ax cz by bx dz by ax

3

6. End
Description.
The future constraining constraint end(e) indicates that event e is the last event that occurs in
the trace.
Mining Trace-based
For each trace, only the last event per trace is taken into account. Each of these events fulfil
the constraint. Only the last assignment of i, which means eA

6 , and activation constraints are
considered. The event ax is the last event in the trace and fulfils the constraint, while the
fulfillment check for all over events in the trace eA

0 to eA
5 is skipped (cf. Table 10).

Table 10. MR-I results for end constraints (activation).

ax cz by bx dz by ax

3

4.2.2. Relation Constraints

Relation constraints (RC) are future constraining and history-based constraints and focus on the
relation of two events. In general, they consider the common occurrence of two events a, b in the trace.

In the case of future constraining relation constraints, event a activates the constraint and the
later appearing event b fulfils the constraint. The event-based support and confidence equations
(Equations (4) and (6)) are adapted for multi-perspective future constraining relation constraints as
follows. The support and confidence for future constraining activation constraints (FA) is stated as
SFA_RC and CFA_RC, while a, executed by x and b, executed by y, are used as place holders for two
arbitrary events with the restriction that b occurs after a in the trace. The value of σFA_RC describes the
number of fulfillments of the respective future constraining activation relation constraint.

SFA_RC(ax, b) =
σFA_RC(ax, b)

η(ax)
(11)

CFA_RC(ax, b) = SFA_RC(ax, b) · ε(ax)
|l| (12)

The support and confidence for future constraining relation constraints with focus on the target
template (FT) is stated as SFT_RC and CFT_RC. The value of σFT_RC describes the number of fulfillments
of the respective future constraining target relation constraint.

SFT_RC(a, by) =
σFT_RC(a, by)

η(a)
(13)

CFT_RC(a, by) = SFT_RC(a, by) · ε(a)
|l| (14)

Information 2019, 10, 29 14 of 36

The reverse case holds for history-based relation constraints, where b activates the constraint and
the former appearing event a fulfils the constraint. Equations (5) and (7) are adapted for history-based
activation constraints (BA) to SBA_RC and CBA_RC. The value of σBA_RC describes the number of
fulfillments of the respective history-based activation relation constraint.

SBA_RC(a, by) =
σBA_RC(a, by)

η(by)
(15)

CBA_RC(a, by) = SBA_RC(a, by) · ε(by)
|l| (16)

The support and confidence for history-based and target relation constraints (BT) is stated
as SBT_RC and CBT_RC. The value of σBT_RC describes the number of fulfillments of the respective
history-based target relation constraint.

SBT_RC(ax, b) =
σBT_RC(ax, b)

η(b)
(17)

CBT_RC(ax, b) = SBT_RC(ax, b) · ε(b)
|l| (18)

The following items describe seven relation constraints and the determination of the associated
values of σ for the exemplary trace Equation (8).

1. Responded Existence
Description.
The future constraining and history-based constraint respondedExistence(a, b) indicates that, if
event a occurs in the trace, then event b occurs in the trace as well. Event a activates the constraint.
Mining Event-based
The whole trace has to be considered to take all events into account that occur before or after the
event that corresponds to the current value of the outer loop variable i. Therefore, the control
variable of the inner loop j starts with 0 for each value of i. All pairs with i 6= j fulfil the constraint
while this pair occurs the first time for the activating event in the trace.
The loop variables (i, j) are initialised with (0, 0), thus the event ax would be associated with itself.
Such associations are not meaningful and since i and j have the same values, the fulfillment check
is skipped. The next value for (i, j) is (0, 1) and therefore the events ax and cz are considered.
For activation constraints, the activating event holds the additional condition solely; hence,
respondedExistence(ax, c) is investigated in this case. This constraint, activated with 0eA(ax) is
fulfilled with eT

1 (c) and thus σRE(ax, c) is incremented by 1. In addition, for (0eA, eT
2), the value

for σRE(ax, b) is incremented. In the next step, i.e., (0eA, eT
3), the σRE(ax, b) must not be modified,

as the constraint respondedExistence(ax, b) activated with the event 0eA was already fulfilled with
eT

2 (cf. 1RE in Table 11a). Cases 2RE–16RE are similar.
For target constraints such as respondedExistence(a, cz), the additional condition appears on the
right-hand side. That means, the events in the outer loops have to match the target template:

ieT . Referring to Table 11b, in Case 17RE, σRE(a, by), respectively, must not be increased, as the
constraint is also already fulfilled (with eA

2 (by)). Cases 18RE–26RE are similar.

Information 2019, 10, 29 15 of 36

Table 11. MR-I results for respondedExistence constraints: (a) activation; and (b) target.

(a)

a c b b d b a

ax 3 3 1RE 3 2RE 3

cz 3 3 3RE 3 4RE 5RE

by 3 3 3 3 6RE 7RE

bx 3 3 3 3 8RE 9RE

dz 3 3 3 10RE 11RE 12RE

by 3 3 3 13RE 3 14RE

ax 3 3 3 15RE 3 16RE

(b)

ax cz by bx dz by ax

a 3 3 3 3 17RE 3

c 3 3 3 3 18RE 19RE

b 3 3 3 3 3 20RE

b 3 3 3 3 21RE 22RE

d 3 3 3 3 23RE 24RE

b 3 3 3 3 3 25RE

a 3 3 3 3 3 26RE

2. Response
Description.
The future constraining constraint response(a, b) indicates that, if event a occurs in the trace, then
event b occurs after a. Event a activates the constraint.
Mining Event-based
Since the response constraint considers only events that occur after the activating event in a trace,
the control variable of the inner loop j depends on the value of the outer loop variable i. Variable
j starts with the value i + 1. All event pairs referring to (i, j) fulfil the constraint while this pair
occurs the first time for the activating event in the trace.
The initial assignment of (i, j) is (0, 1). Since the assignment (0, 0) for the loop variables is never
considered, the first column and last row that refer to the value ax are omitted in Table 12a.
The events ax and cz are taken into account in the first step. If the activation conditions are
considered, the first constraint is response(ax, c). The constraint is activated with 0eA(ax) and
fulfilled with eT

1 (c). This leads to an incrementation of σR(ax, c) by 1. In the case of (0eA, eT
3),

the σR(ax, b) must not be modified, as the constraint response(ax, b) activated with the event 0eA

was already fulfilled with eT
2 . Cases 2R–5R in Table 12a are similar.

In terms of target conditions such as response(a, by), where the event on the right-hand side
holds the additional condition, the value of σR(a, by) must not be increased in the case of 6R.
The constraint is already fulfilled with eA

2 (by). The same also applies to 7R (cf. Table 12b).

Information 2019, 10, 29 16 of 36

Table 12. MR-I results for response constraints: (a) activation; and (b) target.

(a)

c b b d b a

ax 3 3 1R 3 2R 3

cz 3 3R 3 4R 3

by 3 3 5R 3

bx 3 3 3

dz 3 3

by 3

(b)

cz by bx dz by ax
a 3 3 3 3 6R 3

c 3 3 3 7R 3

b 3 3 3 3

b 3 3 3

d 3 3

b 3

3. Alternate Response
Description.
The future constraining constraint alternateResponse(a, b) indicates that each time event a occurs
in the trace, then event b occurs afterwards, before event a recurs. Event a activates the constraint.
Mining Event-based
For this template, the loop variables i and j take the same values as explained for the response
constraint. As additional restriction, the constraint alternate response is not fulfilled, if the set of
events that occur between the events referring to i and j contains the event that correspond to i.
In this case, the iteration is cancelled, i is incremented and the trace is taken into account with the
new values.
The alternateResponse template shares the pivot constellations for (i, j) for already fulfilled
constraints similar to the response template (cf. 1AR–5AR in Table 13a). Similar to the response
template, the initial assignment of (i, j) is (0, 1). As instance of an activation constraint,
the alternate response(ax, b) in iteration i = 0 from Table 13a is considered. In this case, the
constraint is activated by 0eA(ax) and fulfilled with the event eT

2 (b). Additional events b in the
same iteration must be ignored (e.g., eT

3).
Besides the already-fulfilled-errors, another class of error type is introduced, which was already
meant in a similar way in the uniqueness constraint: violations. Consider 6AR in Table 13a.
In this case, the constraint alternate response(by, a) is checked. Although this constellation has
not occurred thus far for this activation, the value σAR(by, a) must not be modified, because it is
violated by eA

5 (by): The activating event (by) recurs before a occurs. This is forbidden within the
alternateResponse template. Note that the resource is also decisive, thus alternateResponse (by, d),
activated with 2eA is fulfilled with eT

4 , although the event b recurs. However, this is executed by x
instead of y and so the constraint is not violated (marked with an asterisk in Table 13a).
The analysis of the target constraints (cf. Table 13b) shows the following anomalies: 7AR and 8AR
are excluded because of the already-fulfilled-case and cases 9AR–12AR are excluded because of
violations. For instance, 9AR–11AR are activated with the event 2eA(b) and as the first event in
the inner loop is also b (represented with the activation template, i.e., the activity solely (eA

2)),
all constraints with succeeding events in the inner loop are violated.

Information 2019, 10, 29 17 of 36

Table 13. MR-I results for alternateResponse constraints: (a) activation; and (b) target.

(a)

c(z) b(y) b(x) d(z) b(y) a(x)

ax 3 3 1AR 3 2AR 3

cz 3 3AR 3 4AR 3

by 3 3* 5AR 6AR

bx 3 3 3

dz 3 3

by 3

(b)

cz by bx dz by ax

a 3 3 3 3 7AR 3

c 3 3 3 8AR 3

b 3 9AR 10AR 11AR

b 3 3 12AR

d 3 3

b 3

4. Chain Response
Description.
The future constraining constraint chainResponse(a, b) indicates that, each time event a occurs in
the trace, event b occurs immediately afterwards. Event a activates the constraint.
Mining Event-based
For each event referring to i in a trace, only the successive event referring to i + 1 is considered.
Therefore, the inner loop is skipped and j holds a fixed value depending on i.
The initial assignment of (i, j) is (0, 1), thus the events ax and cz are considered.
The corresponding activation constraint is chainResponse(ax, c) and the value of σCR(ieA, i+1eT)

is incremented by 1. The target constraint for these values of i and j is chainResponse(a, cz). In the
next step with (i, j) = (1, 2), the activation constraint chainResponse(cz, b) and target constraint
chainResponse(c, by) is considered (cf. Table 14).

Table 14. MR-I results for chainResponse constraints (activation and target).

cz by bx dz by ax

ax 3

cz 3

by 3

bx 3

dz 3

by 3

5. Precedence
Description.
The history-based constraint precedence(a, b) indicates that event b occurs only in the trace,
if preceded by a. Event b activates the constraint.
Mining Event-based

Information 2019, 10, 29 18 of 36

Intuitively, one would iterate starting from the latest event for the history-based constraints, e.g.,
the first (i, j)-tuple would be (5, 6) going on with (4, 6), i.e., the constraints precedence(eT

5 , 6eA)

and precedence(eT
4 , 6eA), respectively.

In the case of activation constraints, the former describes that, whenever a occurs and was
executed by x, b has to precede. Referring to the latter, precedence(d, ax) describes that if event a
occurs in a trace and was executed by x, then event d has to precede.
For the sake of performance boost, we propose an algorithm, which handle the history-based
constraints also by iterating through the events in a forward direction. To do so, the events of the
outer loop (i) fills the role of the target events and the events of the inner loop (j) are now the
activating events.
Consider Table 15a and the assignment of (i, j) with (0, 1). The first constraint under
investigation is precedence(a, cz), activated with eA

1 (cz) and fulfilled with 0eT(a). In the next
step, precedence(a, by) is considered. It is activated with eA

2 (by) and fulfilled with the same outer
loop event 0eT(a).
Interesting is the outer loop event 2eT(b) (cf. third row in Table 15a). In the case of eA

4 (dz),
the value for σP(b, dz) must not be modified (1P). The reason is that this constraint, activated
with dz is fulfilled with the outer loop event 4eT and thus, fulfilled in a future step (marked with
an asterisk in Table 15a). Hence, the iteration of the inner loop is cancelled, if the event referring
to the recent value of i in the outer loop is equal to the event referring to the recent value of j in
the inner loop.
The target constraints show similar behaviour. Whenever the event ieT occurs also in the inner
loop in eT

j , then the rest of the inner loop is neglected because the events are fulfilled afterwards.
For example, precedence(by, a)(5P) is fulfilled in the future in the asterisk-marked cell in Table 15b.
Notice that, for precedence(by, d) (third row in Table 15b), the value σP(by, d) is incremented by 1,
since the additional condition has to be considered and the preceding event b is executed by x
instead of y.

Table 15. MR-I results for precedence constraints: (a) activation; and (b) target.

(a)

cz by bx dz by ax

a 3 3 3 3 3 3

c 3 3 3 3 3

b 3 1P 2P 3P

b 3* 3 4P

d 3 3

b 3

(b)

c b b d b a

ax 3 3 3 3 3 3

cz 3 3 3 3 3

by 3 3 3 5P

bx 3 3 3

dz 3 3

by 3*

6. Alternate Precedence
Description.

Information 2019, 10, 29 19 of 36

The history-based constraint alternatePrecedence(a, b) indicates that, each time event b occurs in
the trace, it is preceded by event a and no other event b can recur in between. Event b activates
the constraint.
Mining Event-based
For this template, the loop variables i and j take the same values as explained for the precedence
constraint. As additional restriction, the constraint alternate precedence is not fulfilled, if the set of
events that occur between the events referring to i and j contain the event that correspond to j.
In this case, the iteration is cancelled, i is incremented and the trace is taken into account with the
new values.
As example for an activation constraint, consider alternatePrecedence(a, by) in Table 16a.
The marker 1AP indicates a violation of this constraint because of the reoccurrence of the activating
event eA

2 (by). Case 2AP is similar.
In the case of 3AP, according to the constraint alternatePrecedence(b, dz), σAP(b, dz) must not be
incremented there, because this constraint activated with eA

4 (dz) is fulfilled with the event 3eT in
the next run of the outer loop (note the asterisk in Table 16a). Cases 4AP–6AP are similar.
Table 16b shows the already-fulfilled-cases and violations of the exemplary trace in the case of
target constraints. The constraints at 7AP–11AP are violated, because of the reoccurrence of the
events eA

3 (b) and eA
5 (b) in the events eA

2 and eA
3 .

Table 16. MR-I results for alternatePrecedence constraints: (a) activation; and (b) target.

(a)

cz by bx dz by ax

a 3 3 3 3 1AP 3

c 3 3 3 2AP 3

b 3 3AP 4AP 5AP

b 3* 3 6AP

d 3 3

b 3

(b)

c b b d b a

ax 3 3 7AP 3 8AP 3

cz 3 9AP 3 10AP 3

by 3 3 11AP 12AP

bx 3 3 3

dz 3 3

by 3*

7. Chain Precedence
Description.
The history-based constraint chainPrecedence(a, b) indicates that, each time event b occurs in the
trace, event a occurs immediately beforehand. Event b activates the constraint.
Mining Event-based
Since the precedence and all precedence-subsumed constraints are computed in a forward direction
in our work, the inner loop is skipped similar to the chainResponse template and j holds a fixed
value depending on i. For each event referring to j = i + 1 in a trace, only its preceding event
referring to i is considered.
The initial assignment of (i, j) is (0, 1), thus the events ax and cz are considered.

Information 2019, 10, 29 20 of 36

The corresponding activation constraint is chainPrecedence(a, cz) and the value of σCP(ieT , i+1eA)

is incremented by 1. The target constraint for these values of i and j is chainPrecedence(ax, c).
In the next step with (i, j) = (1, 2), the activation constraint chainPrecedence(c, by) and target
constraint chainPrecedence(cz, b) is considered (cf. Table 17).

Table 17. MR-I results for chainPrecedence constraints (activation and target).

cz by bx dz by ax

ax 3

cz 3

by 3

bx 3

dz 3

by 3

4.2.3. Mutual Relation Constraints

Mutual relation constraints (MRC) are subtypes of relation constraints. To be precise, they define
conjunctions of two relation constraints and therefore consider future constraining and history-based
constraints. They are especially useful to rate relation constraints. If the computed support of a mutual
relation constraint is lower than both of the involved relation constraints, the respective relation
constraints are irrelevant. To calculate the event-based support and confidence equations, it is further
distinguished between activation and target constraints.

For activation mutual relation constraints (A), Equations (11), (12), (15) and (16) are merged to
SA_MRC and CA_MRC. Events a and b are place holders for two arbitrary events with the restriction
that they are executed by the same additional condition x. The value of σA_MRC describes the number
of fulfillments of the respective mutual relation constraint in case of activation constraints. The value
of ε(ax, bx) in the confidence equation corresponds to the number of traces, where the events ax and
bx occur together.

SA_MRC(ax, b) =
σA_MRC(ax, b)
η(ax) + η(bx)

(19)

CA_MRC(ax, b) = SA_MRC(ax, b) · ε(ax, bx)
|l| (20)

The equations for support and confidence for target mutual relation constraints (T) from a
multi-perspective view are stated as ST_MRC and CT_MRC and are based on Equations (13), (14), (17)
and (18). The number of fulfillments of the target mutual relation constraint is stored in σT_MRC.

ST_MRC(a, bx) =
σT_MRC(a, bx)

η(a) + η(b)
(21)

CT_MRC(a, bx) = ST_MRC(a, bx) · ε(a, b)
|l| (22)

The following items describe four mutual relation constraints and the determination of the
associated values of σ for the exemplary trace in Equation (8).

1. CoExistence
Description.
The future constraining and history-based constraint coExistence(a, b) indicates that, if event b
occurs in the trace, then event a occurs and vice versa. Event a and event b activate the constraint.
Mining Event-based

Information 2019, 10, 29 21 of 36

The coExistence constraint is composed of two respondedExistence constraints. The second
respondedExistence constraint considers the events of the first respondedExistence constraint in
reversed order.
The fulfillment of the two respondedExistence constraints is computed as described in the
corresponding item above. The whole trace is considered and the loop variables (i, j) are
initialised with (0, 0), while events that are associated with themselves are not considered.
For example, take the event pair (ax, by) corresponding to (i, j) = (0, 2) into account.
For activation constraints, e.g. coExistence(ax, b), the constraints respondedExistence(ax, b) and
respondedExistence(bx, a) are investigated in this case. The events are switched while the additional
condition stays on the left-hand side.
The first respondedExistence constraint, activated with 0eA(ax), is fulfilled with eT

2 (b) and thus
σRE(ax, b) is incremented by 1. The second respondedExistence is activated with 3eA(bx) and
fulfilled with eT

0 (a) leading to an incrementation of σRE(bx, a) by 1. After iterating through the
whole trace, the value of σRE(ax, b) is 2 and the value of σRE(bx, a) stays to 1. These values are
summed up and σCO(ax, b) is increased by 3. The same value is applied to σCO(bx, a). Table 18
is similar to Table 11a but marks the corresponding sigmas, which are summed up with same
indices. The notation of the already-fulfilled-constraints (e.g., 1RE) is taken over from Table 11a.

For target constraints, e.g. coExistence(a, bx), the constraints respondedExistence(a, bx) and
respondedExistence(b, ax) have to be considered. Referring to Table 19, the final value of σCO(ax, b)
is 5. All fullfilments of this constraint are denoted as 323 in the table.

Table 18. MR-I results for coExistence constraints (activation).

a(x) c(z) b(y) b(x) d(z) b(y) a(x)

ax 31 32 1RE 33 2RE 34

cz 35 36 3RE 37 4RE 5RE

by 38 39 310 311 6RE 7RE

bx 32 312 313 314 8RE 9RE

dz 315 37 316 10RE 11RE 12RE

by 38 317 310 13RE 318 14RE

ax 34 319 32 15RE 320 16RE

Table 19. MR-I results for coExistence constraints (target).

ax cz by bx dz by ax

a(x) 321 322 323 324 17RE 325

c(z) 326 327 328 329 18RE 19RE

b(y) 323 324 325 326 327 20RE

b(x) 323 324 327 326 21RE 22RE

d(z) 328 329 330 331 23RE 24RE

b(y) 323 324 327 325 326 25RE

a(x) 325 321 322 323 324 26RE

2. Succession
Description.
The future constraining and history-based constraint succession(a, b) indicates that event
a occurs in the trace, if and only if it is followed by event b. Event a and event b activate
the constraint.

Information 2019, 10, 29 22 of 36

Mining Event-based
The succession constraint is composed of the response and the precedence constraint. The fulfillment
of these two constraints is computed as described in the corresponding item above.
The constraints are computed successively.
The initial assignment of (i, j) is (0, 1). The events ax and cz are taken into account in the first step.
If the activation conditions are considered, the constraints response(ax, c) and precedence(a, cz)
would be investigated in the first step.
To give an example how the Succession constraint is computed, consider (i, j) = (0, 2) for the
response constraint and (i, j) = (0, 3) for the precedence constraint. According to Table 12a,
the response constraint is activated with 0eA(ax) and fulfilled with eT

2 (b). This leads to an
incrementation of σR(ax, b) by 1. The precedence constraint is activated with eA

3 (bx) and fulfilled
with 0eT(a), leading to an incrementation of σP(a, bx) by 1 (cf. Table 15a). After iterating through
the trace and calculating all fulfilled constraints, the values of σR(ax, b) and σP(a, bx) are summed
up. Therefore, the number of fulfillments of the corresponding constraint succession(ax, b) is
calculated, expressed by an incrementation of σS(ax, b) by 2. Another example is provided by
(i, j) = (1, 4), where the response and precedence constraints are activated with the same additional
condition z. In this case, σR(cz, d) and σP(c, dz) are incremented by 1. These both values are
used to compute the number of fulfillments of constraint succession(cz, d) through incrementing
σS(cz, d) by 2.
If the target conditions are considered, the constraints response(a, cz) and precedence(ax, c) are
investigated in the first step (cf. Tables 12b and 15b). In the case (i, j) = (1, 3), the constraints
response(a, bx) and precedence(ax, b) are fulfilled with the same additional condition x and the
values of σR(a, bx) and σP(ax, b) are incremented by 1. The sum of these values leads to the
number of fulfillments of the target constraint succession(a, bx) by incrementing σS(a, bx) by 2.

3. AlternateSuccession
Description.
The future constraining and history-based constraint alternateSuccession(a, b) indicates that
event a and event b occur in the trace, if and only if the latter follows the former, and they
alternate each other in the trace. Event a and event b activate the constraint.
Mining Event-based
The alternateSuccession constraint is composed of the alternateResponse and the alternatePrecedence
constraint. The fulfillment of these two constraints is computed as described in the corresponding
item above. The constraints are computed successively.
The initial assignment of (i, j) is (0, 1). The events ax and cz are taken into account in the
first step.
As example for an activation constraint, consider alternateSuccession(by, b). The respective
constraints alternateResponse(by, b) and alternatePrecedence(b, by) have to be computed.
As presented in Table 13a, the alternateResponse constraint is activated with 2eA(by) and fulfilled
with eT

3 (b). Therefore, the value of σAR(by, b) is incremented by 1. The alternatePrecedence
constraint is activated with eA

5 (by) and fulfilled with 3eT(b), leading to an incrementation
of σAP(b, by) by 1 (cf. Table 16a). For both constraints, the value of σ is not incremented
in the case of (i, j) = (2, 5) because the constraints are already fulfilled in the past for the
alternateResponse constraint or will be fulfilled in the future for the alternatePrecedence constraint.
Hence, the number of fulfillments of the composed constraint alternateSuccession(by, b) is 2.
For target constraints such as alternateSuccession(a, cz), the number of fulfillments of the
constraints alternateResponse(a, cz) and alternatePrecedence(az, c) are computed and summed
up. Since event a never occurs with the additional condition z, the value of σAP(az, c) is never
incremented. This leads to the final value of σAS = 1.

Information 2019, 10, 29 23 of 36

4. ChainSuccession
Description.
The future constraining and history-based constraint chainSuccession(a, b) indicates that event a
and event b occur in the trace, if and only if the latter immediately follows the former. Event a
and event b activate the constraint.
Mining Event-based
For the chainSuccession constraint, the computation of the constraints chainResponse and
chainPrecedence are necessary. The fulfillment of these two constraints is computed like described
in the corresponding item above. The constraints are computed successively.
The initial assignment of (i, j) is (0, 1), while the inner loop is skipped and j = i + 1 holds a fixed
value depending on i. Therefore, the events ax and cz are considered. For activation constraints,
chainSuccession(ax, c) including chainResponse(ax, c) and chainPrecedence(a, cz) is computed in the
first step. For target constraints, chainSuccession(a, cz) and chainPrecedence(ax, c) are considered
for the same values of i and j to calculate chainSuccession(cz, b).

4.2.4. Negative Relation Constraints

Negative relation constraints (NRC) are subtypes of relation Constraints. They are satisfied when
one or both of the related mutual relation constraints are not. They can be understood as negation
of the mutual relation constraints. In the case of activation constraints (A), the support SA_NRC
and confidence CA_NRC are calculated as described below. The support SA_NRC is computed as the
negation of the respective mutual relation constraint, while the equation for the confidence calculation
corresponds to the confidence calculation for activation mutual relation constraints (cf. Equation (20)).

SA_NRC(ax, b) = 1− SA_MRC(ax, b) (23)

CA_NRC(ax, b) = SA_NRC(ax, b) · ε(ax, bx)
|l| (24)

The equations for support and confidence for target negative relation constraints (T) from a
multi-perspective view are stated as ST_NRC and CT_NRC. As for activation constraints, the support
ST_NRC negates the support value of the mutual relation constraint and the confidence calculation
CT_NRC remains according to Equation (22).

ST_NRC(a, bx) = 1− ST_MRC(a, bx) (25)

CT_NRC(a, bx) = ST_NRC(a, bx) · ε(a, b)
|l| (26)

The following items describe three negative relation constraints and the determination of the
support values.

1. NotChainSuccession
Description.
The future constraining and history-based constraint notChainSuccession(a, b) indicates that
event a and event b occur in the trace, if and only if the latter does not immediately follow the
former. Event a and event b activate the constraint.
Mining Event-based
The notChainSuccession constraint is computed like the chainSuccession constraint for activation
and target conditions. The only difference lies in the determination of the support value SNCS
which is calculated by negating the support value SCS of chainSuccession for each event pair.
This negation is expressed formally as SNCS = 1.0− SCS.

Information 2019, 10, 29 24 of 36

2. NotSuccession
Description.
The future constraining and history-based constraint notSuccession(a, b) indicates that event a
can never occur before event b in the trace. Event a and event b activate the constraint.
Mining Event-based
The notSuccession constraint is computed similar to the Succession constraint for activation
and target conditions. Similar to the notChainSuccession constraint, the determination of the
support value SNS is calculated by negating the support value SS of Succession for each event
pair. This negation is expressed formally as SNS = 1.0− SS.

3. NotCoExistence
Description.
The future constraining and history-based constraint notCoExistence(a, b) indicates that event a
and event b never occur together. Event a and event b activate the constraint.
Mining Event-based
The notCoExistence constraint is computed similar to the coExistence constraint for activation and
target conditions. Just as the two items above, the determination of the support value SNCE is
calculated by negating the support value SCE of coExistence for each event pair. This negation is
expressed formally as SNCE = 1.0− SCE.

All support and confidence equations explained in the sections above are summarised in Table 20
to provide an overview and reveal calculation differences.

Table 20. Overview of the support and confidence equations from a multi-perspective view for all
presented constraints in Table 4. The variables a and b are placeholders for events that occur in the
trace, while the variables x and y refer to the resources that execute these activities. The variables ε, l, σ

and η are defined in the respective section.

Support Confidence

Existence Constraints Activation SEC(ax) = σEC(ax)
|l| CEC(ax) = SEC(ax) · ε(ax)

|l|
Target not defined not defined

Relation Constraints
(forward constraining)

Activation SFA_RC(ax, b) = σFA_RC(ax,b)
η(ax) CFA_RC(ax, b) = SFA_RC(ax, b) · ε(ax)

|l|

Target SFT_RC(a, by) = σFT_RC(a,by)
η(a) CFT_RC(a, by) = SFT_RC(a, by) · ε(a)

|l|

Relation Constraints
(history-based)

Activation SBA_RC(a, by) = σBA_RC(a,by)
η(by) CBA_RC(a, by) = SBA_RC(a, by) · ε(by)

|l|

Target SBT_RC(ax, b) = σBT_RC(ax,b)
η(b) CBT_RC(ax, b) = SBT_RC(ax, b) · ε(b)

|l|
Mutual Relation
Constraints

Activation SA_MRC(ax, b) = σA_MRC(ax,b)
η(ax)+η(bx) CA_MRC(ax, b) = SA_MRC(ax, b) · ε(ax,bx)

|l|

Target ST_MRC(a, bx) = σT_MRC(a,bx)
η(a)+η(b) CT_MRC(a, bx) = ST_MRC(a, bx) · ε(a,b)

|l|

Negative Relation
Constraints

Activation SA_NRC(ax, b) = 1− SA_MRC(ax, b) CA_NRC(ax, b) = SA_NRC(ax, b) · ε(ax,bx)
|l|

Target ST_NRC(a, bx) = 1− ST_MRC(a, bx) CT_NRC(a, bx) = ST_NRC(a, bx) · ε(a,b)
|l|

4.3. Pivot Characteristics Overview

The anomalies detected in the previous section can be traced to three certain pivot characteristics
we have to take care. They include already fulfilled (a), violation (v) and fulfilled later (f), whereby the
first one corresponds to forward constraints and latter appears only on backward constraints. In this
section, the four anomaly classes are identified, described and the occurrence of problems regarding
the classes are resolved.

Class I (1PA, 2PA, 1R − 7R, 1AR − 5AR, 7AR − 8AR, 1RE − 26RE). These situations occur when a pair
of events is considered, where the activating event was already fulfilled in this case with a previous

Information 2019, 10, 29 25 of 36

event. For instance, in a trace 〈ax, b?, b?〉, the constraint R(ax, b) is fulfilled with the first event b
and must not be considered in the next step (j = 2). For this activation constraint, the additional
perspective of the fulfilling event is not crucial (note the ?). A similar case for a target constraint
is 〈a?, bx, bx〉 where R(a, bx) is fulfilled when reading the second bx in the inner loop. In addition,
the alternateResponse template suffers from this anomaly: assuming a trace 〈ax, ax, b?, ax, b?〉, the value
for σAR(ax, b) referring to the constraint AR(ax, b) would be incremented with the first b and the second
b. Note that in this class it is forbidden for ax to recur as this would cause a violation (cf. Class II).

Solution. The problem is that the events in the inner loop filtered by the target template eT
j are

recurring. To prevent these Class I-failures, all events eT
j are stored in a list L and σ is only incremented

if the current eT
j is not in L.

Class II (6AR, 9AR − 12AR). Class II-errors hits the alternateResponse template solely.
The definition of this template forbids the activating event to recur before the second event appears.
As an example serves the trace 〈ax, ax, b?〉 with the constraint AR(ax, b) for an activation constraint
and 〈a?, a?, bx〉 with AR(a, bx) for a target constraint.

Solution. If the activating event ieA recurs in the inner loop as event eA
j , then all succeeding

constraints in the inner loop are violated by this recursion and thus the inner loop can be cancelled for
this template.

Class III (1P − 5P, 3AP − 6AP, 12AP). These anomalies are similar to Class I but for history-based
constraint templates. Some constraints must not be considered because they will be fulfilled afterwards.
For instance, in a trace 〈b?, b?, ax〉 in the first outer loop run, it is checked if the first b? fulfils a
constraint P(b, ax). However, this is not true because this certain constraint is fulfilled in the second
outer loop run.

Solution. The problem here is that the event of the outer loop ieT recurs in the inner loop event
eT

j . That means that the succeeding inner loop events are fulfilled afterwards with succeeding outer
loop events. In case of a recurrence, the consideration of succeeding events in this inner loop run can
be cancelled.

Class IV (1AP − 2AP, 7AP − 11AP). Similar to Class II, errors corresponding to Class IV handle
violations of constraints, viz. from the alternatePrecedence template in this particular case. In a trace
〈a?, bx, bx〉, the activation constraint alternatePrecedence(a, bx), activated with the second bx event,
is violated, as bx recurs, before the fulfilling event a proceeds.

Solution. As a solution, we store all events eA
j in a list. If a next event eA

j with a greater j occurs,
the consideration of alternatePrecedence templates can be cancelled for a certain i.

5. Implementation

On top of a detailed analysis of most commonly used MP-Declare constraints with respect to an
efficient discovery from process logs based on MapReduce, we provide a sophisticated framework
which implements this process mining procedure.

5.1. An extendable Framework

The whole conceptional architecture of the implementation follows an easy to extend principle.
This extendibility decouples the framework from the commonly accepted list of MP-Declare constraints
and allows the end user to implement customised constraint logic. For individual application use cases,
particular interest of varied constraint templates are conceivable. A plausible scenario is described by a
constraint WithinFiveSteps(test, final-test ∧ final-test.resource = senior test engineer) claiming a high-quality
test by a senior test engineer (STE) after at least five test runs from arbitrary employees to ensure an
advanced and supervised quality assurance process. Compare Figure 2 for an imperative visualisation
of this requirement. The mentioned custom constraint enforces the execution of test by STE within
five steps.

Information 2019, 10, 29 26 of 36

Senior Test

Engineer

final-testtestimplement deliver

Figure 2. (Imperative) Process Model with complex requirement.

In this section, we describe the architecture of the implementation and how to use and extend the
library with custom constraints. The implementation of supplied MP-Declare constraints is presented
exemplary. We refer to Section 4.2 for full conceptional insights as well as to our GitHub repository
(https://github.com/sensati0n/mapreduceminer) where a documented implementation is provided.

The GitHub repository comprises three projects, firstly a Java-11 library implementing the
MapReduce-Mining functionality. The remaining projects exemplifies the usage of the library by
means of an modern web-based architecture using a Spring Boot server-sided backend which utilises
the library from the first project. The client-sided Angular-6-based frontend completes the list and is
besides the backend the main constituent of Section 5.3.

5.2. MapReduce-Miner Library

Consider Figure 3 for an UML package diagram-like overview of the main components.

EventLogEventLog

TraceTrace

EventEvent

AttributeAttribute

Auxiliary-
Database
Auxiliary-
Database

ConfigurationConfiguration

<<enum>>

ConstraintType

<<enum>>

ConstraintType

MiningResultMiningResult ResultElementResultElement JobRunnerJobRunner DatabaseDatabase

Figure 3. Package overview.

5.2.1. Package Model

The whole mining procedure does not operate on a plain XES file, but is using a customised
POJO-model towards the needs of the JobRunner (see below). The omission of an XES loading module
is a conscious decision reasoned within the flexibility and customisability of the library. The decision
was made in favour of a simple EventLog class using a list of Traces holding a list of Events which again
contains a list of Attributes. The latter is made of a key–value pair of Strings, e.g., (task, deliver). Mutator
methods can be utilised for implementing loading modules but in some cases, loading duties can be
transferred to third party frameworks (cf. Section 5.3).

In contrast to our work in [16], this implementation makes use of Java Objects instead of String
representations of Events when emitting key–value pairs or for keys in HashMaps resulting in a
additional performance boost (see Section 6).

https://github.com/sensati0n/mapreduceminer

Information 2019, 10, 29 27 of 36

5.2.2. JobRunner and Database as Centerpiece

The JobRunner is instantiated with an EventLog and a Configuration (package util). The former is
described above and the latter contains: (i) a list (java.util.List<Class>) of constraints to consider; (ii) the
ConstraintTypes to consider (i.e., ACTIVATION or TARGET); (iii) the event identifier (e.g., task); and (iv)
the additional attribute (e.g., resource).

The mining job (see Algorithm 1) is launched with a call to job.run(). Java’s inbuilt Streaming-API
cares for the parallel execution of the map- and reduce-function which forms a major foundation for
utilising the main advantage of our approach: massive parallelism. The produced key–value pairs for
the functions σ, η and ε are accumulated in an instance of the Database-class.

Algorithm 1: Setup of a mining job.

1 Configuration configuration = new Configuration();
2 configuration
3 .setEventIdentifier("task")
4 .setAdditionalAttribute("resource")
5 .addConstraint(Response.class)
6 .allConstraintTypes();
7 JobRunner job = new JobRunner(eventLog, configuration);
8 job.run();
9 job.getMiningResult();

The map-function (cf. Algorithm 2 for line numbers in round brackets) holds the nested for-loop
as backbone (11, 13). Compared to our work in [16], the inner loop starts from 0 on, to comply with the
full list of MP-Declare constraints.

Algorithm 2: The run and map functions.

1 public void run() {
2 // MR-I: produce Key–Value Pairs
3 Database db = eventLog.getTraces().stream().map((trace) -> map(trace))
4 .reduce((accDb, currentDb) -> reduce(accDb, currentDb)).get();
5 // ’MR-II’: calculate Support and Confidence
6 mrii(db);
7 }
8 public void map(Trace trace) {
9 Database database = new Database(configuration);

10 AuxilaryDatabase ad = new AuxilaryDatabase();
11 for (int i = 0; i < trace.getEvents().size(); i++) {
12 //...
13 for (int j = 0; j < trace.getEvents().size(); j++) {
14 for (Class<Constraint> c : getConfiguration().getConstraints()) {
15 Constraint impl = instantiate(c, events.get(i), events.get(j), -1,

ConstraintType.ACTIVATION);
16 if (impl instanceof Eventbased) {
17 Eventbased eventBasedImpl = (Eventbased) impl;
18 if (eventBasedImpl.logic(ad))
19 database.addSigma(eventBasedImpl, 1);
20 //...
21 //Tracebased-Constraints...
22 }

Information 2019, 10, 29 28 of 36

To support a high level of extendibility, the logic of each constraint template has moved from this
global map-function and is now encapsulated for each specific template in a dedicated Java class (cf.
Section 5.2.3). The nested for-loop simply iterates over the classes given in the Configuration-object (14)
and calls the internal logic-function (18). The constraint template logic is completely executed in the
responsible class, using an instance of util.AuxiliaryDatabase (10, 18) that provides the required data
structures and meta-information like current values of the loop counters i and j.

MR-II is called before the function job.run() returns (Line 6) and delegates the support and
confidence calculation to the constraint template classes, similar to MR-I. MR-II fills the MiningResult
with ResultElements whose implementations are straightforward and, therefore, not described here
in detail.

5.2.3. Package Constraint

As stated, an individual Java class is available for each constraint template. The library-inbuilt
templates are spread over the sub-packages existence, relation, mutualrelation and negativerelation (cf.
Figure 4). Each of them implements interfaces or extends abstract classes provided by the package
constraint which describes the behaviour and structure of the templates.

<<interface>>

Constraint

<<interface>>

Constraint

getResult(db:Database, sigma:Double,
logSize: Integer): ResultElement

<<interface>>

Eventbased

<<interface>>

Eventbased

+logic(ad AuxiliaryDatabase): boolean

<<interface>>

Tracebased

<<interface>>

Tracebased

+logic(ad AuxiliaryDatabase): boolean

ConstraintImplConstraintImpl

eventIdentifier: String
additionalAttribute: String
type: ConstraintType

DoubleEventConstraintDoubleEventConstraint

eventA: Event
eventB: Event

NumberEventConstraintNumberEventConstraint

event: Event
n: Integer

SingleEventConstraintSingleEventConstraint

event: Event

<<interface>>

HistoryBased

<<interface>>

HistoryBased

<<interface>>

Future-
Constraining

<<interface>>

Future-
Constraining

Figure 4. The package constraint.

For instance, the history based relation constraints (Precedence, AlternatePrecedence and
ChainPrecedence) are implementing the interface HistoryBased. This is important to influence the
control flow of the application such as the proper attribute filtering of events when constraints are
instantiated (Line 15 in Algorithm 2):

HistoryBased constraints are activated with the second given event (eventB) and, therefore, eventB
holds the additional condition in case of activation constraints, e.g., precedence(c, dx). FutureConstraining
constraints work opposed to the former whilst having the additional attribute on the first given event
(eventA), e.g., response(cy, d). The parameter eventA and eventB are available in relational constraints,
as all of them extend the abstract class DoubleEventConstraint. The differentiation between Eventbased
and Tracebased constraints is necessary, because Tracebased constraints are considered after the nested
for-loop (Line 21 in Algorithm 2). In the following example, the internals of those constraint classes are
illustrated by means of the Init constraint.

Information 2019, 10, 29 29 of 36

The init constraint simply cares about the first occurred event in a trace. Hence, only if the current
position evaluates as 0, true is returned at Line 5 (Algorithm 3) and in turn the respective σ value is
adapted (Lines 18 and 19 in Algorithm 2). Instead of the position, the field first in the AuxiliaryDatabase
could have been consulted in this case.

Algorithm 3: Class Init.

1 public class Init extends SingleEventConstraint implements Tracebased {
2 @Override
3 public boolean logic(AuxilaryDatabase ad, int position, int size) {
4 if(position == 0)
5 return true;
6 else
7 return false;
8 }
9 @Override

10 public ResultElement getResult(Database db, double sigma, int logSize) {
11 return new ResultElement(
12 this.getClass().toString(), getEvent(), sigma/logSize, 0.0d, this.getType());
13 }
14 }

The getResult method is called from MR-II and returns a ResultElement with the calculated support
and confidence according to the formula defined in Section 4.2.

5.3. System Support

As stated, we refer to our GitHub-repository for detailed information about the MapReduce-Miner
library as well as the implementing system described in this section. The respective projects are hosted
there. For an overview of how to build the projects and how to use the library, we refer again to
our Github-Repository. In this section, we show how to extend the mining procedure with custom
constraint logic in view of the extensibility which addresses the full support covered in this paper.

The job (see Algorithm 1) is now configured using our custom constraint logic
(config.addConstraint(WithinFiveSteps.class)) and a corresponding amended
AuxiliaryDatabase (config.setAuxiliaryDatabaseClass(CustomAuxiliaryDatabase.class)).
The custom logic is listed in Algorithm 4. The implementation resembles the Response class but uses
an additional restriction that the task must not be more than five steps ahead (Line 7). In Line 5,
the AuxiliaryDatabase is casted to our custom version, in order to obtain access to the required data
structures on Lines 8 and 9.

Having finished the mining job, the MiningServiceResult containing the support and confidence
values are returned and can be stored in a database or forwarded for further processing.

There is a Unit-test available in the library project, which attests the expected behaviour of our
custom constraint: The test testCustomConstraintFulfill() operates on a trace

t0 = 〈(impl, x), (test, y), (test, y), (f inal − test, STE), (deliver, z)〉

and confirms that a discovered target constraint WithinFiveSteps(test, final-test ∧ final-test.resource = STE)
holds the support value of 1. In contrast, the test testCustomConstraint() operates on a trace

t1 = 〈(impl, x), (test, y), (test, y), (test, y), (test, y), (test, y), (test, y), (f inal − test, STE), (deliver, z)〉

where the process gets stuck too long in the test loop (six events). Consequently, the target constraint
WithinFiveSteps(test, final-test ∧ final-test.resource = STE) holds a support value less than 1.

Information 2019, 10, 29 30 of 36

Algorithm 4: Custom constraint WithinFiveSteps.

1 public class WithinFiveSteps extends DoubleEventConstraint
2 implements Eventbased, FutureBased {
3 @Override
4 public boolean logic(AuxiliaryDatabase ad) {
5 CustomAuxiliaryDatabase cad = (CustomAuxiliaryDatabase) ad;
6 if(cad.currentJ < cad.currentI+1) return false;
7 if(cad.currentJ > cad.currentI+5) return false;
8 if (!cad.tasksWithinFiveSteps.contains(super.getEventB())) {
9 cad.tasksWithinFiveSteps.add(super.getEventB());

10 return true;
11 } else return false; }
12 }
13 }

Figure 5 shows an screenshot of the frontend project in the repository. The project contains a
lightweight Angular 6 application tailored towards the chosen example. To address more process logs,
representations and configurations, future generalisations of the architecture will be committed into
the repository.

Figure 5. User interface to start a new mining job.

6. Evaluation

We present a comprehensive evaluation of our MapReduce-framework for the discovery of
declarative process models including a quantitative performance comparison with related work.
Additionally, we evaluate the resulting process models of different approaches in a qualitative way.
In this section, three different real-life event logs are used: a Hospital Log [45], a Financial Log [46]
and a Municipality Log [47].

6.1. Quantitative Performance Analysis

Comparison with Related Tools

Table 21 shows the results of our performance measurements compared to related work.
The figures were measured on a Quad-Core i7 CPU @2.80 GHz. In this section, we describe the key

Information 2019, 10, 29 31 of 36

findings. Based on the evaluation in [14,15], ∗-superscripted figures include all relational constraints
as well as NotSuccession and ∗∗-superscripted figures include all history-based relational constraints.

Table 21. Performance evaluation with related tools.

Single-Perspective * Multi-Perspective **

Financial Log Hospital Log Hospital Log

- - - - Activation Target

Approach seq. par. seq. par. seq. par. seq. par.

SQLMiner [14,15] 01:08 - 19:30 - 15:43 - 06:43:05 -
MINERful [11,12] 00:17 - 12:28 - - - - -

MapReduce 02:03 00:30 14:35 1:57 07:09 01:07 06:44 01:00

Single-Perspective

MINERful is purely single-perspective and, in that case, MINERful performs better than
MapReduce for both log files (17 s vs. 2 min and 12 min vs. 14 min, respectively), if MapReduce
is executed sequentially. However, our approach is based on MapReduce and thus is designed for
parallel execution. Having our approach running in parallel, it can compete with MINERful using
the Financial Log (17 s vs. 30 s). Considering the challenging Hospital Log, MapReduce completes
in less than 2 min and thus 10 times faster (SQLMiner) or 6 times faster (MINERful). The research
papers presenting MINERful omit detailed implementation details, but we could not find any form of
parallelism whilst scanning the code. Thus, we cannot compare this scenario. However, the supported
level of parallelisation of MapReduce running on a cluster exceeds that of parallelising a conventional
implementation such as MINERful anyway. Furthermore, as the parallelisation correlates with the
performance (cf. Table 21 and [16]), we can raise the performance by just adding a new node to the
cluster. As stated, the runtimes in Table 21 were measured on a Quad-Core CPU, which is tantamount
to a cluster with just four nodes.

Multi-Perspective

Compared to MINERful, MapReduce is also capable of discovering multi-perspective constraints.
To our knowledge, SQLMiner is the only other approach supporting MP-Declare discovery at the time
of writing and thus the evaluation is grounded in a comparison with the SQLMiner here. The figures
in Table 21 show the discovery of activation constraints as well as the discovery of target constraints.
Where the SQLMiner shows an enormous difference between the two constraint types, the MapReduce
approach shows constant runtimes reasoned in the computation method (see below). Considering
activation constraints, MapReduce (in parallel) handles the Hospital Log in about 1 min compared to
more than 15 min using the SQLMiner. Considering the target constraints, the computation with the
SQLMiner takes several hours, whereas MapReduce finishes in 60 s (the runtime is less than in the
single-perspective case, as less constraint templates are considered). The reason is that SQLMiner has
to prepare the candidates (expensive JOIN operator on SQL tables), before evaluating the Support and
Confidence, whereas MapReduce considers only valid constraints by default (nested for-loop).

Analysis of different Log Files

Figure 6 shows performance measurements with two different log files, the Hospital Log (H)
and the Municipality Log (M), during parallel execution with MapReduce. The figure holds values
for Declare (SP) and MP-Declare (MP). We identify an expected increase of the duration when more
constraint templates are considered (more constraint templates require more calculations) ranging
from 8 to 49 s (M, SP) or from 60 to 325 s (H, MP). The runtimes for each constraint template remain
constant, e.g., the duration for (M, MP) and 3 templates is 22 s (7.33 s per template on average) and for
(M, MP) and 20 templates is 147 s (7.35 s on average).

Information 2019, 10, 29 32 of 36

0

50

100

150

200

250

300

350

3 7 12 20

Municipality Log, MP

Municipality Log, SP

Ø 2,5 sec / template

Ø 7,5 sec / template

Ø 13 sec / template

Ø 17 sec / template

Constraint Templates

Duration in Seconds

Hospital Log, MP

Hospital Log, SP

Figure 6. Quantitative analysis of different Log-Files with different Parameters.

We also can confirm that the Hospital Log is more challenging than the Municipality Log (13 s vs.
2.5 s per single-perspective template and 17 s vs. 7.5 s per multi-perspective template). The longer
duration of multi-perspective constraints compared to single-perspective constraints is reasoned in the
discovery of more constraints/information.

6.2. Qualitative Evaluation

For the qualitative evaluation, i.e., the comparison of the resulting process models of different
approaches, we rather rely on a defined environment with a small, clean and synthetic log file, where
we can count and recalculate the results by hand. This event log holds three traces:

t0 = 〈ax, cz, by, bx, dz, by, ax〉, t1 = 〈ax, bx, by, cx〉, t2 = 〈ay, cx, dy〉

In this section, we compare our MapReduce-approach with MINERful (single-perspective, cf.
Table 22) and with the SQLMiner (multi-perspective, cf. Table 23) with respect to the discovered
process model.

Single-Perspective

Consider Table 22, which holds the results for the Succession-template. First, MINERful has not
discovered constraints, where the tasks are equal (i.e., Response(a, a) and Response(b, b)). However,
we do not see any reason to neglect them, so we do include those constraints in the process model.
For some of the constraints, we detected discrepancies in the confidence values (highlighted with
bold in Table 22). These occur because MINERful also calculates vacuously defined constraints. For
instance, the confidence of the constraint Succession(b, d) is calculated as 0.429 · 2

3 = 0.286 in MINERful.
The value 2 in the numerator is composed of the occurrence of events d and b in Trace t0 and the
non-occurrence of b in Trace t2. Per definition, Succession(b, d) is then vacuously fulfilled.

In contrast, the MapReduce-Miner considers only non-vacuously defined constraints. Therefore,
the confidence value of Succession(b, d) is calculated as 0.429 · 1

3 = 0.143.
The same behaviour can be observed for the remaining constraint templates.

Information 2019, 10, 29 33 of 36

Table 22. Discovered single-perspective Succession Constraints with MapReduce and MINERful.

MapReduce MINERful

Task A Task B Support Confidence Support Confidence

a a 0.25 0.083 - -
a b 0.778 0.518 0.778 0.518
a c 0.85714 0.85714 0.85714 0.85714
a d 0.66 0.44 0.66 0.44
b a 0.44 0.296 0.44 0.296
b b 0.6 0.3997 - -
b c 0.375 0.25 0.375 0.25
b d 0.428571 0.142857 0.428571 0.285714
c a 0.285714 0.285714 0.285714 0.285714
c b 0.5 0.33 0.5 0.33
c d 0.8 0.533 0.8 0.5334
d a 0.33 0.22 0.33 0.22
d b 0.285714 0.095238 0.285714 0.190476

Multi-Perspective

The added value of MP-Declare compared to Declare is covered in the literature already (e.g., [15]).
Using additional information in the mining procedure reveals deeper insights in the log, for instance
that some constraints hold only if certain resources are involved.

Table 23 shows the discovered constraints using SQLMiner and MapReduce. The Activation
Constraints matching the Response template are listed. Similar to MINERful on the single-perspective
side, SQLMiner does not show constraints containing an equal event-identifier (the authors included
the line "WHERE a.Task != b.Task" in the SQL-script). The rest of the discovered constraints is,
besides rounding errors, consistent.

Table 23. Discovered activational Response Constraints with MapReduce and SQLMiner.

MapReduce SQLMiner

Task A Resource A Task B Support Confidence Support Confidence

a x a 0.33 0.22 - -
a x b 0.66 0.44 0.66 0.44
a x c 0.66 0.44 0.66 0.44
a y c 1.0 0.33 1.0 0.33
a x d 0.33 0.22 0.33 0.22
a y d 1.0 0.33 1.0 0.33
b x a 0.5 0.33 0.5 0.33
b y a 0.66 0.44 0.66 0.44
b x b 1.0 0.66 - -
b y b 0.33 0.22 - -
b x c 0.5 0.33 0.5 0.33
b y c 0.33 0.22 0.33 0.22
b x d 0.5 0.33 0.5 0.33
b y d 0.33 0.22 0.33 0.22
c z a 1.0 0.33 1.0 0.33
c z b 1.0 0.33 1.0 0.33
c x d 0.5 0.33 0.5 0.33
c z d 1.0 0.33 1.0 0.33
d z a 1.0 0.33 1.0 0.33
d z b 1.0 0.33 1.0 0.33

7. Conclusions

The presented approach is motivated by the fact that state-of-the-art declarative process mining
tools do not support multiple perspectives at this moment. In particular, the discovery of constraints

Information 2019, 10, 29 34 of 36

that impose additional statements on data values or ranges of data values, respectively, is an issue.
We completed our work in [16], where we first addressed this research problem of discovering
multi-perspective declarative process models by proposing an efficient mining framework for
discovering MP-Declare models that leverage the latest big data analysis technology and build upon
the distributed processing method MapReduce. We extended our previous work in several ways,
inter alia, by introducing algorithms and descriptions for the full set of commonly accepted types
of MP-Declare constraints. Furthermore, the conceptual architecture of our implemented prototype
was reworked and improved such that new types of constraints can be easily defined and extracted
by the user. The mining performance and effectiveness were tested with several real-life event logs.
The experiments show that our technique solves this complex mining task in reasonable time.

The approach at hand represents a step into the direction of integrating process and data
science and depicts a customisable and high performant declarative process mining technique.
For future work, we plan to consider also correlation and time conditions. Furthermore, we will
examine how to improve performance even more, for instance with alternative MapReduce frameworks
that can be set up and tested with the proposed algorithms.

Author Contributions: Conceptualization, C.S. and M.F.; methodology, C.S. and M.F.; software, C.S. and
M.F.; validation, S.S.; formal analysis, C.S. and M.F.; writing–original draft preparation, C.S., M.F. and S.S.;
writing–review and editing, S.S.; supervision, S.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schönig, S.; Zeising, M.; Jablonski, S. Supporting collaborative work by learning process models and
patterns from cases. In Proceedings of the 9th IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing, Austin, TX, USA, 20–23 October 2013; pp. 60–69.

2. Van der Aalst, W. Process Mining: Discovery, Conformance and Enhancement of Business Processes; Springer:
Berlin, Germany, 2011.

3. Pichler, P.; Weber, B.; Zugal, S.; Pinggera, J.; Mendling, J.; Reijers, H.A. Imperative versus Declarative
Process Modeling Languages: An Empirical Investigation. In Proceedings of the International Conference
on Business Process Management, Clermont-Ferrand, France, 29 August–2 September 2011; pp. 383–394.

4. Pesic, M.; Schonenberg, H.; van der Aalst, W.M.P. DECLARE: Full Support for Loosely-Structured Processes.
In Proceedings of the 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC
2007), Annapolis, MD, USA, 15–19 October 2007; pp. 287–300.

5. Zeising, M.; Schönig, S.; Jablonski, S. Towards a Common Platform for the Support of Routine and Agile
Business Processes. In Proceedings of the Collaborative Computing: Networking, Applications and
Worksharing, Miami, FL, USA, 22–25 October 2014.

6. De Leoni, M.; van der Aalst, W.M.P.; Dees, M. A general process mining framework for correlating, predicting
and clustering dynamic behavior based on event logs. Inf. Syst. 2016, 56, 235–257, [CrossRef]

7. Burattin, A.; Maggi, F.M.; Sperduti, A. Conformance Checking Based on Multi-Perspective Declarative
Process Models. arXiv 2015, arXiv:1503.04957.

8. Augusto, A.; Conforti, R.; Dumas, M.; La Rosa, M.; Maggi, F.M.; Marrella, A.; Mecella, M.; Soo, A. Automated
Discovery of Process Models from Event Logs: Review and Benchmark. CoRR 2017, arXiv:1705.02288.

9. Van der Aalst, W.M.P. Process Mining—Data Science in Action, 2nd ed.; Springer: Berlin, Germany, 2016,
10. Leemans, S.J.J.; Fahland, D.; van der Aalst, W.M.P. Scalable process discovery and conformance checking.

Softw. Syst. Model. 2018, 17, 599–631, [CrossRef] [PubMed]
11. Di Ciccio, C.; Mecella, M. A Two-Step Fast Algorithm for the Automated Discovery of Declarative Workflows.

In Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM),
Singapore, 16–19 April 2013, pp. 135–142.

12. Di Ciccio, C.; Mecella, M. On the Discovery of Declarative Control Flows for Artful Processes. ACM TMIS
2015, 5, 1–37. [CrossRef]

http://dx.doi.org/10.1016/j.is.2015.07.003
http://dx.doi.org/10.1007/s10270-016-0545-x
http://www.ncbi.nlm.nih.gov/pubmed/29706859
http://dx.doi.org/10.1145/2629447

Information 2019, 10, 29 35 of 36

13. Maggi, F.M. Declarative Process Mining with the Declare Component of ProM. In Proceedings of the
Business Process Management Demos, Beijing, China, 26–30 August 2013.

14. Schönig, S.; Rogge-Solti, A.; Cabanillas, C.; Jablonski, S.; Mendling, J. Efficient and Customisable Declarative
Process Mining with SQL. In Proceedings of the International Conference on Advanced Information Systems
Engineering, Tallinn, Estonia, 11–15 June 2016.

15. Schönig, S.; Di Ciccio, C.; Maggi, F.M.; Mendling, J. Discovery of Multi-perspective Declarative Process
Models. In Proceedings of the International Conference on Service-Oriented Computing, Hangzhou, China,
12–15 November 2016; pp. 87–103.

16. Sturm, C.; Schönig, S.; Jablonski, S. A MapReduce Approach for Mining Multi-Perspective Declarative
Process Models. In Proceedings of the 20th International Conference on Enterprise Information Systems,
ICEIS 2018, Funchal, Portugal, 21–24 March 2018; pp. 585–595.

17. Maggi, F.M.; Mooij, A.; van der Aalst, W. User-Guided Discovery of Declarative Process Models.
In Proceedings of the 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM),
Paris, France, 11–15 April 2011; pp. 192–199.

18. Di Ciccio, C.; Schouten, M.H.M.; de Leoni, M.; Mendling, J. Declarative Process Discovery with
MINERful in ProM. In Proceedings of the Business Process Management Demos, Innsbruck, Austria,
31 August–3 September 2015; pp. 60–64.

19. Westergaard, M.; Stahl, C.; Reijers, H. UnconstrainedMiner: Efficient Discovery of Generalized Declarative Process
Models; BPM CR, No. BPM-13-28; BPM Center: Eindhoven, The Netherlands, 2013.

20. Maggi, F.; Bose, R.; van der Aalst, W. A Knowledge-Based Integrated Approach for Discovering and
Repairing Declare Maps. In Proceedings of the International Conference on Advanced Information Systems
Engineering, Tallinn, Estonia, 11–15 June 2013.

21. Di Ciccio, C.; Maggi, F.M.; Montali, M.; Mendling, J. Ensuring Model Consistency in Declarative Process
Discovery. In Proceedings of the International Conference on Business Process Management, Innsbruck,
Australia, 31 August–3 September 2015; pp. 144–159.

22. Di Ciccio, C.; Maggi, F.M.; Montali, M.; Mendling, J. Resolving inconsistencies and redundancies in
declarative process models. Inf. Syst. 2017, 64, 425–446. [CrossRef]

23. Bose, J.C.; Maggi, F.M.; van der Aalst, W. Enhancing Declare Maps Based on Event Correlations.
In Proceedings of the Business Process Management, Beijing, China, 26–30 August 2013; pp. 97–112.

24. Vanden Broucke, S.K.L.M.; Vanthienen, J.; Baesens, B. Declarative process discovery with evolutionary
computing. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China,
6–11 July 2014; pp. 2412–2419. [CrossRef]

25. Lamma, E.; Mello, P.; Montali, M.; Riguzzi, F.; Storari, S. Inducing Declarative Logic-Based Models from
Labeled Traces. In Proceedings of the International Conference on Business Process Management, Brisbane,
Australia 24–28 September 2007; pp. 344–359.

26. Chesani, F.; Lamma, E.; Mello, P.; Montali, M.; Riguzzi, F.; Storari, S. Exploiting Inductive Logic Programming
Techniques for Declarative Process Mining. Trans. Petri Nets Other Models Concurrency 2009, 2, 278–295.

27. Räim, M.; Di Ciccio, C.; Maggi, F.M.; Mecella, M.; Mendling, J. Log-Based Understanding of Business
Processes through Temporal Logic Query Checking. In Proceedings of the OTM Confederated International
Conferences “On the Move to Meaningful Internet Systems”, Amantea, Italy, 27–31 October 2014; pp. 75–92.

28. Westergaard, M.; Maggi, F.M. Looking into the Future: Using Timed Automata to Provide A Priori Advice about
Timed Declarative Process Models; OTM; LNCS; Springer: Berlin, Germany: 2012; Volume 7565, pp. 250–267.

29. Maggi, F.M. Discovering Metric Temporal Business Constraints from Event Logs. In Proceedings of
the International Conference on Business Informatics Research, Lund, Sweden, 22–24 September 2014;
pp. 261–275.

30. Schönig, S.; Cabanillas, C.; Jablonski, S.; Mendling, J. A Framework for Efficiently Mining the Organisational
Perspective of Business Processes. Decis. Support Syst. 2016, 89, 87–97. [CrossRef]

31. Cabanillas, C.; Schönig, S.; Sturm, C.; Mendling, J. Mining Expressive and Executable Resource-Aware
Imperative Process Models. In Proceedings of the International Conference on Enterprise, Business-Process
and Information Systems Modeling, Tallinn, Estonia, 11–12 June 2018; pp. 3–18.

32. Schönig, S.; Cabanillas, C.; Ciccio, C.D.; Jablonski, S.; Mendling, J. Mining team compositions for collaborative
work in business processes. Softw. Syst. Model. 2018, 17, 675–693. [CrossRef]

http://dx.doi.org/10.1016/j.is.2016.09.005
http://dx.doi.org/10.1109/CEC.2014.6900293
http://dx.doi.org/10.1016/j.dss.2016.06.012
http://dx.doi.org/10.1007/s10270-016-0567-4

Information 2019, 10, 29 36 of 36

33. Montali, M.; Chesani, F.; Mello, P.; Maggi, F.M. Towards data-aware constraints in declare. In Proceedings
of the 28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, 18–22 March 2013;
pp. 1391–1396.

34. Maggi, F.M.; Dumas, M.; García-Bañuelos, L.; Montali, M. Discovering Data-Aware Declarative Process
Models from Event Logs. In Proceedings of the Business Process Management 2013, Beijing, China,
26–30 August 2013; pp. 81–96. [CrossRef]

35. Burattin, A.; Maggi, F.M.; Sperduti, A. Conformance checking based on multi-perspective declarative process
models. Expert Syst. Appl. 2016, 65, 194–211. [CrossRef]

36. Ackermann, L.; Schönig, S.; Jablonski, S. Simulation of Multi-perspective Declarative Process Models.
In Proceedings of the Business Process Management Workshops—BPM 2016 International Workshops,
Rio de Janeiro, Brazil, 19 September 2016; Revised Papers; pp. 61–73.

37. Ackermann, L.; Schönig, S.; Petter, S.; Schützenmeier, N.; Jablonski, S. Execution of Multi-perspective
Declarative Process Models. On the Move to Meaningful Internet Systems. In Proceedings of the OTM 2018
Conferences—Confederated International Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta, Malta,
22–26 October 2018; pp. 154–172.

38. Sturm, C.; Schönig, S.; Ciccio, C.D. Distributed Multi-Perspective Declare Discovery. In Proceedings of the
BPM Workshops, Barcelona, Spain, 10–15 September 2017.

39. Van der Aalst, W.; Pesic, M.; Schonenberg, H. Declarative Workflows: Balancing Between Flexibility and
Support. Comput. Sci. Res. Dev. 2009, 23, 99–113. [CrossRef]

40. Montali, M.; Pesic, M.; van der Aalst, W.M.P.; Chesani, F.; Mello, P.; Storari, S. Declarative Specification and
Verification of Service Choreographies. ACM Trans. Web 2010, 4, 3. [CrossRef]

41. Burattin, A.; Maggi, F.M.; van der Aalst, W.M.; Sperduti, A. Techniques for a Posteriori Analysis of
Declarative Processes. In Proceedings of the 16th IEEE International Enterprise Distributed Object
Computing Conference, EDOC 2012, Beijing, China, 10–14 September 2012; pp. 41–50.

42. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 2008, 51.
[CrossRef]

43. Foundation, A.S. Apache Hadoop. 2006. Available online: https://hadoop.apache.org/ (accessed on
5 January 2019).

44. Wu, D.; Sakr, S.; Zhu, L. Big Data Programming Models. In Handbook of Big Data Technologies; Zomaya, A.Y.,
Sakr, S., Eds.; Springer International Publishing: Berlin, Germany, 2017; pp. 31–63,

45. Boudewijn van Dongen, Real-Life Event Logs—Hospital Log. 2011. Available online: https://doi.org/10.
4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54 (accessed on 14 January 2019).

46. Boudewijn van Dongen, BPI Challenge 2017. Available online: https://doi.org/10.4121/uuid:5f3067df-f10b-
45da-b98b-86ae4c7a310b (accessed on 14 January 2019).

47. Boudewijn van Dongen, BPI Challenge 2015. Available online: https://doi.org/10.4121/uuid:31a308ef-c844-
48da-948c-305d167a0ec1 (accessed on 14 January 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-642-40176-3_8
http://dx.doi.org/10.1016/j.eswa.2016.08.040
http://dx.doi.org/10.1007/s00450-009-0057-9
http://dx.doi.org/10.1145/1658373.1658376
http://dx.doi.org/10.1145/1327452.1327492
https://hadoop.apache.org/
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Preliminaries
	Multi-Perspective, Declarative Process Modelling
	Metrics for Mining MP-Declare Models
	MapReduce
	Origin
	Implementations
	Functionality

	Map-Reduce for Declarative Process Mining
	Architecture and Infrastructure
	MR-I
	MR-II

	Mapping MP-Declare Templates to MapReduce
	Existence Constraints
	Relation Constraints
	Mutual Relation Constraints
	Negative Relation Constraints

	Pivot Characteristics Overview

	Implementation
	An extendable Framework
	MapReduce-Miner Library
	Package Model
	JobRunner and Database as Centerpiece
	Package Constraint

	System Support

	Evaluation
	Quantitative Performance Analysis
	Qualitative Evaluation

	Conclusions
	References

